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ABSTRACT
Local anomaly detection in a multi-agent system is a pervasive but
challenging problem. The challenge entails how agents with hetero-
geneous objectives and partial data collection train local anomaly
detectors for heterogeneous domain-specific tasks. This paper pro-
poses a distributed training method to address this question. Our
approach involves a game-theoretic framework to address agents’
heterogeneous objectives and a transformer-based model to han-
dle partial data observation. Our game, conditionally proven as
a potential game, guides agents under the same local objectives
into a data-sharing group for local training. Compared to other top-
performing SOTAs, our evaluation outcomes empirically reflect the
efficiency and robustness of our method in multi-agent scenarios.
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1 INTRODUCTION
Agent-level anomaly detection is vital in multi-agent systems, such
as the Internet of Things [2, 6] and Cognitive Radio Networks [8, 9].
Unlike many central solutions [5, 13], agent-level operations lack
full-system observations and come with heterogeneous anomaly
detection objectives. Examples include product quality control from
multiple suppliers. Suppliers providing different materials assess
product quality with local expertise and partial observations, which
convert the anomaly detection problem into a multi-agent problem
with local objectives and data access.

Data-sharing is the biggest challenge in multi-agent anomaly
detection problems, especially under the lack of central control. As
shown in Fig.1, without accessing other agents’ information, what
is one agent’s optimal data-sharing strategy that 1) identifies other
agents under the same local objectives and 2) shares data to train a
robust anomaly detector with limited observations? Many previous
works assume agents’ anomaly detection tasks have a singular
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Figure 1: Multiple factories (as agents) share local data for
aggregated anomaly detection. Factories producing the same
product types have common anomaly detection objectives,
whose data sharing provides more context to each other.

objective with complete system observation, including contextual
[2, 7, 12, 16], and multi-view [11, 14] anomaly detection methods.
Without such a central control assumption, the anomaly detection
model may not know which local context an agent is situated in,
thus being unable to group correct contextual information from
agents to each local anomaly detector.

This paper proposes a novel multi-agent anomaly detection
method that tackles the above-mentioned challenges. Our method
solves two significant challenges introduced by multi-agent set-
tings: 1) how to create robust anomaly detection against partially
observable input data and 2) how to guide agents from the same
local anomaly detection problem to share information and solve
their local problems simultaneously. Our first innovation is training
multiple local anomaly detectors robustly against agents’ imperfect
data contributions. We applied the masked auto-encoding trans-
former as our anomaly detectors’ backbone, a.k.a. MAETAD. Our
second innovation is to guide agents to contribute local data toward
their most relevant local problem-solving anomaly detectors. We
proposed a non-cooperative data-matching game where each agent
selects and contributes data to a pre-trained local anomaly detector.
This paper provides an overview of our methods.

2 BACKGROUND
A well-known communication structure [3] in multi-agent systems
is formulated as a bipartite graph {V, C,A}. C := {𝑐1, · · · , 𝑐𝑀 } is
the set of aggregation nodes grouping input data for local anom-
aly detectors. V := {𝑣1, · · · , 𝑣𝑁 } is the set of agents requesting
local anomaly detection on their collected data, and A := {𝐴 ∈
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{0, 1}𝑁×𝑀 |1𝑇 ·𝐴 = 1} is the agents’ connection matrix fromV to C.
Data collected by each agent is denoted as a set of 𝑛𝑖 vectors 𝐷𝑣𝑖 ∈
R𝑛𝑖×𝑑 . Anomaly detector aggregates connected agents’ data into
an input matrix 𝐷𝑐𝑘 ∈ R𝐿×𝑑 , where the position of each 𝐷𝑣𝑖 are de-
termined by an agent-reported positioning matrix, 𝐸𝑣𝑖 ∈ {0, 1}𝑛𝑖×𝐿 .
Data matching between agents and anomaly detectors can be ex-
pressed as 𝐷𝑣𝑖 = 𝐸𝑣𝑖𝐷𝑐𝑘 and 𝐷𝑐𝑘 =

∑
𝑣𝑖 ∈𝑐𝑘 𝐸

𝑇
𝑣𝑖
𝐷𝑣𝑖 ,∀𝑣𝑖 ∈ 𝑐𝑘 .

3 PROBLEM STATEMENT
We consider a multi-agent system with 𝑁 agents sparsely dis-
tributed over a large area that provides local data to𝑀 local anomaly
detection problems. Anomaly detectors may have partially observ-
able input data due to limited agents’ contributions, and agents do
not know which anomaly detector is trained to solve their local
problems. (1) How do we train each local anomaly detector to be
robust against partially observable input data during decision time?
(2) How do agents find and send their data to the correct local
anomaly detectors that solve their local problems?

4 MAETAD: A NOVEL LOCAL ANOMALY
DETECTOR

As our solution to Problem 1, we proposed a novel anomaly detector,
MAETAD, to solve local anomaly detection problems. MAETAD
is realized by a masked-autoencoding transformer structure to im-
prove robustness against agents’ partial data contributions in𝐷𝑐𝑘 ∈
R𝐿×𝑑 . The MAETAD model consists of an encoder and decoder
concatenated as the function 𝑓𝑐𝑘 (·, ·;𝜃 𝑓 ) : (R𝐿×𝑑 ,R𝐿) → R𝐿×𝑑 .
Mathematically, given input data 𝐷𝑐𝑘 ∈ R𝐿×𝑑 partially observable
in the 𝐿 positions in 𝐸𝑐𝑘 , the model output 𝑓𝑐𝑘 (𝐷𝑐𝑘 , 𝐸𝑐𝑘 ;𝜃 𝑓 ) ∈ R𝐿×𝑑

reconstructs all 𝐿-positioned data in 𝐷𝑐𝑘 in the model output. The
random masking simulates partially observable data in the model
input, and the ability to handle randommasked positions empowers
MAETAD to detect local anomalies from limited input observations.
Our training loss function is the anomaly detection version of the
Hyper-sphere Classifier defined in [2] as follows,

𝑙𝑐𝑘 (𝐷𝑐𝑘 , 𝐸𝑐𝑘 ; y, 𝜃 𝑓 ) =
𝐿∑︁
𝑗=1

(1 − y𝑗 ) | | (𝑓𝑐𝑘 (𝐷𝑐𝑘 , 𝐸𝑐𝑘 ;𝜃 𝑓 ) − 𝐷𝑐𝑘 ) 𝑗 | |22

− y𝑗 log(1 − 𝑒
−| | (𝑓𝑐𝑘 (𝐷𝑐𝑘

,𝐸𝑐𝑘 ;𝜃 𝑓 )−𝐷𝑐𝑘
) 𝑗 | |22 ),

(1)
where | | (𝑓𝑐𝑘 (𝐷𝑐𝑘 , 𝐸𝑐𝑘 ;𝜃 𝑓 ) − 𝐷𝑐𝑘 ) 𝑗 | |22 is the mean-square loss of
data at position 𝑗 , and the binary vector y ∈ {0, 1}𝐿 represents the
ground-truth anomaly labels at all 𝐿 positions of the input data. In
our one-class-learning setting, only the first term is preserved as
y𝑙 = 0,∀𝑙 = 0, · · · , 𝐿, which eliminates the second term.

As our solution to Problem 2, we rigorously analyze our proposed
multi-agent anomaly detection task in a game-theoretic framework.
We define our game as a tuple: G = {V,A,U}. The player set
consists of all agents inV , whose strategy profile is presented as
the connection matrix 𝐴 ∈ A, where 𝐴𝑖 is the device’s 𝑣𝑖 action.
The last component U represents the space of utility functions for
all local agents 𝑈𝑣𝑖 . ComponentU contains the set of the agents’
utility functions, denoted as {𝑢𝑣𝑖 : A → R|𝑣𝑖 ∈ V}. We first

express the utility given by the aggregation node 𝑐𝑘 as

𝑢𝑣𝑖 (𝐴𝑖 ;𝐴−𝑖 ) = −
𝑀∑︁
𝑘=1

𝐴𝑘
𝑖 | |𝐸𝑣𝑖 𝑓𝑐𝑘 (

𝑁∑︁
𝑖=1

𝐴𝑘
𝑖 𝐸

𝑇
𝑣𝑖
𝐷𝑣𝑖 ) −𝐴𝑘

𝑖 𝐷𝑣𝑖 | |22, (2)

The best response for each player 𝑣𝑖 is the action𝐴𝑖 that maximizes
(2). With agents searching for their best responses simultaneously,
their optimal solutions route local data𝐷𝑣𝑖 to the aggregation nodes
under the same local anomaly detection problems. We formulate
the distributed algorithm Alg.(1) to depict the procedures of such
data-matching, equivalently, the realization of our best response
dynamic.

Algorithm 1: Data Matching of 𝑣𝑖
Input: Network Parameters 𝐴−𝑖 , {𝐷𝑣𝑖 }𝑣𝑖 ∈V , {𝑓𝑐𝑘 }𝑐𝑘 ∈C
Output: Connection Strategy 𝐴𝑖

function argmax𝐴𝑖
𝑢𝑣𝑖 (𝐴−𝑖 , {𝐷𝑣𝑖 }𝑣𝑖 ∈V , {𝑓𝑐𝑘 }𝑐𝑘 ∈C )

Step 1: Return the 𝐴𝑖 that maximizes (2)
Step 2: Update connections to 𝑓𝑐𝑘 with the new 𝐴𝑖

5 EXPERIMENT RESULTS
We conduct our experiments on the anomaly detection datasets in
MVTec-AD [1], a manufacturing quality control benchmark con-
taining 10 objects and 5 textures products. The compared anomaly
detection models are three top-performing state-of-the-art algo-
rithms [4, 10, 15] on MVTec-AD. As shown in Table 1, we first
examine the anomaly detection performance between MAETAD
and three compared models in the presence of randomly missing
input values. Then, we simulate and visualize the best response
dynamics of our proposed game. Finally, we carried out the abla-
tion studies to demonstrate the attributions of our game-theoretic
model training methods. Our distributed model training empirically
surpasses the central state-of-the-art algorithms by 5% in AUROC
and 17% in AUPR on various benchmark datasets.

Metrics AUPR(%) AUROC(%)
Products textures objects textures objects
FF [15] 31.4 41.7 77.4 65.1
PADIM [4] 24.1 22.8 73.2 74.1
PC [10] 25.1 28.4 77.2 80.4
MAETAD (OURS) 49.5 41.7 80.6 86.1

Table 1: Evaluations are performed in Averaged
AUPR/AUROC (%) on two product categories in MVTec-AD
datasets. Our MAETAD model outperforms three SOTAs in
both textures’ and objects’ anomaly detection tasks
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