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ABSTRACT
Session-based recommendation systems are critical for capturing
users’ evolving interests in real-time interactions. However, ap-
plying such systems in a federated learning (FL) setting presents
challenges related to decentralized data and privacy preservation.
To address this, we propose SFedRec, a session-based federated
recommendation framework that integrates long-term user pref-
erences with dynamicd session-based behaviors. SFedRec builds
decentralized heterogeneous knowledge graphs to model user-item
interactions and social connections, utilizing a graph neural net-
work to learn user representations while ensuring privacy through
Local Differential Privacy (LDP). Extensive experiments on three
real-world datasets demonstrate that SFedRec outperforms state-
of-the-art federated recommendation models, showing significant
improvements in both general and cold-start scenarios.
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1 INTRODUCTION
With the growing emphasis on data privacy, federated learning (FL)
has emerged as a compelling solution to train machine learning
models in decentralized environments without the need to collect
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user data centrally [2, 7, 15–17, 23, 29, 47, 53, 60–62]. FL enables
collaborative learning across clients while preserving user privacy,
crucial with regulations like the General Data Protection Regulation
(GDPR) [44]. While this approach has been successfully applied in
various static tasks, its application in recommender systems – where
user interactions are dynamic and personalized – presents a unique
set of challenges.

In the context of FL, several works rely on centralized data for
user preference modeling [1, 4, 18–20, 30, 31, 34, 40, 58]. They dis-
tribute the training of user-specific models across devices and share
model updates, not raw data, with a central server. However, these
models mainly learn static, long-term preferences and fail to cap-
ture dynamic user behavior well, especially in real-time scenarios
like session-based recommendation systems [5, 8, 14, 21, 26, 32, 42,
45, 48, 50–52, 54]. More recently, graph neural networks (GNNs) are
being integrated into federated recommendation systems to better
capture the complex relationships [9, 24, 27, 28, 35, 36, 43, 49, 55, 59].
However, existing approaches using GNNs on static user-item bi-
partite graphs, which limits their ability to model session-based
recommendations, where user preferences shift rapidly over short
periods [11–13, 22, 37, 41, 46, 63]. Additionally, while social network
can help with cold-start problem and accuracy [3, 25, 33, 38, 39, 57],
most FL frameworks do not fully leverage the social context due to
data privacy and integration complexity.

The primary goal of this research is to introduce a novel FL
framework to address these gaps. Our aim is to capture the dy-
namic, session-based preferences of users in a privacy-preserving
manner, while also leveraging social network information to im-
prove recommendation performance in federated environments.

2 PROBLEM FORMULATION
Let U and I denote a sets of users and items, respectively. The
dataset of user’s historical behaviors D contains all sessions of all
users. Each user u ∈ U is associated with a set of sessions denoted
by 𝐷𝑢 ∈ (𝑆𝑢1 , 𝑆

𝑢
2 , ..., 𝑆

𝑢
𝐷𝑢

), where 𝑆𝑢
𝑇
is the 𝑇 𝑡ℎ session of u. Each

session 𝑆𝑢
𝑇
is a sequence of items clicked by an anonymous user,

where 𝑆𝑢
𝑇
[𝑡] ∈ I denotes the 𝐼𝑡ℎ item in the session 𝑆𝑢

𝑇
. For brevity,

we may drop the superscript u and/or superscript T in 𝑆𝑢
𝑇
, apart
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Table 1: Experiment Results Compared with Baseline Methods in %

Model Gowalla Delicious Foursquare
HR@10 MRR@10 HR@20 MRR@20 HR@10 MRR@10 HR@20 MRR@20 HR@10 MRR@10 HR@20 MRR@20

FedMF 18.27 7.63 22.48 8.34 12.58 6.39 15.46 8.42 22.35 7.55 25.24 8.06
FedPerGNN 31.36 15.58 36.98 16.41 26.14 12.97 29.92 14.19 40.93 18.56 49.20 20.18

FeSoG 34.25 17.02 40.12 18.66 32.33 15.20 40.67 16.68 47.66 23.91 56.45 25.06

SFedRec 37.53 17.35 42.05 19.48 32.92 15.95 42.42 17.10 49.69 24.50 57.02 25.64

from the session component, we have a social network which is a
graph 𝑆 = (𝑈 , 𝐸) about social relations. The set of nodes in 𝑆 is the
user set U, and the set E of edges represents the social relationships
between users. An edge (𝑢, 𝑣) from 𝑢 to 𝑣 means that 𝑢 is followed
by 𝑣 .

Given a sub-graph of local user-item interactions and social re-
lationships, a user 𝑢𝑖 stored in client 𝑐𝑖 , the interaction data are
denoted as 𝐷𝑢 , We denote the 𝐶 = (𝑐1, 𝑐2, ...) as clients set, each
users’ data is placed in different clients respectively, we define
session-based federated social recommendation as the task of pre-
dicting the next project, that is, predicting the next item of a new
session S ∉ D, which needs to build a prediction model from all
the users’ data stored in their own private devices with a central-
ized server. Our work will be processed in a privacy preserving
manner based on locally stored user historical data and auxiliary
information extracted from local sub-graph which is built by the
local user-user, user-item and item-item interaction.

3 METHODOLOGY
Our proposed method mainly comprises three components: long-
term interests representation component, session-based representa-
tion component and federated learning component. To be specific,
each component is explained as follows:

• Long-term interests representation component: This mod-
ule firstly constructs local heterogeneous knowledge graph from
all historical user behaviors D and the social network S for each
users to capture user-item interactions, item transitions, and so-
cial relationships, These sub-graphs endow the system with the
ability to conduct local modeling of user behavior; then learns
knowledge-enhanced long-term user and item representations by
employing heterogeneous knowledge graph neural network to
incorporate both historical trends and collaborative information
from neighboring nodes in the graph.

• Session-based representation component: During the active
session, this network focuses on modeling the transitions be-
tween items. By learning item embeddings at the session level, it
can effectively incorporate real-time interaction information and
capture the immediate interest changes of users in the current
session. Meanwhile, it also takes full account of the long-term
preferences of users, avoiding the situation of only focusing on
session-level behaviors and ignoring the overall interest trends
of users. The prediction part can comprehensively consider the
long-term interests of users and the real-time needs of the current
session, providing users with highly accurate next-item recom-
mendations.

• Federated learning component: This module undertakes cru-
cial tasks of data transmission and privacy protection in the
federated learning framework. Its main responsibility is to up-
load the gradients of model parameters to the server. However,
during the transmission of original gradient updates, there is a
risk of sensitive information leakage. To effectively prevent this
problem, this module adopts the Local Differential Privacy (LDP)
technology. Specifically, before the client transmits parameters to
the server, the LDP technology adds carefully controlled noise to
the parameters. The addition of this noise can not only ensure the
statistical usability of the data but also maximize the protection
of user privacy information, making it difficult for attackers to
obtain sensitive data from the transmitted parameters. Finally,
the central server is responsible for collecting the parameters
from various clients and aggregating these parameters. The ag-
gregated results will be sent back to the clients for the clients to
update their local models, thereby achieving the collaborative
training and optimization of the entire federated learning system.

4 EXPERIMENT
We develop two experiments to validate our proposed SFedRec, we
choose three representative benchmark public real-world datasets,
i.e., Gowalla [6], Delicious [10] and Foursquare [56], to evaluate our
proposed model. Table 1 shows the overall results of all baselines
on three datasets, we highlight the best results in bold. Our SFedRec
outperforms all the FedRec models by a big margin, this superiority
of SFedRec can be mainly attributed to its innovative utilization
of the multi-relation knowledge graph to learn the representation.
The multi-relation knowledge graph enables SFedRec to capture a
vast amount of complex information. It not only includes the direct
relationships between users and items but also takes into account
the indirect associations and semantic connections. By leveraging
knowledge source, SFedRec can generate more accurate and com-
prehensive user and item representations, which demonstrates the
effectiveness of our model.

5 CONCLUSION
In this paper, we first explore the challenge problem of dynamic
recommendation and personalized in FedRec, considering the su-
periority of session-based recommendation systems in solving user
dynamic interest problem. In the future, we will consider efficient
aggregation of client private models and explore adversarial train-
ing and robustness enhancement techniques for dynamic federated
recommendation.
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