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ABSTRACT

Multi-agent reinforcement learning (MARL) has achieved ground-
breaking success in recent years. Yet, several open problems remain,
including nonstationarity and instability. Evolutionary game the-
ory (EGT) provides a theoretical framework to tackle instability by
leveraging the properties of its most well-known model, namely,
the replicator dynamics, for theoretical guarantees of convergence
to Nash equilibria. However, these guarantees do not hold true
in certain settings, e.g., zero-sum games. In contrast, innovative
dynamics, such as the Brown-von Neumann-Nash (BNN) or Smith,
retain the convergence guarantees in these settings. We develop a
novel MARL algorithm based on innovative dynamics with a sam-
pling process that resembles experience replay. We show that our
approach is theoretically grounded as other state-of-the-art MARL
algorithms, but most importantly it outperforms other approaches
in the case of nonstationary environments.
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In recent years, multi-agent reinforcement learning (MARL) has
demonstrated groundbreaking success across various domains such
as real-time strategy games and Go, as well as robot control, cyber-
physical systems, finance, and sensor networks, where numerous
agents interact within complex environments [1, 4, 10, 11, 14, 21].
Despite its success, MARL still faces several open problems, in-
cluding nonstationarity and instability. The former is induced by
the change in policy as the agents act and learn concurrently. In-
deed, the rewards that each agent receives are determined not
only through its policy, but also through the policies of other
agents [25, 26]. The latter affects the ability of MARL algorithms to
achieve optimality. To this end, providing theoretical guarantees of
convergence under general conditions is paramount.

Evolutionary game theory (EGT) studies the evolution of strate-
gic interactions in a population of decision-makers, where the fit-
ness of a strategy increases based on the success of that strategy
in a given environment [15, 16, 23]. EGT has played a critical role
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Figure 1: Policy NashConv of BNN-based and Smith-based

ERID, and Replicator-based learning in nonstationary RPS.

in the analysis and evaluation of MARL algorithms in complex
multi-agent environments. Formal connections between EGT and
MARL dates back to late ’90s [2], when it was demonstrated that,
with a sufficiently small learning rate, the learning trajectories of
cross learning [5] – a stateless MARL algorithm – converge to the
trajectories of the replicator dynamics, the most well-studied model
in EGT. This formal link has attracted increasing interest as it allows
researchers to analyse MARL and its stochastic learning processes
through the deterministic framework of replicator dynamics.

Nevertheless, the majority of these studies have concentrated
solely on replicator dynamics and its variants. However, it is well
known that replicator dynamics do not to converge in certain game
settings. We refer to the two main families of games as identified
in [7]: strictly stable games and null-stable games. In strictly stable
games, replicator dynamics can asymptotically converge to the
Nash equilibrium, whereas in null-stable games they form closed
orbits around the Nash equilibrium at a proximity that depends on
the initial conditions. A particularly important class of null-stable
games is zero-sum games. As a result, approaches based on replica-
tor dynamics often rely on time-averaging to ensure convergence to
the Nash equilibrium [8, 13, 22]. However, this method has a signifi-
cant limitation because of the cumulative nature of the time average,
which affects the ability of the dynamics to adapt to nonstationari-
ties. Specifically, when the environment changes, the policy of the
agents may require exponential time to adapt to the new conditions
as is the case, e.g., of feedback-evolving games [18–20, 24, 27].

To overcome the limitations of replicator dynamics, we turn
our attention to learning algorithms based on innovative dynamics
[6], a family of dynamics that includes Brown-von Neumann-Nash
(BNN) [3] and Smith [17] dynamics. Innovative dynamics, in con-
trast to replicator dynamics, converge to the Nash equilibrium in
null-stable games [7]. However, their application to learning tasks
is not as straightforward as with replicator dynamics. In dynamic
environments with discrete changes and stochastic processes, repli-
cator dynamics allow multi-step sampling to remain unbiased with
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respect to the underlying fitness-based equation. Hence, similar
update mechanisms cannot directly be used in innovative dynamics,
which makes it necessary to find an alternative approach to ensure
unbiased sampling.

Contribution. In this paper, we introduce a novel algorithm,
Experience-replay Innovative Dynamics (ERID), based on innova-
tive dynamics via experience-replay. We show that the learning
trajectories of ERID converge to the corresponding base dynam-
ics through the choice of the protocol factor. This enables ERID
to benefit from the convergence guarantees of these dynamics in
strictly stable and null-stable games. Experience-replay is a rein-
forcement learning mechanism used to enhance learning efficiency
and stability by storing and reusing past experiences during the
training process [9]. Its basic principle involves maintaining a mem-
ory buffer that records state transitions, actions, and rewards, which
are then sampled randomly during training to decorrelate consecu-
tive experiences and smooth the learning process [12]. In our case,
experience-replay is used as a batch that moves in time along the
trajectory. Its aim is to reduce sample variance by mixing rewards
from each step with historical rewards. This mitigates the influence
of the non-linear revision protocol and ensures that the algorithm
aligns with the desired underlying dynamics.

As a motivating example, consider the nonstationary rock paper
scissors (RPS) game. We use Relative NashConv, a normalised met-
ric that measures the distance from the NE, to compare a Replicator-
based approach with ERID. As depicted in Fig. 1, ERID outperforms
these approaches in the presence of nonstationarities.

In order to use the stored experiences for the policy updates, it
is essential to calculate the average rewards associated with each
action and the overall average reward across all actions. These two
quantities are defined as:

𝑟𝑖 =


1
|𝐼𝑖 |

∑︁
𝑗∈𝐼𝑖

𝑏 𝑗 , if 𝐼𝑖 ≠ ∅,

0, otherwise,
𝑟 =

1
𝐾

𝐾∑︁
𝑗=1

𝑏 𝑗 . (1)

In EGT, each revision protocol 𝜌𝑖 𝑗 corresponds to a specific set
of evolutionary dynamics, and determines how the probabilities
of choosing different strategies change over time. In our MARL
framework, we introduce the protocol factor 𝜂𝑖 𝑗 , which is computed
based on the average rewards as defined in (1). For each specific set
of dynamics, the corresponding 𝜌𝑖 𝑗 can be mapped to a specific 𝜂𝑖 𝑗 .
The specific mapping involves replacing the fitness values in 𝜌𝑖 𝑗
with the corresponding reward values. We can now present the
update formula for the policy 𝜋𝑖 (𝑡):

𝜋𝑖 (𝑡 + 1) ← 𝜋𝑖 (𝑡) + 𝛼
©­«
𝑀∑︁
𝑗=1

𝜋 𝑗 (𝑡)𝜂 𝑗𝑖 − 𝜋𝑖 (𝑡)
𝑀∑︁
𝑗=1

𝜂𝑖 𝑗
ª®¬ , (2)

where 𝛼 is the learning rate. The pseudocode of the algorithm
corresponding to the above policy update is given in Algorithm 1.

To validate our approach, let us consider the biased RPS game.
The only difference between the biased RPS game and the standard
RPS game is that the payoff of the rock-paper matchups is scaled by
a factor of 2. Figure 2 shows a comparison between the evolutionary
dynamics and ERID in the biased RPS game. The top-left plot depicts
the trajectories of the BNN dynamics, while the bottom-left plot
shows the evolution of the Smith dynamics. On the right-hand side

Algorithm 1 Experience-replay Innovative Dynamics
Require: Initial policy 𝜋0, buffer size 𝐾 , learning rate 𝜃
1: Initialize: Policy 𝜋0 ← initial strategy, buffer 𝐵 ← empty
2: for 𝑡 = 1, 2, . . . do
3: if 𝑡 > 𝐾 then

4: 𝐵 ← shift(𝐵, (𝑎, 𝑟 ))
5: else

6: 𝐵 ← 𝐵 ∪ (𝑎, 𝑟 )
7: 𝑟𝑖 ← getAverageReward(𝐵, 𝑖)
8: 𝑟 ← getOverallAverageReward(𝐵)
9: 𝜋𝑡 ← updatePolicy(𝜋𝑡 , 𝑟𝑖 , 𝑟 , 𝜃 )

of the figure, the top-right plot depicts the results from simulations
using the BNN-based ERID algorithm with a step size of 1𝑒 − 5 and
a buffer size of 1000, whereas the bottom-left plot shows the policy
of the Smith-based ERID algorithm. We observe that the ERID-
generated trajectories on the right closely follow the trajectories of
the corresponding innovative dynamics. Since both BNN and Smith
dynamics are known to converge to the Nash equilibrium in zero-
sum games, we can see that the corresponding ERID trajectories also
converge to the NE, given small perturbations due to the stochastic
nature of the learning algorithm.

CONCLUSION

In this paper, we have proposed a novel algorithm based on inno-
vative dynamics, ERID, which is able to adapt to dynamic changes
in the environment more effectively than traditional approaches
based on replicator dynamics and their time-averaged counterpart.
We have demonstrated that our algorithm converges to the corre-
sponding dynamics, making it theoretically grounded, and showed
that it outperforms replicator-based algorithms in nonstationary
environments.

Figure 2: Innovative dynamics (left) vs policy trajectories

(right) of the corresponding ERID algorithm.
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