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ABSTRACT

Control problems for autonomous Al agents, especially safety-
critical applications such as autonomous vehicle control, require ro-
bust decision-making frameworks to ensure safe navigation in such
complex and dynamic environments. This necessitates approaches
such as Agentic Model Predictive Control (MPC), which can an-
ticipate future problems and plan for them accordingly. Recently,
Multimodal Vision Language Models (VLMs), have emerged as a
way to give a semantic meaning to a scene that draws on extremely
large amounts of information and contextual understanding of the
world. These models vary in a wide range of sizes, trading off speed
with performance as they scale further and further. This paper in-
troduces a novel framework that integrates MPC with Multimodal
VLMs in order to enhance the ability of autonomous vehicles to
navigate and respond to real-world scenarios. Leveraging the open-
source Waymax library released by Waymo, along with Waymo
Open Motion, Berkeley DeepDrive and NuScenes Datasets, our
method uses Multimodal VLMs to detect and draw bounding boxes
around important parts of the scene, such as pedestrians or other
vehicles. These models are helpful for querying specific attributes
of identified objects, such as telling if a vehicle is accelerating or
decelerating, or by recognizing if a newly detected obstacle is on a
collision course with the vehicle. By incorporating these and other
semantic insights into an MPC framework, an autonomous vehi-
cle can make more informed and more context aware decisions
to mitigate the risk of a collision and safely navigate its surround-
ings. We evaluate our approach in diverse simulated environments
using VLMs of different scales, demonstrating improvements in
safety metrics compared to traditional MPC methods. The integra-
tion of VLMs with MPC represents a significant advancement in
autonomous decision-making, and especially in dynamic and un-
certain situations. Our approach paves the way for future research
in using Multimodal VLMs for more intelligent and adaptable au-
tonomous agents.
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1 INTRODUCTION

Autonomous vehicle control is a long-standing and most grand
challenge in robotic reasoning and planning. Driving, for example, is
feasible for most people given sufficient training and instruction, but
is an extraordinarily complex task for a computer to accomplish [5].
There are countless data to take into account when deciding which
action to take, and a severe departure from a planned course of
action may be required at any moment. For this reason, reliable
autonomous vehicles have remained elusive despite significant
advances in Artificial Intelligence (AI) research.

One method used to implement planning in autonomous vehi-
cles is Model Predictive Control (MPC). In MPC, the system has
an explicit model of its own evolution, allowing it to anticipate
future states and plan accordingly, adjusting as needed to any new
information it receives. It works even in a complex multivariate
environment, such as autonomous driving, where route tracking
and vehicle movement must be taken into account [1]. MPC is a
powerful and efficient framework used not only in autonomous
vehicle control but in a wide variety of safety-critical applications
such as chemical synthesis and air traffic control.

Vision Language Models (VLMs) have emerged as a popular way
to create Al systems capable of taking in different modalities of data
similar to how a human would [8]. A VLM can ingest text, speech,
images, video, and a host of other data to generate an output. Due to
the vast amount of data used to train these models, VLMs are often
used to give an Al a general world understanding, though they can
also be fine-tuned for a particular task. The capabilities of a VLM
scale considerably with the number of parameters, but an increase
in size also comes with considerable latency, creating a tradeoff
between performance and speed when it comes to model scale. For
this reason, many VLMs often come packaged in a “family", leaving
it to the user to select which one best fits their use case.
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In this paper, we propose combining MPC and VLMs to create
autonomous vehicle agents that have a semantic understanding of
the world. We believe that this will lead to agents that will:

(1) Have more context-aware decision-making and improved
safety in complex and dynamic situations

(2) Be able address real-time decision making problems with
powerful Al capabilities

(3) Leverage knowledge from pre-training that can handle un-
foreseen circumstances better than traditional Autonomous
Vehicle Control

(4) Have superior interactions with humans by using language-
based signals

Our position is that an approach such as this is not only possible
but can be accomplished using open-source data such as the Waymo
Open Motion Dataset [7] and the NuScenes Autonomous Driving
dataset [4], as well as open-source simulators such as Waymax [9].
Our Multimodal Agentic Model Predictive Control gives us fine-
grained control which can be useful for the Al Agent adapting to
mistakes and navigating efficiently while training or finetuning
self-driving vehicles.

2 BACKGROUND

AT Agents are systems where an Artificial Intelligence is endowed
with the ability to observe an environment, choose an action, an
action, and execute that action within the environment. The most
important feature distinguishing Al Agents from traditional Al is
that the AT Agent needs to be able to consider how its own behavior
affects the world around it, rather than simply focusing on giving
the "correct” output at any given moment. For this reason, we
believe Autonomous Vehicles, and particularly Self-Driving Cars,
fit neatly into the category of Al Agents.

Autonomous Vehicle Development has been an active area of
research since as far back as the 1980s [6]. While rule-based ap-
proaches were originally the norm for these systems, the advent
of practical deep learning led to the quick adoption of advanced
learning-based approaches that could capture patterns in data that
could not be explicitly modeled by a set of human-written rules [14].
Self-driving car companies such as Waymo, Kodiak, and Wayve
have released blogposts with limited detail on using VLMs for Au-
tonomous Vehicles, but to our knowledge they have not combined
VLMs with classical control mechanisms like MPC as we are propos-
ing.

MPC is a paradigm that has been adopted both in rule-based
approaches to artificial intelligence as well as learning-based ap-
proaches. Due to its ability to anticipate future scenarios and plan
in dynamic environments, it is well suited for an environment as
sophisticated as that of a driver operating a vehicle [15]. Another
advantage of MPC is its interpretability, being that they:

(1) Pptimize a cost function that has a physically-grounded
meaning

(2) Make derivations entirely according to the constraints and
objectives of the problem

(3) Have predictions that can be readily analyzed

Recent research has also proposed merging MPC with other
methods of control such as Stanley-based control [1].
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VLMs have increasingly been used to take actions, with Vision-
Language-Action (VLA) models emerging to address this use-case [10,
18]. Specifically, VLMs and controllers have been used in conjunc-
tion with one another before [3, 16]. In fact, VLMs have been used
to serve as controllers in and of themselves [13, 17]. Previous work
has looked at using MPC and VLMs in combination with one an-
other for Self-Driving Cars [12], but we seek to build a frameowrk
that can serve as a basis for other Autonomous Vehicle paradigms
as well, including Autonomous Drones and Autonomous Aquatic
Vehicles. With our proposed framework we hope to further expand
the horizon of what VLMs can be used for and improve the state-
of-the-art for Autonomous Vehicle Control by introducing these
new capabilities.

3 GENERAL APPROACH: MPC-VLMS FOR
AUTONOMOUS VEHICLES

3.1 Conceptual Framework

Our proposed framework for an enhanced Autonomous Vehicle
Control is centered on the potential for improving performance
by leveraging the semantic understanding of the world embedded
in a VLM with MPC that can safely anticipate and plan for future
challenges faced by the autonomous vehicle using information
percieved by the VLM. At each timestep, the autonomous vehicle
would have information input to its sensors. This input would be
fed into the context of the VLM, along with a sufficient history
of prior information. The system would then query the VLM for
information regarding the scene, such as whether there is a car in
the scene or not, as well as changes in the scene, such as whether
the car appears to be in the way of a pedestrian. We would have
a VLM of a size that the Autonomous Vehicle is capable of safely
using given resource and time constraints, as the vehicle must be
able to quickly make decisions. A key advantage of this approach
is that it gives humans a way to understand how the vehicle is
planning for future obstacles, accomplishing our objective of a safe
and trustworthy autonomous vehicle controller. An overview of
the general framework we propose is illustrated in Figure 1.

3.2 Scene Understanding using VLMs

While traditional computer vision techniques analyze a scene using
statistical correlation, we believe VLMs are capable of a higher-
level understanding of contextual relationships [19]. VLMs have
previously been used for scene understanding in the context of au-
tonomous driving, even when given unusual visual data such as LI-
DAR [11] which is a common modality of autonomous vehicle data.
These approaches have not been integrated with Autonomous Vehi-
cle controllers, but the potential for VLMs to enhance Autonomous
Vehicles is clear. Relatively small VLMs, such as PaliGemma 3B [2]
are capable of taking input frames from a video and detecting a
particular kind of object, such as a car. They are also capable of
segmenting the environment into its most important components,
which makes them suitable for extracting a large amount of infor-
mation from their output given a suitable query.
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Figure 1: Overview of the decision-making process for our proposed VLM-MPC system for Autonomous Vehicle Control.
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Figure 2: PaliGemma 3B can accurately identify detect mov-
ing cars in a video.

3.3 Semantic Querying for Object Attributes

In addition to a general understanding of the world that can be pro-
vided to us through VLMs, we can also gain additional information
from making queries to the VLM about important objects detected
in the video. If the VLM detects a car for example, we could ask the
VLM whether the car appears to be heading towards us or away
from us, whether our vehicle is on a collision course with a traffic
cone or whether we are safely out of the way, along with many
other pieces of information we could extract from the scene. This
step leverages the semantic knowledge of the VLM in order to learn
more about each object in the scene.

3.4 Integration of Semantic Insights into MPC

Once we have semantic insights on the scene from the VLM, we
need to find a way to integrate them into the MPC that makes
full use of the information available while also ensuring that in-
formation is usable by the MPC. We propose that the output of
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the VLM be formatted in terms of driving parameters such as the
Speed and Heading of objects of note such as other vehicles. This
information, combined with the known state of the Vehicle, can
better inform the MPC and lead to better performance due to the
additional information about the environment.

3.5 Real-time Processing and Decision Making

Due to the flexibility of our proposed framework, we can apply
VLMs of various scales and sizes to see which VLMs allow for the
best balance of robust information and speed. Autonomous vehicles
are absolutely required to make real-time decisions, as a life-or-
death situation could come at any moment. With this in mind, larger
models may be infeasible, while ultra-small models such as those
designed for mobile phones may not fit into the right semantic
capabilities required for the MPC to make good decisions. We can
explore these different scales of VLM to get a model size that fits
our requirements for both robust decision making and real-time
decision making. Processing the information will also need to be
done quickly in order for the VLM output to be realized in time
in the first place, meaning the other inputs to the VLM such as
the vehicle state, environment conditions, adn reference memory
must also be represented in a compact format that can be processed
quickly.

3.6 Safety-Centric Approach

As the main goal of integrating VLMs with a MPC is to provide con-
trol signals for an autonomous vehicle, safety must be of paramount
importance. This is where the advantages of using an MPC really
shine through. In order to reach safe control signals, we can impose
additional safety constraints on the MPC. We can prevent the MPC
from accelerating too much or from turning too sharply. This adds
an additional layer of robustness to the controller, as output from
the VLM still has the potential to be off due to hallucinations and
other inaccuracies. There is a robust body of literature on imposing
these sorts of constraints, but specifically engineering constraints
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for information sourced from the VLM can be another contribution
of implementing this framework.

3.7 Adaptability and Generalization

With a VLM-backed MPC system, there is a significant ability for
the autonomous vehicle to be able to adapt to unseen scenarios and
other information that it sees repeatedly. The world knowledge
stored in the VLM as a result of pretraining on a vast amount of data
means that decisions can be made with information that has a very
slim but nonzero chance of showing up in an environment such as
the road. The massive corpus of data that is used to pretrain the VLM
will have many different pieces of data that an ordinary dataset for
training an autonomous vehicle may not necessarily have exposure
to. This advantage could give our framework a significant advantage
over other autonomous vehicle frameworks.

3.8 Human-AI Collaboration

Current methods still fall short of true autonomous vehicles. It is
necessary for humans to be able to see how the VLM-MPC system
for autonomous vehicles is creating and using its control signals.
For this purpose we can potentially integrate explainable AI (XAI)
techniques to gain more insight into how our VLM is coming up
with the parameters fed into the MPC. Thankfully, MPC controllers
are more naturally interpretable and so XAI techniques may not
necessarily even be needed in order to understand that component,
so long as the concepts behind the output parameters from the
VLM make intuitive sense to a human observer.

4 CONCLUSION AND CALL TO ACTION

The integration of Multimodal Vision Language Models (VLMs)
with Model Predictive Control (MPC) represents a significant leap
forward in autonomous vehicle technology. This novel framework
has the potential to revolutionize how autonomous vehicles per-
ceive, understand, and navigate complex real-world environments.

By leveraging the semantic understanding capabilities of VLMs
and combining them with the predictive and adaptive strengths of
MPC, we can create autonomous systems that are more context-
aware, safer, and more efficient. This approach addresses criti-
cal challenges in autonomous vehicle control, such as real-time
decision-making in dynamic environments, handling of unfore-
seen scenarios, and improved interaction with human drivers and
pedestrians.

However, realizing this vision requires concerted effort from
the research community. We call upon researchers, engineers, and
practitioners in the fields of artificial intelligence, robotics, and
autonomous systems to:

(1) Explore VLM-MPC Integration: Investigate novel ways to ef-
fectively combine the strengths of VLMs and MPC, focusing
on real-time performance and safety guarantees.

(2) Advance VLM Capabilities: Develop more efficient and task-
specific VLMs that can operate within the computational
constraints of autonomous vehicles.

(3) Enhance Safety Frameworks: Create robust safety validation
methods that can rigorously test and verify VLM-enhanced
autonomous vehicle control systems.
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(4) Address Ethical Considerations: Engage in interdisciplinary
research to tackle the ethical implications of using Al for
critical decision-making in autonomous vehicles.
Standardize Evaluation Metrics: Develop comprehensive
benchmarks and evaluation frameworks that can assess the
performance of integrated VLM-MPC systems across diverse
scenarios.

industry, and regulatory bodies to accelerate the develop-
ment and deployment of these advanced autonomous sys-
tems.

By pursuing these research directions, we can unlock the full po-
tential of VLM-enhanced autonomous vehicles, paving the way for
safer, more intelligent, and more adaptable transportation systems.
The fusion of VLMs with MPC not only promises to advance the
field of autonomous vehicle control but also opens up new possibil-
ities for intelligent autonomous agents across various domains.
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