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ABSTRACT
Generative AI (genAI) models have advanced significantly in recent
years, enabling artificial cognitive agents to process information and
interact with their environments. While much effort has focused on
aligning genAI models to produce reliable behavior, less attention
has been given to their safe integration into critical systems. This
work draws parallels between human safety practices and genAI
agent safety, proposing a shift from individual agent alignment to
a system-level perspective. We identify key weaknesses in genAI
powered agents, connect these to established human safety errors,
and explore how these vulnerabilities manifest in critical systems.
Building on existing research in system safety, we outlinemitigation
strategies that encompass not only model-level improvements but
also cognitive structures and system interfaces, opening a new
avenue of research into cognitive genAI agent safety.
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1 INTRODUCTION
Artificial information processing that matches or exceeds human ca-
pabilities has been emerging in the past several decades for specific
tasks. Milestones have included victory over human competitors
in various games [9, 16, 34] (maybe most notably Go) but also in
other use cases like healthcare and education [4, 18]. Yet despite
this rapid advancement of artificial information processing, the
recent capabilities demonstrated by generative AI models (genAI),
trained on vast text data sets with the ability to converse and cre-
ate human and technical language, have been astounding. Indeed,
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genAI models are powerful contextual machines and can return
extremely relevant text given an input query. Beyond their ability
to generate text and answers in response to human interaction,
their high accuracy supports recursive processes that form the ba-
sis of cognitive systems. This means that the generative AI agents
(genAI agents) that are realistically capable of independent, creative
action are now available, bringing both immense potential for task
automation, but also significant risk [13].

There has been a great deal of concern about the risks posed by
machine learning algorithms and genAI. The early (and realized)
concerns focused on the unexpected bias introduced by algorithms
that are trained on large data sets in terms decisions made regarding
vulnerable populations [29]. In AI agents equipped with genAI for
planning [23, 33], their black-box non-deterministic processes [2,
37] and lack of robustness [25] inherent to black-box emergent
models can create uncontrolled (and unwanted) behavior [22].

The behaviors inherent to an emergent black-box system present
an unprecedented challenge to system safety. Despite the near om-
nipresence of the concerns around the impact of artificial intelli-
gence (AI) in academic literature and media and general thoughts
about “ethical” artificial intelligence, there has been much less
thought on how we wish agents that are capable of independent,
creative actions should act within critical systems. However, we
have long had practices to assure critical systems involving inde-
pendent, creative human agents [27]. The question becomes, what,
if any, lessons learned from human safety behavior can be applied
to genAI agents? GenAI agents share similarities with human cog-
nition both by design and necessity. Additionally, they are trained
on the massive human generated text and image datasets that have
been made available due to the internet. However, despite their
fluency in human conversation, they have qualities that are very
different from actual humans.

2 OVERVIEW OF GENAI AGENTS
Deterministic agents can be assured by examining every state-
action pair they contain. GenAI agents with complex planning
components are built to create more emergent behavior, and their
indeterminism can create safety issues that cannot be examined
by looking at the agent’s state space. We look to assure genAI
agents that exist in sufficiently complicated real [12] and virtual [5]
worlds such that their environment, understanding, and actions are
surrounded by uncertainty.
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Furthermore, our agents have a finite, partial understanding of
their world, gathered through the use of one or more sensors. This
adds uncertainty in that the amount and forms of information are
resource bounded. Also, these agents may act upon their world,
creating possible non-deterministic changes to their environment.
This removes the ability to create a complete plan for each agent that
can be followed without additional checks and revisions. Coupled
with an uncertainty in the background knowledge and gathered
information, the agents we consider must adapt to their current
circumstances, leading to potential safety issues for both the agent
and others operating in the environment.

2.1 Novel Safety Issues of GenAI Agents
The challenges of genAI agents operating in complex environments
can be condensed into issues with the complexity of the environ-
ment and uncertainty with selecting behaviors. These complex
models create additional issues with planning and environmen-
tal operations, such as: fundamental genAI instability, difficulty
with inference in behavior selection, and the potential of recursive
processes creating unwanted emergent behavior.

GenAI Instability: Continuity of behavior, where small input
perturbations result in small changes in output, is a cornerstone of
reliable system engineering. Large output perturbations in response
to minor input changes represent a worst-case scenario for safety
engineers [17]. Unfortunately, because of their contextual sensitiv-
ity, large genAI models are not inherently stable. This issue can
be understood through the framework introduced in [20], which
examines the problem of "censurability"—ensuring that an genAI
does not produce prohibited outputs. The authors demonstrate that
achieving strict censurability is impossible except in trivial cases.

Their argument suggests that a mapping function 𝑔 allows trans-
lation between strings, enabling prohibited messages to be con-
veyed through decoding, with contextual shifts naturally creating
such mappings. This results in unpredictable model responses due
to unexpected contextual maps. Furthermore, the extensive datasets
genAI models are trained on create contextual sensitivity to handle
novel scenarios [24]. However, this sensitivity also compromises
behavioral stability, challenging their reliability in safety-critical
applications (Figure 1A).

Inference and Causal Reasoning: GenAI models as described
above are powerful context interpretation machines, perhaps rival-
ing or even surpassing humans in some circumstances. However,
they are not reasoning about the provided prompts beyond their
ability to produce contextually appropriate answers. Essentially,
their reasoning doesn’t go beyond “correlational”. In practice they
lack the processes to identify when several separate behaviors may
be associated with a single description (Figure 1B). For example,
several individually innocuous tasks may combine to make up a
cyber-attack (known as a mosaic attack). Similarly, genAI agents
don’t natively consider the implications of their actions andwhether
they would violate the policies of a safety system.

Recursive Processes: Unlike the genAI models used to commu-
nicate with humans, genAI agents recursively consume prompts
that they have generated. This has interesting consequences for
their stability in several directions. First, if they are attempting to

Figure 1: Illustrations of safety issues with genAI and agents.
A. GenAI models are contextually sensitive so seemingly
small changes in input can lead to surprising differences in
response. B. Agents don’t inherently understand meaning of
aggregate actions. C. The recursive nature of agents allow for
multiple opportunities to wander into undesirable behaviors.

perform a task, and if a particular action would forward that task di-
rectly but is disallowed by policy the agent may correctly reject that
action initially. However, the agent may rephrase essentially the
same action multiple times, eventually playing on the multi-context
world view of the genAI models mentioned above and bypassing
the policy (Figure 1C). Second, unlike human input, the model is
generating its prompts from the same distribution from which it
is interpreting those prompts. This may drive the agent into an
unexpectedly biased perspective.

3 LEARNING FROM THE ASSURANCE OF
“HUMAN” AGENTS

Human safety systems deal with the prevention, detection, and
mitigation of errors introduced in the system in question [31]. These
errors are classified as active (e.g. a pilot error during flight) or latent
(e.g. an error introduced by a mechanic that only becomes active
under a particular context). They are also classed as intentional
or unintentional errors. Intentional error indicates a violation in
policy, which can be caused by sabotage or deliberate neglect of
safety policies. A key insight is that human error is unavoidable
but manageable.

We begin by considering well established sources of human
errors and whether they have an analog for artificial agents. The
“dirty dozen” human factors [14] that cause human errors (Table
1). These errors primarily with human-system interaction (e.g. lack
of resources, pressure) along with internal human properties (e.g.
stress, fatigue). These errors manifest as weaknesses within the
system as ways in which errors can occur. While these errors are
particular to human integrated systems, many also can be applied
directly to genAI-Agents. We identify three overarching weakness
themes based on what they affect: agent understanding, agent
accountability, and agent execution. These lead to examples of
known or experimentally determined error causes.
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Error Cause genAI-Agent Analogous Cause
Lack of communication genAI-Agent does not receive adequate system information or does not produce complete,

correct, and interpretable output
Lack of teamwork The genAI-Agent is not properly incorporated in the other agents of the system
Lack of assertiveness The output of the genAI-Agent is not appropriately relevant for downstream interpretation
Complacency The genAI-Agent relies too heavily on pre-trained models and data when considering the need

for updates or adjustments based on new information or contexts
Fatigue The necessary context required to make decisions is greater than the genAI-Agent can process
Stress The environment and operating conditions change quicker than the model can process and

respond to those changes
Lack of Knowledge The genAI-Agent is not given access to the correct reference information. Information in the

model itself is outdated.
Lack of Resources The genAI-Agent lacks access to the appropriate API
Lack of Awareness The genAI-Agent might not be aware of the latest developments or contextual subtleties due to

its training data cut-off, leading to responses that might not be fully informed or appropriate
Distraction genAI-Agent attentional salience disrupted by contextual inputs causing it to neglect policies
Pressure genAI-Agent prioritizes time over reflection/accuracy
Norms Norms implicitly in model may conflict with necessary policies

Table 1: Human Error Causes and genAI-Agent Analogous Causes

Weaknesses affecting genAI-Agent understanding impede
their ability to process and comprehend the systems they operate
within. These weaknesses manifest as: failures in cooperation with
other agents, cognitive biases, and reliance on false or incomplete
information. Specifically in the MAS community, significant atten-
tion is given to Theory of Mind weaknesses, akin to human safety
issues from a lack of communication and teamwork. These
weaknesses arise when genAI-Agents hold misconceptions about
other agents, either due to intentional deceptions, such as agent re-
pudiation and fake identity deception [21], or alterations to the base
agent [6]. Additionally,Confabulation in the planning component
of a cognitive agent leads to action misuse or misunderstandings,
where agents fabricate data due to missing information, mainly
due to a lack of knowledge. In the healthcare domain, an agent
may confabulate variables about its environment, such as patent
symptoms, and recommend unnecessary or dangerous treatments.

Other inherent weaknesses include Diluted Attention [26],
analogous to human Lack ofAssertiveness, where agents lose con-
text due to distributed logical rules [1]. For instance, an agent tasked
with destroying a green building may ignore previous instructions
not to destroy orphanages, leading to errors. The Semmelweis
Reflex [28], linked to human complacency, causes agents to ig-
nore external information in favor of preconceived notions. For
example, if the agent is asked which team basketball player Klay
Thompson plays for, it may return previous teams despite available
more up-to-date external information.

Accountability is crucial in system safety, as understanding
the causes of issues is essential when prevention is not possible.
Challenges arise when agents struggle to self-diagnose or describe
their actions, complicating the identification of failure reasons. One
such challenge is Fatigue, which leads to Contextual Shifting.
This occurs when an agent is overloaded with information, causing

it to forget previous actions or instructions, especially during long-
term planning [7]. This can result in forgotten safety instructions
or unreported events, as they fall out of the agent’s focus [35].

Another issue is the agent’s tendency to Erroneously Report
its actions. For instance, a genAI-Agent tasked with a five-step
cyber-attack may succeed after only steps 1 and 5 but still report
completing all five steps. This mirrors human errors of pressure,
where the human feels compelled to report success for all prescribed
steps. Additionally, agents may suffer from a lack of knowledge
about their actions’ causes and effects, stemming from an Opaque
API. For example, an API labeled as "deliver pizza" might actually
fire a cannon, unbeknownst to the agent [8]. Without proper rea-
soning about its behaviors, the agent cannot ensure safe actions,
complicating audits of its behavior.

Confidence Misestimation arises from a lack of awareness,
where agents treat all actions as equally valid, even under uncer-
tainty. In medical diagnosis, for example, an agent might choose a
treatment without communicating its success rate, appearing more
authoritative than it is [10]. This can lead to mistrust and adverse
consequences for those relying on the agent’s decisions.

Additionally the instability of these genAI-Agents can lead them
to perform unsafe actions, despite existing safeguards. These chal-
lenges complicate ensuring safe behaviors during execution. Fram-
ing effects, such as Local Framing Effect and Contextual Fram-
ing Effect, act as distractions, causing agents to misinterpret
instructions. Local framing involves minor changes leading to sig-
nificant action shifts, while contextual framing alters behavior in-
terpretation through specific descriptions. These effects have been
exploited in adversarial attacks on robotic agents [32] and stan-
dalone attacks like the "grandma" attack [15].

Similarly,Mosaic actions [20] break illicit requests into innocu-
ous sub-steps, leading agents into failure states, much like a lack
of knowledge causes human failure by not considering the overall
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effects of small, innocuous actions. This weakness underpins ad-
versarial attacks on Reinforcement learning [19], where attacks are
divided into actions that cumulatively cause failure. For instance, an
autonomous vehicle agent may inadvertently violate policy by exe-
cuting "look" and "shoot" actions separately, despite the prohibition
on targeting civilians.

3.1 A Systems Approach to Human Assurance
Generally there are two approaches to managing human error, the
person approach and the system approach [31]. The person approach
is the traditional approach to a safety failure, that is, attaching
blame to an individual. The cause is attributed to some failure in
the individual, such as those seen in Table 1. Mitigations for the
failure of a person may include: education, awareness campaigns,
and disciplinary action, among others. The system approach focuses
on the system surrounding the person. Mitigations in the system
may include changes to upstream factors such as emphasis on safe
design, to downstream factors that lessen the impact of (inevitable)
human errors.

It is important to note that the system approach does not neglect
the human individual. However, the human centered interventions
in the system approach are coupled with clear interfaces and re-
quirements from their role within the system. There has been a
great deal of research on human factors engineering around hu-
man capabilities and limitations, and how these constraints should
inform interfaces with human operators [36]. However, these have
not been applied to agent-based systems.

As we have shown, the person approach to errors can be applied
to artificial agents. In this case, the primary intervention is training,
mainly through model modification [3]. However, the person is
not the only point of failure. We propose taking a “systems safety”
approach for their incorporation into a specific system. This means
focusing on the interface between the artificial agent and the system.
The result of this analysis may include model retraining and agent
improvement, but we believe considering the environment in which
the agent acts is essential for total safety improvement. Similar to
the approach taken with humans in human factor analysis [36],
one new avenue of research is to identify weaknesses in artificial
agents, and then suggest mitigation not only at the model level, but
also the cognitive architecture and system interface level.

4 TOWARDS AI AGENT SAFETY IN CRITICAL
SYSTEMS

AI agents are vulnerable to many of the same causes of error that
affect humans in safety-critical systems, but their internal cognitive
mechanisms are often less stable and reliable. For genAI agents,
the act of removing undesirable behaviors from genAI models has
generally been referred to as “alignment”. Alignment has primarily
taken place through reinforcement learning from human feedback
(RLHF) [3], which allows refinement of genAI model performance.
There has been a general goal of ensuring models are “Helpful,
Honest, and Harmless” [30], which aligns with general safety ob-
jective. The RLHF approach has been undoubtedly successful in
improving model performance towards specific objectives. How-
ever, the ability to ensure model performance generally has had
mixed results; there has been serious questions about the feasibility

for general model assurance, and certain negative behaviors have
inverse scaling with the number of RLHF steps [30].

In addtion to improving genAI agents through alignment, a
promising research direction is to focus on other aspects of agent
systems that can be enhanced to strengthen controls and reliability.
We discuss some potential topics of controls below.

ContextWindowHygiene: GenAI agents use in-context learn-
ing (ICL)—the ability to learn and generalize inputs from a single
interaction, without modifying model parameters. The ICL context
window encompasses all inputs and outputs during the interac-
tion, including user prompts, model responses, API calls, and agent
framework inputs. Overloading this finite window can dilute atten-
tion, causing the agent to lose track of task objectives and safety
guardrails. To mitigate this, cognitive architectures can offload data-
intensive subtasks to specialized agents, which report back to a
coordinating agent. Similarly, critic agents can monitor task plan-
ning and detect dangerous behaviors arising from mosaic actions.

Contextual Control: Careful management of the context in
which the agent operates can reduce instability. This involves defin-
ing the agent’s role within the larger system, structuring data inputs
and outputs to align with that role, and employing abstract, domain-
specific languages to constrain inputs and outputs. These languages
can simultaneously limit the context and allow external verification,
enhancing overall system safety.

Generative Envisioning and Planning: GenAI agents must
evaluate their behaviors in aggregate and assess whether their
actions, or the consequences of those actions, violate policy. This
requires incorporating an envisioning step after planning or action
steps to analyze potential outcomes. Key questions include: What
are the possible consequences of executing all proposed actions?
What happens if an action fails?Would such a failure breach policy?
If so, what mitigations can reduce the associated risks?

API Specification and External Tools: Thoughtfully designed
APIs can constrain an agent’s operational context and enable reason-
ableness checks on outputs, mitigating confabulation. Additionally,
tools such as behavior trees [11] or planning frameworks can trans-
late agent plans into auditable structures, fostering transparency
and control.

Explanation and Root Cause Analysis:GenAI agents must be
capable of explaining and justifying their actions. During planning
and envisioning, risks and mitigations should be clearly recorded to
enable later scrutiny and correction. The assurance case formalism
is a robust framework for documenting why an action complies
with policy, the evidence supporting it, and why that evidence is suf-
ficient. Such structures can also facilitate root cause analysis when
errors occur, identifying the underlying issues in agent behavior.

5 CONCLUSION
Artificially intelligent agents enabled by genAI Models are now
realistically capable of independent, creative action, bringing both
immense potential for task automation, but also significant risk.
Considering human factors that cause human error provides in-
sight into the challenges both unique and common to genAI agents
compared to human agents in the safety assurance of systems. This
paper suggests a few key approaches to follow when incorporating
genAI Agents into critical processes.
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