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ABSTRACT
Recent years have seen a surge of artificial currency-based mecha-

nisms in contexts where monetary instruments are deemed unfair

or inappropriate, e.g., in allocating food donations to food banks,

course seats to students, and, more recently, even for traffic con-

gestion management. Yet the applicability of these mechanisms

remains limited in repeated auction settings, as it is challenging for

users to learn how to bid an artificial currency that has no value

outside the auctions. Indeed, users must jointly learn the value of

the currency in addition to how to spend it optimally. Moreover,

in the prominent class of karma mechanisms, in which artificial

karma payments are redistributed to users at each time step, users

do not only spend karma to obtain public resources but also gain
karma for yielding them. For this novel class of karma auctions, we

propose an adaptive karma pacing strategy that learns to bid opti-

mally, and show that this strategy a) is asymptotically optimal for a

single user bidding against competing bids drawn from a stationary

distribution; b) leads to convergent learning dynamics when all

users adopt it; and c) constitutes an approximate Nash equilibrium

as the number of users grows. Our results require a novel analysis

in comparison to adaptive pacing strategies in monetary auctions,

since we depart from the classical assumption that the currency has

known value outside the auctions, and consider that the currency

is both spent and gained through the redistribution of payments.

CCS CONCEPTS
• Theory of computation → Convergence and learning in
games.

KEYWORDS
Online learning; Artificial currency; Karma economy; Repeated

auctions; Budget-constrained auctions; Adaptive pacing.
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1 INTRODUCTION
In public resource allocation contexts, the use of monetary instru-

ments to regulate resource consumption is often deemed inequitable

(e.g., to manage traffic congestion [2, 10, 15, 40]), inappropriate (e.g.,

for organ and food donations [29, 33, 39] or course allocations [11]),

or simply undesired (e.g., for peer-to-peer file sharing [17, 42] or

babysitting services [28]). As a consequence, significant attention

has been devoted to the study of non-monetary mechanism de-

sign [36, 38], which is known to be challenging due to interper-

sonal comparability [34] and the lack of a general instrument to

manipulate incentives [20, 37].

However, a number of mechanisms have seen some recent suc-

cess in jointly achieving the objectives of fairness, efficiency, and

strategy-proofness when resources are allocated repeatedly over
time [6, 8, 21–24]. The core principle of these mechanisms is to

restrict the number of times the resource can be consumed and let

the users trade off when it is most beneficial for them to do so. To

achieve these goals, many of these mechanisms employ artificial
currencies [8, 13, 21–23, 28, 33], which involves issuing a budget

of non-tradable credits or currency to users which they may use

to repeatedly bid for resources. In artificial currency mechanisms,

users, who may have time-varying and stochastic valuations for

the resources, must be strategic in their bidding to not deplete

the budget too quickly, and to spare currency for periods when

they have the highest valuation for the resources. Thus, artificial

currencies serve the dual purpose of monitoring resource consump-

tion and providing a means for users to express their time-varying

preferences, resulting in fair and efficient allocations over time.

The literature on artificial currency mechanisms for repeated

resource allocation can be broadly categorized in two classes. In the

first class, artificial currency is issued at the beginning of a finite

episode only to be spent during the episode [8, 19, 21, 22]. In the

second class, artificial currency is issued at the beginning of the

episode but can also be gained throughout it, typically by means

of peer-to-peer exchanges [13, 17, 28, 42] or by redistributing the

payments collected in each time step [14, 33]. Some works have

referred to this class of artificial currencies as karma [13, 42, 43]:

when users yield resources to others they gain karma, and when

instead they consume resources they lose karma. In comparison to
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mechanisms relying on initial endowments of artificial currency

only, karma mechanisms are particularly suited to settings in which

resources are allocated indefinitely with no finite horizon in sight.

In both classes of artificial currency mechanisms, the focus thus

far has been on analyzing equilibrium properties, including ex-

istence [13], strategy-proofness [21, 23], and robustness [8, 22].

However, few works have considered the problem of learning how
to optimally bid artificial currency in repeated auction settings, and
whether such a learning procedure converges to a Nash equilibrium.

This problem holds both significant importance and challenge. The

importance is two-fold: on one hand, the equilibrium-based analysis

of previous studies is only meaningful if an equilibrium is reached;

on the other, devising simple learning rules that align with users’

self-interest is crucial to implement these mechanisms in practice.

The challenge stems from the fact that, unlike traditional monetary

instruments, artificial currency does not have any value outside the

resource allocation context for which it has been issued. Therefore,

users must jointly learn the value of the currency as well as how to

spend it optimally. Moreover, the possibility of gaining currency

in the class of karma mechanisms leads to new challenges that

are particular to these novel mechanisms. In the related setting

of online Fisher markets, [19] proposes a distributed algorithm to

compute online market equilibria but does not analyze convergence

to Nash equilibria, and does not consider currency gains.

The problem of learning how to bid optimally in monetary auc-

tions is a classical one [30, 32]. This problem has gained recent

traction in the context of repeated, budget-constrained auctions [3,

5, 7, 12, 18, 31, 44], most famously to automate the bidding in multi-

period online ad campaigns. We draw inspiration from these works,

and in particular [5], to derive adaptive pacing strategies in artificial

currency-based auctions. The first class of artificial currency auc-

tions in which users are issued an initial endowment of currency

only is most closely related to works considering value maximiza-
tion [4, 18, 31]. In these works, monetary payment costs are not

included in the users’ optimization objective, but these monetary

costs still enter the optimization explicitly in constraints, either on

individual bids [18] or on the total expenditure (also known as re-
turn of investment constraints) [31]. In contrast, the cost of spending

currency must be learned and does not appear in the optimization

objective nor constraints in artificial currency auctions.

Moreover, the second class of karma auctions in which karma

is gained throughout the auction campaign leads to new strategic

opportunities that are not typically considered in monetary settings.

For instance, even in a second-price auction users have an incentive

to bid non-truthfully to maximize the karma gained upon losing.

Furthermore, the preservation of total karma held by the users

in this class of auctions leads to challenges in the simultaneous

adoption of classical adaptive pacing strategies, since it becomes

impossible for all users to simultaneously deplete their budgets.

1.1 Contribution
In this paper, we adopt techniques from adaptive pacing in budget-

constrained monetary auctions [5] to the two aforementioned

classes of artificial currency mechanisms. The first class of arti-

ficial currency mechanisms in which users are issued an initial

endowment of currency only is addressed in the full version of the

paper [9]. In the following, we instead focus on the second and

more challenging class of karma mechanisms. We specifically con-

sider mechanisms in which the karma payments are redistributed

uniformly in each time step. We derive an adaptive karma pacing
strategy for these mechanisms, and show that: a) adaptive karma

pacing is asymptotically optimal for a single user bidding against

competing bids drawn from a stationary distribution; b) when all

users adopt adaptive karma pacing, the expected dynamics con-

verge asymptotically to a unique stationary point; and c) adaptive

karma pacing constitutes an approximate Nash equilibrium under

the additional assumption that there is a large number of parallel

auctions for which the matching probability of any two particu-

lar users decays asymptotically to zero. Performing an asymptotic

analysis is natural for karma mechanisms as they can be infinitely

repeated. The novel technical challenges of the karma-based setting

in comparison to the monetary setting, and how they are tackled

in our paper, are summarized as follows:

• The possibility of gaining karma through redistribution leads

to non-truthfulness of the second-price auction, and a com-

plex dependency of the karma budget dynamics on the user’s

bid. This requires relaxing the primal problem’s budget con-

straint and using non-perfect gradient information in the

associated relaxed dual problem;

• The preservation of karma due to redistribution leads to sev-

eral complications requiring a novel adaptive karma pacing

strategy and analysis. It is impossible for all agents to simulta-

neously deplete their budgets in this setting, which requires

removing the target expenditure rate from the multiplier

updates. This leads to non-uniqueness of the optimal station-

ary multipliers, requiring further strategy modifications to

converge to a unique multiplier profile.

As a consequence of these modifications to standard adaptive pac-

ing, our paper performs a novel regret analysis in order to extend

previous performance guarantees to the karma-based setting.

The remainder of the paper is organized as follows. In Section 2

we introduce the problem formulation including key definitions

and notations. We derive our adaptive karma pacing strategy in

Section 3. Our main results are then included in Section 4 which

establishes performance guarantees for this strategy. Finally, Sec-

tion 5 discusses the results, shedding light on the key assumptions

made and providing directions for future work. In the full version

of the paper [9], we additionally include a detailed literature review,

results for artificial currency mechanisms with no redistribution,

supplementary numerical experiments, and detailed proofs.

2 PROBLEM SETUP
This section introduces the setting studied in the paper, including

notations and important definitions.

2.1 Notation
We denote by [𝑁 ] the set {1, . . . , 𝑁 }, by 1{·} the indicator function,
by (·)+ the function 𝑥 ↦→ max{𝑥, 0}, and by 𝑃[𝑎,𝑏 ] (·) the projection
𝑥 ↦→ min{max{𝑥, 𝑎}, 𝑏}. Scalars 𝑥 are distinguished from vectors

𝒙 = (𝑥𝑖 )𝑖∈𝐼 , for some index set 𝐼 , through the use of boldface. If 𝑥

is a scalar, then 𝑥 (respectively, 𝑥) is a lower bound (respectively,

upper bound) of 𝑥 . If 𝒙 is a vector, then 𝑥 = min𝑖∈𝐼 𝑥𝑖 (respectively,
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𝑥 = max𝑖∈𝐼 𝑥𝑖 ). Finally, for the vector 𝒙 and an index 𝑖 ∈ 𝐼 , the

vector 𝒙−𝒊 = (𝑥 𝑗 ) 𝑗∈𝐼 , 𝑖≠𝑗 is constructed by dropping component 𝑖 .

2.2 Setting
We study a general class of repeated resource allocation problems

in which a limited number of resources must be repeatedly allo-

cated to a population N = [𝑁 ] of agents. For the sake of pre-

sentation, we instantiate this class of problems using a stylized

morning commute setting [1, 41], which is schematically illustrated

in Figure 1. At discrete time steps 𝑡 ∈ N (e.g., days), the agents

seek to commute from the suburb to the city center using one of

two roads. The general purpose road is subject to congestion, while

access to the priority road is limited to its free-flow capacity of

𝛾 ∈ [𝑁 − 1] agents per time step. Traveling on the general purpose

road takes unit time, while traveling on the priority road takes a

shorter time 0 ≤ 1 − Δ < 1. This model can be interpreted as an

abstraction of a multi-lane highway with a governed express lane

and an un-governed, congested general purpose lane. At each time

step 𝑡 ∈ N, each agent 𝑖 ∈ N is associated with a private valuation
of time 𝑣𝑖,𝑡 ∈ [0, 1] drawn independently across time from fixed,

exogenous distributionsV𝑖 . The valuations represent the agents’
time-varying sensitivities to travel delays, e.g., because they have

flexible schedules on some days but must be punctual on other days,

and are normalized to the interval [0, 1] without loss of generality.
We denote by 𝒗𝒕 =

(
𝑣𝑖,𝑡

)
𝑖∈N the vector of agents’ valuations at time

𝑡 , which are distributed according to V =
∏
𝑖∈N V𝑖 with support

over [0, 1]𝑁 . As is common in the literature [5, 12, 21], we assume

that the valuation distribution V is absolutely continuous with

bounded density 𝜈 : [0, 1]𝑁 ↦→
[
𝜈, 𝜈

]𝑁 ⊂ R𝑁
>0
.

Access to the priority road is governed by means of an artificial

currency called karma. Each agent 𝑖 ∈ N is endowed with an

initial karma budget 𝑘𝑖,1 ∈ R+. Then, at each time step 𝑡 ∈ N,
each agent places a sealed bid 𝑏𝑖,𝑡 ∈ R+ smaller than its current

budget 𝑘𝑖,𝑡 ∈ R+. The 𝛾-highest bidders, referred to as the ‘auction

winners’, are granted access to the priority road, and must pay

𝑝
𝛾+1
𝑡 := 𝛾 +1th-max{𝑏𝑖,𝑡 }𝑁𝑖=1 in karma. The 𝑁 −𝛾 remaining agents,

referred to as the ‘auction losers’, must instead take the general

purpose road and make no payments. The price 𝑝
𝛾+1
𝑡 is set by the

highest bid among the auction losers, i.e., it corresponds to the

second price auction if 𝛾 = 1. After payments are settled, they are

redistributed uniformly to the agents such that each agent gains

𝑔𝑖,𝑡 = 𝛾 𝑝
𝛾+1
𝑡 /𝑁 units of karma in the next time step. Notice that

under this redistribution scheme, agents that access the priority

road have a net decrease in karma, while those using the general

purpose road have a net increase in karma. Meanwhile, the total

amount of karma in the system set by the initial endowments 𝒌1 is
preserved over time.

Let 𝒃−𝒊,𝒕 = (𝑏 𝑗,𝑡 ) 𝑗≠𝑖 be the bid profile of agents other than

𝑖 , and 𝑑
𝛾

𝑖,𝑡
= 𝛾 th-max𝑗 :𝑗≠𝑖 {𝑏 𝑗,𝑡 } be the associated competing bid,

since agent 𝑖 must bid higher than 𝑑
𝛾

𝑖,𝑡
to be among the auction

winners. We assume that ties in bids do not occur (as is common

in the literature [5]; in practice ties could be settled randomly). Let

𝑥𝑖,𝑡 = 1{𝑏𝑖,𝑡 > 𝑑𝛾𝑖,𝑡 } ∈ {0, 1} indicate whether agent 𝑖 is an auction

winner at time 𝑡 . Then the agent suffers a cost 𝑐𝑖,𝑡 = 𝑣𝑖,𝑡 (1 − 𝑥𝑖,𝑡Δ)

and pays 𝑧𝑖,𝑡 = 𝑥𝑖,𝑡 𝑑
𝛾

𝑖,𝑡
at that time. Their budget for the next time

step is hence determined by 𝑘𝑖,𝑡+1 = 𝑘𝑖,𝑡 − 𝑧𝑖,𝑡 + 𝑔𝑖,𝑡 .
We consider rational agents that aim to minimize their expected

total cost over a time horizon𝑇 . At time 𝑡 , the information available

to agent 𝑖 to formulate its bid is the history
H𝑇
𝑖,𝑡

=
{
𝑇, (𝑣𝑖,𝑠 , 𝑘𝑖,𝑠 , 𝑏𝑖,𝑠 , 𝑧𝑖,𝑠 , 𝑐𝑖,𝑠 )𝑡−1𝑠=1

, 𝑣𝑖,𝑡 , 𝑘𝑖,𝑡
}
. A bidding strategy

𝛽𝑇
𝑖
∈ B𝑇 for agent 𝑖 is thus a sequence of functions 𝛽𝑇

𝑖
=

(
𝛽𝑇
𝑖,1
, . . . , 𝛽𝑇

𝑖,𝑇

)
,

where 𝛽𝑇
𝑖,𝑡

maps the historyH𝑇
𝑖,𝑡

to a probability distribution over

the set of feasible bids [0, 𝑘𝑖,𝑡 ]. A profile of strategies for all agents

is accordingly denoted by 𝜷𝑇 =
(
𝛽𝑇
𝑖

)
𝑖∈N . For a fixed agent 𝑖 fol-

lowing strategy 𝛽𝑇
𝑖
, it will be convenient to define three notions of

expected total cost, given by

C𝛽
𝑇
𝑖

𝑖
(𝒗𝒊, 𝒅𝒊) = E

𝒃𝒊∼𝛽𝑇𝑖

[
𝑇∑︁
𝑡=1

𝑐𝑖,𝑡

]
= E

𝒃𝒊∼𝛽𝑇𝑖

[
𝑇∑︁
𝑡=1

𝑣𝑖,𝑡

(
1 − 1

{
𝑏𝑖,𝑡 > 𝑑

𝛾

𝑖,𝑡

}
Δ
)]
,

(1)

C𝛽
𝑇
𝑖

𝑖
= E

𝒗𝒊∼
𝑇∏
𝑡=1

V𝑖 , 𝒅𝒊∼
𝑇∏
𝑡=1

D𝑖 , 𝒃𝒊∼𝛽𝑇𝑖

[
C𝛽

𝑇
𝑖

𝑖
(𝒗𝒊, 𝒅𝒊)

]
, (2)

C𝜷𝑇

𝑖
= E

𝒗∼
𝑇∏
𝑡=1

V, 𝒃−𝒊∼𝜷𝑇−𝒊

[
C𝛽

𝑇
𝑖

𝑖
(𝒗𝒊, 𝒅𝒊 (𝒃−𝒊))

]
. (3)

Equation (1) defines the sample path cost C𝛽
𝑇
𝑖

𝑖

(
𝒗𝒊, 𝒅

𝜸
𝒊

)
for a fixed

realization of valuations 𝒗𝒊 = (𝑣𝑖,𝑡 )𝑡 ∈[𝑇 ] and competing bids 𝒅𝒊 :=(
𝑑
𝛾

𝑖,𝑡
, 𝑑
𝛾+1
𝑖,𝑡

)
𝑡 ∈[𝑇 ] . Equation (2) defines the stationary competition cost

C𝛽
𝑇
𝑖

𝑖
, in which the competing bids 𝑑𝑖,𝑡 are assumed to be drawn

independently across time from a stationary distributionD𝑖 . Finally,

Equation (3) defines the strategic competition cost C𝜷𝑇

𝑖
, which is

agent 𝑖’s expected total cost when all agents follow strategy profile

𝜷𝑇 . Finally, we define the infinite series of strategy profiles 𝜷 =(
𝜷𝑇

)
𝑇 ∈N and say that strategy profile 𝜷 constitutes an approximate

Nash equilibrium if its strategic competition cost satisfies, for all

agents 𝑖 ∈ N ,

lim

𝑇→∞
1

𝑇

(
𝐶
𝜷𝑇

𝑖
− inf

˜𝛽𝑇
𝑖
∈B𝑇

𝐶
˜𝛽𝑇
𝑖
,𝜷𝑇

−𝒊
𝑖

)
= 0. (4)

Equation (4) implies that under strategy profile 𝜷 , no single agent 𝑖

can asymptotically improve its expected average cost per time step

by unilaterally deviating to a strategy
˜𝛽𝑇
𝑖
≠ 𝛽𝑇

𝑖
.

3 DERIVATION OF ADAPTIVE KARMA
PACING

In the remainder of the paper, our main goal is to devise a bidding

strategy that constitutes an approximate Nash equilibrium when all

agents follow it. As a first step towards this goal, this section derives

a candidate optimal bidding strategy using an online dual gradient
ascent scheme. This classical optimization technique has gained

recent traction in the context of budget-constrained auctions [5] and

other related problems [7, 25–27]. To elucidate our bidding strategy,

we first introduce the optimization problem of a single agent 𝑖 ∈
N who has the benefit of hindsight, i.e., who can make optimal

bidding decisions with prior knowledge of the future realizations of
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Figure 1: Schematic representation of repeated resource allocation using karma.

valuations 𝒗𝒊 and competing bids 𝒅𝒊 . Thus, the optimal cost of this

problem serves as a theoretical benchmark for the lowest cost that

the agent can hope to achieve. Then, since in practice the agent

only observes the stochastic valuations and competing bids online

as the auctions progress, we introduce a candidate bidding strategy,

based on online gradient ascent, to approximate the agent’s optimal

bidding strategy with the benefit of hindsight.

Optimal Cost with the Benefit of Hindsight.We construct

hereafter a lower bound on the optimal cost with the benefit of

hindsight. For a fixed realization of valuations 𝒗𝒊 and competing

bids 𝒅𝒊 , agent 𝑖’s optimal cost with the benefit of hindsight is given

by the following optimization problem

C𝐻𝑖 (𝒗𝒊, 𝒅𝒊 ) = min

𝒃𝒊 ∈R𝑇+

𝑇∑︁
𝑡=1

𝑣𝑖,𝑡

(
1 − 1

{
𝑏𝑖,𝑡 > 𝑑

𝛾

𝑖,𝑡

}
Δ
)
, such that

𝑠∑︁
𝑡=1

1
{
𝑏𝑖,𝑡 > 𝑑

𝛾

𝑖,𝑡

}
𝑑
𝛾

𝑖,𝑡
≤ 𝜌𝑖𝑇 +

𝑠−1∑︁
𝑡=1

𝑔𝑖,𝑡
(
𝑏𝑖,𝑡 , 𝑑𝑖,𝑡

)
, ∀𝑠 ∈ [𝑇 ],

(5)

where, following the standard literature [5], we define 𝜌𝑖 = 𝑘𝑖,1/𝑇
as the target expenditure rate, i.e., the average expenditure per time

step that would fully deplete the initial budget by the end of the

time horizon if no karma was gained. Notice that Problem (5) bears

significant complexity in comparison to its counterpart in the stan-

dard setting with no budget gains. First, the possibility of gaining

karma requires a budget constraint for each time step 𝑠 ∈ [𝑇 ] in-
stead of only one at the end of the horizon. Second, the outcomes

𝑥𝑖,𝑡 cannot be used directly as decision variables since the gains 𝑔𝑖,𝑡
depend non-trivially on the bids 𝑏𝑖,𝑡 , as given by

𝑔𝑖,𝑡
(
𝑏𝑖,𝑡 , 𝑑𝑖,𝑡

)
=
𝛾

𝑁
𝑝
𝛾+1
𝑡

(
𝑏𝑖,𝑡 , 𝑑𝑖,𝑡

)
=
𝛾

𝑁


𝑑
𝛾

𝑖,𝑡
, 𝑑

𝛾

𝑖,𝑡
< 𝑏𝑖,𝑡 ,

𝑏𝑖,𝑡 , 𝑑
𝛾+1
𝑖,𝑡

< 𝑏𝑖,𝑡 ≤ 𝑑𝛾
𝑖,𝑡
,

𝑑
𝛾+1
𝑖,𝑡

, 𝑏𝑖,𝑡 ≤ 𝑑𝛾+1
𝑖,𝑡

.

(6)

Finally, notice that with respect to the standard setting, Problem (5)

has an additional dependency on 𝑑
𝛾+1
𝑖,𝑡

, i.e., the 𝛾 + 1
th
-highest

competing bid, c.f. Equation (6). If agent 𝑖 is among the auction

winners, the price 𝑝
𝛾+1
𝑡 and thereby the gain 𝑔𝑖,𝑡 is determined by

𝑑
𝛾

𝑖,𝑡
; if the agent is among the auction losers and is not the price

setter, the gain is determined by 𝑑
𝛾+1
𝑖,𝑡

; and if the agent is among

the auction losers but sets the price the gain is determined by its

own bid 𝑏𝑖,𝑡 . To address the complexity of Problem (5), we perform

a relaxation that forms a lower bound on the optimal cost with the

benefit of hindsight, given by

C𝐻𝑖 (𝒗𝒊, 𝒅𝒊 ) ≥ C𝐻
𝑖

(
𝒗𝒊, 𝒅

𝜸
𝒊

)
= min

𝒙𝒊 ∈{0,1}𝑇

𝑇∑︁
𝑡=1

𝑣𝑖,𝑡 (1 − 𝑥𝑖,𝑡Δ),

s.t.

𝑇∑︁
𝑡=1

(
𝑥𝑖,𝑡 −

𝛾

𝑁

)
𝑑
𝛾

𝑖,𝑡
≤ 𝜌𝑖𝑇 .

(7)

This lower bound is obtained by a) allowing temporary negative

balances of karma as long as it is non-negative at the end of the

horizon𝑇 ; and b) eliminating the dependency of𝑔𝑖,𝑡 on𝑏𝑖,𝑡 and𝑑
𝛾+1
𝑖,𝑡

by assuming that when the agent is among the auction losers, it

alwaysmanages to be the price setter and impose themaximumgain

𝛾

𝑁
𝑑
𝛾

𝑖,𝑡
. The Lagrangian dual problem associated with Problem (7) is

C𝐻𝑖 (𝒗𝒊, 𝒅𝒊 ) ≥ 𝛿𝐻𝑖
(
𝒗𝒊, 𝒅

𝜸
𝒊

)
:= sup

𝜇𝑖 ≥0
min

𝒙𝑖 ∈{0,1}𝑇

𝑇∑︁
𝑡=1

𝑥𝑖,𝑡

(
𝜇𝑖𝑑

𝛾

𝑖,𝑡
− Δ𝑣𝑖,𝑡

)
+ 𝑣𝑖,𝑡 − 𝜇𝑖

(
𝜌𝑖 +

𝛾

𝑁
𝑑
𝛾

𝑖,𝑡

) (8)

The relaxation in Problem (7) results in dual Problem (8) with similar

structure to its counterpart in the standard setting with no budget

gains. The main difference is that the target expenditure rate 𝜌𝑖 is

replaced by the time-varying term 𝜌𝑖 + 𝛾

𝑁
𝑑
𝛾

𝑖,𝑡
. This is intuitive as

the agent now aims to deplete both its initial budget as well as the

gains it receives. For a fixed multiplier 𝜇𝑖 ≥ 0, the inner minimum

in (8) is obtained by winning all auctions satisfying Δ𝑣𝑖,𝑡 > 𝜇𝑖𝑑
𝛾

𝑖,𝑡
.

This can be achieved by bidding 𝑏𝑖,𝑡 = Δ𝑣𝑖,𝑡/𝜇𝑖 , yielding

𝛿𝐻𝑖
(
𝒗𝒊, 𝒅

𝜸
𝒊

)
= sup

𝜇𝑖 ≥0

𝑇∑︁
𝑡=1

𝑣𝑖,𝑡 − 𝜇𝑖
(
𝜌𝑖 +

𝛾

𝑁
𝑑
𝛾

𝑖,𝑡

)
−

(
Δ𝑣𝑖,𝑡 − 𝜇𝑖𝑑𝛾𝑖,𝑡

)+
:= sup

𝜇𝑖 ≥0

𝑇∑︁
𝑡=1

𝛿𝐻𝑖,𝑡
(
𝑣𝑖,𝑡 , 𝑑

𝛾

𝑖,𝑡
, 𝜇𝑖

)
.

(9)

Adaptive Karma Pacing. We perform a stochastic gradient

ascent scheme in order to approximately solve the relaxed dual

Problem (9) using online observations. Namely, the agent considers

a candidate optimal multiplier 𝜇𝑖,𝑡 and places its bid accordingly

with 𝑏𝑖,𝑡 = Δ𝑣𝑖,𝑡/𝜇𝑖,𝑡 . In an ideal case, it would then update 𝜇𝑖,𝑡+1

using the subgradient given by

𝜕𝛿𝐻
𝑖,𝑡

𝜕𝜇𝑖,𝑡

(
𝑣𝑖,𝑡 , 𝑑

𝛾

𝑖,𝑡
, 𝜇𝑖,𝑡

)
= 𝑧𝑖,𝑡 −𝜌𝑖− 𝛾

𝑁
𝑑
𝛾

𝑖,𝑡
.

However, adopting this subgradient raises two issues. First, the

term
𝛾

𝑁
𝑑
𝛾

𝑖,𝑡
is only observed by auction winners, hence we use the

observed gain 𝑔𝑖,𝑡 as a proxy instead. Second, if all agents are to

adopt this subgradient, it is impossible for them to simultaneously

track 𝜌𝑖 and fully deplete their karma by the end of the horizon, as

the total amount of karma in the system is preserved. For this reason,

we will omit the term 𝜌𝑖 , such that each agent attempts to match
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its expenditures to its gains. This yields the adaptive karma pacing
strategy, which is denoted by 𝐾 and summarized in Algorithm 1.

ALGORITHM 1: Adaptive Karma Pacing 𝐾
Input: Time horizon𝑇 , initial budget 𝑘𝑖,1 > 0, multiplier bounds

𝜇 > 𝜇 > 0, gradient step size 𝜖 > 0.

Initialize: Initial multiplier 𝜇𝑖,1 ∈ [𝜇, 𝜇 ].
for 𝑡 = 1, . . . ,𝑇 do

(1) Observe the realized valuation 𝑣𝑖,𝑡 and place bid

𝑏𝑖,𝑡 = min

{
Δ𝑣𝑖,𝑡

𝑃 [𝜇,𝜇 ] (𝜇𝑖,𝑡 )
, 𝑘𝑖,𝑡

}
; (𝐾-𝑏)

(2) Observe the expenditure 𝑧𝑖,𝑡 and the gain 𝑔𝑖,𝑡 . Update the

multiplier 𝜇𝑖,𝑡+1 = 𝜇𝑖,𝑡 + 𝜖 (𝑧𝑖,𝑡 − 𝑔𝑖,𝑡 ), (𝐾-𝜇)

as well as the karma budget 𝑘𝑖,𝑡+1 = 𝑘𝑖,𝑡 − 𝑧𝑖,𝑡 + 𝑔𝑖,𝑡 .
end

The term ‘adaptive karma pacing’ is in line with the literature

on budget-constrained monetary auctions [5, 16], but instead of

trying to pace the budget depletion rate to match the target rate 𝜌𝑖 ,

strategy 𝐾 attempts to match the time-varying expenses 𝑧𝑖,𝑡 with

the gains 𝑔𝑖,𝑡 . Indeed, karma losses 𝑧𝑖,𝑡 − 𝑔𝑖,𝑡 > 0 increase 𝜇𝑖,𝑡+1,
effectively reducing future bids; and vice versa for 𝑧𝑖,𝑡 − 𝑔𝑖,𝑡 < 0.

Another important novelty in strategy 𝐾 is that the denominator

in the bid (𝐾-𝑏) is 𝜇𝑖,𝑡 instead of 1 + 𝜇𝑖,𝑡 , as common in the stan-

dard monetary setting. This is a consequence of the fact that the

valuation in karma is not known a-priori; and could lead to a rapid

depletion of the budget if 𝜇𝑖,𝑡 becomes small during the learning

process even for a short transient period. For this reason, it is neces-

sary to introduce the lower bound 𝜇 in Algorithm 1, which we note

is unlike adaptive pacing algorithms in the monetary setting [5].

Moreover, the projection of multiplier 𝜇𝑖 on [𝜇, 𝜇] now occurs in

the bid (𝐾-𝑏) instead of the multiplier update (𝐾-𝜇). The importance

of this technical difference will be discussed in Section 4.2.

4 ANALYSIS OF ADAPTIVE KARMA PACING
In this section, we analyze the previously derived adaptive karma

pacing strategy 𝐾 , with the main goal of establishing that it con-

stitutes an approximate Nash equilibrium when adopted by all

agents. To achieve this goal, this section proceeds as follows. In

section 4.1, we establish that this strategy is asymptotically optimal

for a single agent bidding against competing bids drawn from a

stationary distribution (Theorem 4.1). Section 4.2 then establishes

that the learning dynamics converge to a unique stationary point

when all agents follow strategy𝐾 (Theorem 4.2). Finally, Section 4.3

combines these results to achieve the main goal of proving that

the strategy constitutes an approximate Nash equilibrium under

suitable conditions (Theorem 4.3).

4.1 Asymptotic Optimality under Stationary
Competition

In this section, we establish that strategy 𝐾 is asymptotically opti-
mal in a stationary competition setting, where a single agent 𝑖 bids
against competing bids 𝒅𝒊 =

(
𝑑
𝛾

𝑖,𝑡
, 𝑑
𝛾+1
𝑖,𝑡

)
𝑡 ∈[𝑇 ] drawn independently

across time from a fixed distributionD𝑖 . This section, as well as Sec-

tions 4.2 and 4.3, are organized as follows.We first state the required

definitions and the novel assumptions needed in the karma-based

setting
1
. We then present a brief statement of the main result of

the section (Theorem 4.1 in this case)
2
, and focus our discussion

on the differences to the standard setting with no budget gains.

To state the main result of this section, we must first define

the expected dual objective, expected gain, expected expenditure, and
expected karma loss when agent 𝑖 follows strategy 𝐾 . For a fixed

multiplier 𝜇𝑖 > 0, these quantities are respectively given by

Ψ0

𝑖 (𝜇𝑖 ) = E
𝑣𝑖 ,𝑑𝑖

[
𝑣𝑖 − 𝜇𝑖𝑔𝑖 − (Δ𝑣𝑖 − 𝜇𝑖𝑑𝛾𝑖 )

+] , 𝐺𝑖 (𝜇𝑖 ) = E
𝑣𝑖 ,𝑑𝑖

[𝑔𝑖 ] ,

𝑍𝑖 (𝜇𝑖 ) = E
𝑣𝑖 ,𝑑𝑖

[
𝑑
𝛾

𝑖
1{Δ𝑣𝑖 > 𝜇𝑖𝑑

𝛾

𝑖
}
]
, 𝐿𝑖 (𝜇𝑖 ) = 𝑍𝑖 (𝜇𝑖 ) −𝐺𝑖 (𝜇𝑖 ),

(10)

where the expectation is with respect to the stationary distribu-

tions V𝑖 and D𝑖 . We make two observations on the definition

of the expected dual objective. First, in line with the multiplier

update (𝐾-𝜇), the dual objective Ψ0

𝑖
that strategy 𝐾 aims to maxi-

mize artificially considers a target expenditure rate of zero. Notice

however that 𝜌𝑖 appears in the expected optimal dual objective

Ψ𝐻
𝑖
(𝜇𝑖 ) = E𝑣𝑖 ,𝑑𝑖

[
𝛿𝐻
𝑖

(
𝑣𝑖 , 𝑑

𝛾

𝑖
, 𝜇𝑖

) ]
of Problem (9). For this reason, we

require the initial budget to grow sublinearly with the time horizon,

so as to control the difference between Ψ0

𝑖
and Ψ𝐻

𝑖
.

Assumption 1 (Initial Budget 𝑘𝑖,1 (𝑇 )). The initial budget 𝑘𝑖,1
is a function of 𝑇 satisfying lim𝑇→∞ 𝑘𝑖,1 (𝑇 )/𝑇 = 0.

Second, Equation (10) is defined in terms of the actual gain 𝑔𝑖
rather than the maximum possible gain

𝛾

𝑁
𝑑
𝛾

𝑖
used in the relaxed

problems (7)–(9). This discrepancy implies yet another gap between

Ψ0

𝑖
and Ψ𝐻

𝑖
, since if agent 𝑖 is not among the auction winners, it

can gain more by bidding 𝑑
𝛾+1
𝑖

< 𝑏𝑖 ≤ 𝑑
𝛾

𝑖
. For this reason, it is

convenient to define the residual gain 𝜀 = 𝛾

𝑁
E𝑑𝑖

[
𝑑
𝛾

𝑖
− 𝑑𝛾+1

𝑖

]
, that

is, the expected maximum additional gain that agent 𝑖 can get by

becoming the price setter.

We moreover denote by 𝜇★0
𝑖

> 0 the stationary multiplier that
satisfies 𝐿𝑖

(
𝜇★0
𝑖

)
= 0 and causes the expected expenditure to equal

the expected gain. Finally, we define the notion of hitting time as

T𝑖 = min

{
T𝑘𝑖 , T

𝜇

𝑖
, T
𝜇

𝑖

}
, where T𝑘𝑖 = argmax

𝑡 ∈ [𝑇 ]

{
∀𝑠 ∈ [𝑡 ], 𝑘𝑖,𝑠 ≥ Δ/𝜇

}
,

T
𝜇

𝑖
= argmax

𝑡 ∈ [𝑇 ]

{
∀𝑠 ∈ [𝑡 ], 𝜇𝑖,𝑠 ≥ 𝜇

}
, T

𝜇

𝑖
= argmax

𝑡 ∈ [𝑇 ]

{
∀𝑠 ∈ [𝑡 ], 𝜇𝑖,𝑠 ≤ 𝜇

}
.

(11)

This is the latest time step which guarantees that 𝑏𝑖,𝑡 = Δ𝑣𝑖,𝑡/𝜇𝑖,𝑡
in (𝐾-𝑏) for any valuation 𝑣𝑖,𝑡 ∈ [0, 1]. By definition, the hitting

time is a stricter notion than the budget depletion time T𝑘
𝑖
used

in the standard setting with no budget gains. This modification

is needed since the projection occurs in the bid (𝐾-𝑏) instead of

the multiplier update (𝐾-𝜇) in strategy 𝐾 , and in turn requires the

following additional assumption to establish our result.

Assumption 2 (Control of Hitting Time). The following holds:
2.1 Distribution V𝑖 has support in

[
𝑣𝑖 , 1

]
, where 0 < 𝑣𝑖 < 1;

2.2 Distribution D𝑖 has support in
[
𝑑𝑖 , 𝑑𝑖

]
2, where 0 < 𝑑𝑖 < 𝑑𝑖 .

We are now ready to state the main result regarding the asymp-

totic optimality of strategy 𝐾 under stationary competition.

1
Standard assumptions in the literature, as well as minor technical assumptions, are

included in the full version of the paper [9], Appendix B and D, respectively.

2
Full theorem statements are included in the full version of the paper [9], Appendix D.
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Theorem 4.1 (AsymptoticOptimality under StationaryCom-

petition). There exists a constant 𝐶 ∈ R+ such that the average
expected regret of an agent 𝑖 ∈ N for following strategy 𝐾 in the
stationary competition setting satisfies

1

𝑇
E

𝒗𝒊,𝒅𝒊

[
C𝐾𝑖 (𝒗𝒊, 𝒅𝒊) − C𝐻𝑖 (𝒗𝒊, 𝒅𝒊)

]
≤ 𝐶

(
𝜖 + 1

𝜖𝑇
+
𝑘𝑖,1

𝑇
+
E𝒗𝒊,𝒅𝒊

[𝑇 − T𝑖 ]
𝑇

+ 𝜀
)

Moreover, for suitably chosen parameters, strategy 𝐾 asymptotically
converges to an 𝑂 (𝜀)-neighborhood of the optimal expected cost with
the benefit of hindsight, i.e.,

lim

𝑇→∞
1

𝑇
E

𝒗𝒊,𝒅𝒊

[
C𝐾𝑖 (𝒗𝒊, 𝒅𝒊) − C𝐻𝑖 (𝒗𝒊, 𝒅𝒊)

]
= 𝑂 (𝜀) .

The full statement of Theorem 4.1 with the required technical as-

sumptions, as well as the detailed proof of the theorem, are included

in the full version of the paper [9], and we provide here a sketch

of the proof. The average expected optimal cost with the benefit

of hindsight is lower-bounded by the maximum of the expected

dual objective Ψ𝐻
𝑖

(
𝜇★𝐻
𝑖

)
derived from the Lagrangian dual problem

in Equation (9). Meanwhile, the average stationary competition

cost of strategy 𝐾 is upper-bounded in terms of Ψ0

𝑖

(
𝜇★0
𝑖

)
through a

Taylor expansion in 𝜇★0
𝑖

. Controlling this upper bound requires to

control a) the hitting time such that the budget is depleted, or the

multiplier leaves its bounds, only towards the end of the horizon

𝑇 , as assumed in the definition of Ψ0

𝑖
; and b) the expected distance

of the multiplier iterates to the optimal multiplier 𝜇𝑖,𝑡 − 𝜇★0𝑖 such

that 𝜇𝑖,𝑡 converges asymptotically to 𝜇★0
𝑖

. These two objectives are

achieved with a suitable choice of the gradient step size 𝜖. Finally,

we bound the difference of dual objectives Ψ0

𝑖

(
𝜇★0
𝑖

)
− Ψ𝐻

𝑖

(
𝜇★𝐻
𝑖

)
in

terms of the target expenditure rate 𝜌𝑖 and the residual gain 𝜀.

This last step constitutes a fundamental difference to the standard

setting with no budget gains. Indeed, Theorem 4.1 does not establish

an asymptotic average regret of zero but rather in the order of the

residual gain 𝜀. The intuition for the 𝑂 (𝜀) term is that, without

the benefit of hindsight, agent 𝑖 will always regret not setting the

price to the a priori unknown maximum 𝑑
𝛾

𝑖
, instead of 𝑑

𝛾+1
𝑖

, when

losing the auction. However, in cases where 𝑑
𝛾

𝑖
− 𝑑𝛾+1

𝑖
correspond

to the distance between two adjacent independent samples from

a common distribution D−𝑖 , the residual gain 𝜀 diminishes as the

number of samples, or equivalently𝑁 −1, grows. For a large number

of agents 𝑁 , the residual gain 𝜀 is hence expected to be modest.

Another important difference to the standard setting with no

budget gains is that the asymptotic guarantee of Theorem 4.1 re-

quires the initial budget 𝑘𝑖,1 to grow sublinearly rather than linearly

with respect to the time horizon 𝑇 , c.f. Assumption 1. This effec-

tively ensures that the target expenditure rate 𝜌𝑖 tends to zero and

that strategy 𝐾 maximizes the correct expected dual objective Ψ0

𝑖
.

However, the initial budget 𝑘𝑖,1 cannot be kept constant. We show

in the proof of Theorem 4.1 that the multiplier under strategy 𝐾 is

bounded at all time steps 𝑡 ∈ [𝑇 ] by 𝜇𝑖,𝑡 ≤ 𝜇𝑖,1 + 𝜖𝑘𝑖,1 . Since, as in
the standard setting with no budget gains, it is required that 𝜖𝑖 di-

minishes to zero asymptotically, 𝜇𝑖,𝑡 would not be able to converge

to any value greater than the initial value 𝜇𝑖,1 with a constant 𝑘𝑖,1.

We refer to this phenomenon as the vanishing box problem.

Finally, the proof of Theorem 4.1 requires establishing the sub-

linear growth rate of E𝒗𝒊,𝒅𝒊
[𝑇 − T𝑖 ] with respect to 𝑇 , which is

harder to obtain since the hitting time T𝑖 defined in Equation (11) is

a stricter notion than the budget depletion time used in the setting

with no budget gains. This difficulty is addressed by Assumption 2.

By introducing a strictly positive minimum valuation 𝑣𝑖 , Assump-

tion 2.1 ensures that agent 𝑖 always wins when the multiplier is

close to 𝜇, whereas the strictly positive minimum competing bid 𝑑𝑖

introduced in Assumption 2.2 ensures that the agent always loses

when the multiplier is close to 𝜇. In practice, Assumption 2 implies

that agents always have a need to participate in the auction. A

numerical validation of Theorem 4.1 is included in Figure 2a.

4.2 Convergence under Simultaneous Learning
In this section, we take the next step towards our main goal of

establishing that strategy 𝐾 constitutes an approximate Nash equi-

librium when adopted by all agents. Namely, we establish that the

learning dynamics converge in the simultaneous learning setting in

which all agents follow strategy 𝐾 , denoted by joint strategy profile

𝑲 . The exact notion of convergence considered is presented in the

main result of the section, Theorem 4.2.

Before stating this result, we first adapt our previous definitions

to the multi-agent setting. Let 𝝁𝑡 ∈ R𝑁+ be the multiplier profile
stacking the multipliers 𝜇𝑖,𝑡 of all agents 𝑖 ∈ N . We extend the

expected dual objective, expected gain, expected expenditure and the

expected loss respectively as

Ψ0

𝑖 (𝝁 ) = E
𝒗

[
𝑣𝑖 − 𝜇𝑖𝑔𝑖 − (Δ𝑣𝑖 − 𝜇𝑖𝑑𝛾𝑖 )

+] , 𝐺𝑖 (𝝁 ) = E
𝒗
[𝑔𝑖 ] ,

𝑍𝑖 (𝝁 ) = E
𝒗

[
𝑑
𝛾

𝑖
1{Δ𝑣𝑖 > 𝜇𝑖𝑑

𝛾

𝑖
}
]
, 𝐿𝑖 (𝝁 ) = 𝑍𝑖 (𝝁 ) −𝐺𝑖 (𝝁 ),

Compared to (10), the expectation is now with respect to the pro-

file of valuations 𝒗 ∼ V . Indeed, both the competing bid 𝑑
𝛾

𝑖
=

𝛾 th-max𝑗 :𝑗≠𝑖 {Δ𝑣 𝑗/𝜇 𝑗 } and the auction price 𝑝𝛾+1 = 𝛾+1th-max𝑗 {Δ𝑣 𝑗/𝜇 𝑗 }
are functions of 𝒗 and 𝝁 .Wewill aim to show that 𝝁𝑡 converges to a
stationary multiplier profile, which is a multiplier profile 𝝁★0 ∈ R𝑁

>0

satisfying 𝐿𝑖
(
𝝁★0) = 0 for all agents 𝑖 ∈ N . This multiplier profile

is stationary in the sense that in expectation, update rule (𝐾-𝜇) will

yield 𝜇★
𝑖,𝑡+1 = 𝜇

★
𝑖,𝑡

for all agents 𝑖 , since the expected expenditures

𝑍𝑖
(
𝝁★0)

are equal to the expected gain 𝐺𝑖
(
𝝁★0)

.

Notice that stationarymultipliers 𝝁★0
are numerous: if multiplier

𝝁★0
is stationary, so is 𝜂𝝁★0

for all 𝜂 > 0, as the expenditures 𝑍𝑖
and gains 𝐺𝑖 are equally scaled by 1/𝜂. This property of 𝝁★0

is

novel to the karma setting, as with no budget gains a unique scale

is fixed by the target expenditure rates 𝜌𝑖 . To fix the unique 𝝁★0
that

strategy profile 𝑲 converges to, the projection is moved from the

multiplier update (𝐾-𝜇) to the bid (𝐾-𝑏) in strategy 𝐾 , as compared

to standard adaptive pacing. This modification, combined with a

shared gradient step size 𝜖 for all agents, implies the following∑︁
𝑖∈N

𝜇𝑖,𝑡+1 =
∑︁
𝑖∈N

𝜇𝑖,𝑡 + 𝜖
∑︁
𝑖∈N

(
𝑧𝑖,𝑡 − 𝑔𝑖,𝑡

) (a)

=
∑︁
𝑖∈N

𝜇𝑖,𝑡 ,

hence 𝝁𝒕 ∈ 𝑯𝝁1 =

{
𝝁 ∈ R𝑁

����� ∑︁
𝑖∈N

(
𝜇𝑖 − 𝜇𝑖,1

)
= 0

}
.

(12)

Property (12) anchors the scale of 𝝁★0
that is feasible under strat-

egy profile 𝑲 to the initial multiplier profile 𝝁1, and implies that

the average multiplier 𝜇𝑚 =
∑
𝑖∈N 𝜇𝑖,1/𝑁 is preserved over time.
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(a) Theorem 4.1: Stationary competition.
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(b) Theorem 4.2: Simultaneous learning.

Figure 2: Numerical validation of Theorems 4.1 and 4.2. Figure 2a shows the convergence of costs to the minimum with the
benefit of hindsight, while Figure 2b shows the convergence of multipliers under simultaneous learning. Both figures are based
on 100 simulations per parameter combination, with the mean and the 95% confidence interval shown.

Notice that Property (12) would not hold if the projection was in the

multiplier update (𝐾-𝜇): intuitively, a projection there would cause

agent 𝑖 to ‘forget’ part of the history of expenses and gains, and

affect the convergence of the whole population as a consequence

by shifting the hyperplane of feasible profiles.

In the standard setting with no budget gains, it is common to

assume strong monotonicity of the expected expenditure 𝒁 , c.f.
[5] which shows that it is implied by a diagonal strict concavity
condition [35], and that it always holds in symmetric settings. In

our karma setting with budget gains, the natural extension is to

assume strongmonotonicity of the expected loss 𝑳which effectively

replaces the expected expenditure 𝒁 . This adaptation is however

not straightforward, as the multiple zeros of 𝑳 on 𝑼 :=
∏
𝑖∈N

(
𝜇, 𝜇

)
would immediately break the property. Instead, we use Property (12)

and restrict our monotonicity requirement to multipliers lying in

the hyperplane 𝑯𝝁1 .

Assumption 3 (Monotonicity). The expected loss 𝑳 is 𝜆-strongly
monotone over 𝑼 ∩ 𝑯𝝁1 with parameter 𝜆 > 0, i.e., for all 𝝁, 𝝁′ ∈
𝑼 ∩ 𝑯𝝁1 , it holds that (𝝁 − 𝝁′)⊤ (𝑳(𝝁) − 𝑳(𝝁′)) ≤ −𝜆∥𝝁 − 𝝁′∥2

2
.

Assumption 3 ensures that the stationary multiplier profile 𝝁★0

is unique up to a multiplicative constant if it exists. With these

preliminaries, we are ready to state the main result of this section

regarding the asymptotic convergence of strategy profile 𝑲 , both

with respect to the multiplier profile iterates 𝝁𝒕 and the strategic

competition costs 𝐶𝑲
𝑖

of all agents 𝑖 ∈ N defined in Equation (3).

Theorem 4.2 (Convergence under Simultaneous Learning).

There exist constants 𝐶1 and 𝐶2 ∈ R+ such that the average expected
distance to the stationary multiplier profile 𝝁★0 ∈ 𝑯𝝁1 and the
strategic competition cost of strategy profile 𝑲 for any agent 𝑖 ∈ N
satisfy respectively

1

𝑇

𝑇∑︁
𝑡=1

E
𝒗

[

𝝁𝒕 − 𝝁★0

2
2

]
≤ 𝐶1𝑁

(
𝜖 + 1

𝜖𝑇
+
E𝒗

[
𝑇 − T

]
𝑇

)
,

1

𝑇
C𝑲
𝑖 − Ψ0

𝑖

(
𝝁★0) ≤ 𝐶2

(
𝑁

(
𝜖1/2 + 1

𝜖𝑇

)
+
E𝒗

[
𝑇 − T

]
𝑇

)
.

Moreover, for suitably chosen parameters of strategy profile 𝑲 , the
multiplier profile 𝝁𝒕 converges in expectation to the stationary pro-
file 𝝁★0, and the average strategic competition cost C𝑲

𝑖
converges

to the expected dual objective Ψ0

𝑖

(
𝝁★0) for all agents 𝑖 ∈ N , i.e.,

lim

𝑇→∞
1

𝑇

∑𝑇
𝑡=1 E𝒗

[

𝝁𝒕 − 𝝁★0

2
2

]
= lim

𝑇→∞
1

𝑇
C𝑲
𝑖

− Ψ0

𝑖

(
𝝁★0) = 0.

The full statement of Theorem 4.2 and the detailed proof are

included in the full version of the paper [9], and mostly follow

similar arguments as Theorem 4.1. The main step from the first

to the second bound is to show that the profiles of expected dual

objectives 𝚿
0
and expected losses 𝑳 are Lipschitz continuous in

𝝁 on the compact set 𝑼 , which can be guaranteed by the absolute

continuity of the valuations. As before, the main difficulty in com-

parison to the standard setting with no budget gains lies in ensuring

that the expectation E𝒗
[
𝑇 − T

]
grows sublinearly with respect to

𝑇 . This challenge is addressed analogously as in Section 4.1: As-

sumption 2.1 deterministically guarantees that T
𝜇

𝑖
= 𝑇 as any agent

close to 𝜇 will lose the auction and transition away from 𝜇. A similar

deterministic guarantee cannot be derived at the lower bound 𝜇,

however, due to the preservation of the average multiplier 𝜇𝑚 . For

this reason, we impose a probabilistic condition on the lower bound

𝜇, which is discussed further in Section 5. A numerical validation

of Theorem 4.2 is included in Figure 2b.

4.3 Approximate Nash Equilibrium in Parallel
Auctions

In this section, we finally combine the results of the previous two

sections to achieve the main goal of establishing that the profile

of adaptive karma pacing strategies 𝑲 constitutes an approximate

Nash equilibrium under suitable conditions.

Notice that one cannot immediately conclude that strategy pro-

file 𝑲 constitutes an approximate Nash equilibrium despite the

previously established asymptotic guarantee on the strategic com-

petition costs. Namely, Theorem 4.2 ensures that the multiplier

profile converges asymptotically to 𝝁★0
under strategy profile 𝑲 .
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Therefore, agent 𝑖’s distribution of competing bids becomes station-

ary, and we showed in the proof of Theorem 4.1 that Ψ0

𝑖

(
𝝁★0)

lower

bounds any stationary competition cost. However, agent 𝑖 could po-

tentially improve its cost by unilaterally deviating to a strategy

𝛽𝑖 ≠ 𝐾 that causes non-convergence of 𝝁𝒕 and violation of the sta-

tionary competition assumption. For this reason, following [5], we

consider an extension of our setting with multiple parallel auctions
causing the effect of any single agent on the multipliers of others

to become negligible as the number of agents grows.

Parallel Auctions. Let there be 𝑀 ≥ 1 auctions that are held

in parallel at each time step 𝑡 ∈ [𝑇 ]. The number 𝑀 could repre-

sent different priority roads, or the same road accessed at different

times of the day, or a combination thereof. Each agent 𝑖 ∈ N par-

ticipates in one auction 𝑚𝑖,𝑡 ∈ [𝑀] per time step, where 𝑚𝑖,𝑡 is

drawn independently across agents and time from a fixed distribu-

tion 𝝅𝒊 =
(
𝜋𝑖,𝑚

)
𝑚∈[𝑀 ] ; each 𝜋𝑖,𝑚 denotes the probability for agent

𝑖 to participate in auction𝑚. We adapt the definition of compet-

ing bids accordingly as 𝑑
𝛾

𝑖,𝑡
= 𝛾 th-max𝑗 :𝑗≠𝑖

{
1{𝑚 𝑗,𝑡 =𝑚𝑖,𝑡 }𝑏 𝑗,𝑡

}
.

Finally, we consider that the aggregate payment of all 𝑀 auc-

tions gets redistributed uniformly, leading to karma gains 𝑔𝑖,𝑡 =
𝛾

𝑁

∑
𝑚∈[𝑀 ] 𝑝

𝛾+1
𝑚,𝑡 , where 𝑝

𝛾+1
𝑚,𝑡 is the price of auction𝑚 defined as

𝑝
𝛾+1
𝑖,𝑡

= 𝛾 + 1
th
-max𝑖∈N{1{𝑚𝑖,𝑡 =𝑚}𝑏𝑖,𝑡 }. This aggregate redistri-

bution scheme is advantageous over redistributing the payment

of each auction among its agents, since the aggregation restricts

the influence of a single agent over the gains, and thereby the

multipliers, of others. The distributions (𝝅𝒊)𝑖∈N yield matching
probabilities 𝒂𝒊 =

(
𝑎𝑖, 𝑗

)
𝑗≠𝑖 , where 𝑎𝑖, 𝑗 = P{𝑚 𝑗 = 𝑚𝑖 } denotes the

probability that agent 𝑗 is matched in the same auction as agent 𝑖 . It

is straightforward to show that the previous Theorems 4.1 and 4.2

also hold in the extended parallel auction setting.

Theorem 4.3 (Approximate Nash Eqilibrium). There exists a
constant𝐶 ∈ R+ such that each agent 𝑖 ∈ N can decrease its average
strategic competition cost by deviating from strategy𝐾 to any strategy
𝛽𝑇
𝑖
∈ B𝑇 by at most

1

𝑇

(
C𝐾𝑖 − C𝛽

𝑇
𝑖
,𝑲−𝒊

𝑖

)
≤ 𝐶

( (
∥𝒂𝒊 ∥2 +

𝑀𝛾

𝑁

) (√
𝑁𝜖

(
1 + 1

𝜖3/2𝑇

)
+ ∥𝒂𝒊 ∥2

+ 𝛾
√
𝑁

)
+

(
𝛾

𝑁
+ 𝑘1
𝑇

)
+

(
𝑘1

𝑇
+ 𝑀𝛾
𝑁

)
E𝒗,𝒎

[
𝑇 − T

]
𝑇

)
Moreover, for suitably chosen parameters, strategy profile 𝑲 consti-
tutes an approximate Nash equilibrium, i.e., it holds for all agents

𝑖 ∈ N that lim

𝑇,𝑁 ,𝑀→∞
1

𝑇

(
C𝑲
𝑖

− inf𝛽𝑇
𝑖
∈B𝑇 C𝛽

𝑇
𝑖
,𝑲−𝒊

𝑖

)
= 0.

The full statement of Theorem 4.3 with the detailed proof is

included in the full version of the paper [9]. The proof involves

lower-bounding the average expected cost under strategy 𝛽𝑖 in

terms of the optimal expected dual objective Ψ0

𝑖

(
𝝁★0)

, and show-

ing that asymptotically agent 𝑖 cannot affect the multiplier profile

of the other agents which converges to 𝝁★0
. Competition hence

becomes stationary, for which strategy 𝐾 is optimal. While the

proof follows a similar structure as in the standard setting with no

budget gains, notice however that the bound in Theorem 4.3 is sub-

stantially different from its counterpart with no budget gains and

requires adapting the technical assumptions in order to establish

the asymptotic guarantee.

This achieves themain goal of our analysis. For the class of karma

mechanisms with redistribution of payments, we have devised the

simple adaptive karma pacing strategy 𝐾 and provided conditions

in which it constitutes an approximate Nash equilibrium.

5 DISCUSSION
In this paper, we devised a learning strategy, called adaptive karma
pacing, that learns to bid optimally in karma mechanisms in which

payments are redistributed in every time step. This simple strategy

constitutes an approximate Nash equilibrium in large populations,

and can hence be effectively employed to provide decision support,

which is an important step toward the practical implementation of

these mechanisms.

Discussion of assumptions. Our main results require a number of

technical assumptions which, we argue, are not highly restrictive.

These assumptions can be categorized as follows. The assumptions

on valuation and competing bid distributions3 are mild continuity

and differentiability assumptions that are common in the literature,

including in the standard monetary setting [5]. On the other hand,

assumptions requiring to vary parameters asymptotically4 are less
natural to interpret in practice since typically the time horizon 𝑇

and number of agents 𝑁 are fixed by the setting. For this reason,

we provided bounds in all our theorems that give finite time and

population guarantees. Assumptions needed to control the hitting
time5 arise from our proof technique seeking to deterministically

guarantee that the multipliers 𝜇𝑖,𝑡 will never reach their bounds 𝜇

and 𝜇. In the full version of the paper [9], we perform numerical

experiments verifying that the hitting time quickly approaches

the end of the time horizon as assumed. Finally, the assumptions

on input parameters of the adaptive karma pacing strategy
6
can

be satisfied by design and/or tuning. Generally, setting the initial

multiplier 𝜇𝑖,1 close to the center of a sufficiently low 𝜇 and a

sufficiently high 𝜇, and using a sufficiently small gradient step size

𝜖 , suffices to satisfy these assumptions.
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