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ABSTRACT

Climate policy development faces significant challenges due to deep
uncertainty, complex system dynamics, and competing stakeholder
interests. Climate simulation methods, such as Earth System Models,
have become valuable tools for policy exploration. However, their
typical use is for evaluating potential polices, rather than directly
synthesizing them. The problem can be inverted to optimize for
policy pathways, but the traditional optimization approaches often
struggle with non-linear dynamics, heterogeneous agents, and com-
prehensive uncertainty quantification. We propose a framework
for augmenting climate simulations with Multi-Agent Reinforce-
ment Learning (MARL) to address these limitations. We identify
key challenges at the interface between climate simulations and
the application of MARL in the context of policy synthesis, includ-
ing reward definition, scalability with increasing agents and state
spaces, uncertainty propagation across linked systems, and solution
validation. Additionally, we discuss challenges in making MARL-
derived solutions interpretable and useful for policy-makers. Our
framework provides a foundation for more sophisticated climate
policy exploration while acknowledging important limitations and
areas for future research.
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1 INTRODUCTION

Climate policy derivation represents one of society’s most difficult
governance challenges, characterized by deep uncertainty, compet-
ing stakeholder interests, and complex interdependencies across
social, economic, and environmental systems [44]. At the national
level, climate policy formulation typically involves analyzing emis-
sions reduction potential, assessment of technological pathways,
and evaluation of policy actions [13]. Multi-stakeholders are ac-
counted for to ensure a cohesive approach, but extending to the
continental or global scale makes this process more challenging.
This conventional approach faces further fundamental difficulties
due to the socio-environmental domain that can be summarized
threefold. Firstly, the global climate system has significant temporal
latency between action and downstream effects. Many of these
effects are not monitored or hard to capture, further increasing this
latency and making causal links between policy implementation
and observable outcomes hard to solidify [21]. This temporal dis-
connect can span decades, making it very challenging to evaluate
policy effectiveness and adjust strategies in response to emerg-
ing data [37]. Secondly, climate policies often generate unevenly
distributed impacts across different socioeconomic groups and re-
gions, potentially exacerbating existing inequalities and creating
political resistance [4]. Thirdly, the presence of tipping points and
feedback loops in the Earth system introduces non-linear dynamics
that traditional policy analysis struggles to address [16]. Current
approaches to climate policy development rely heavily on interna-
tional negotiations and evidence synthesis from various scientific
disciplines. Organizations such as the IPCC coordinate massive ef-
forts to provide policy-relevant insights [32]. However, this process
can be slow, politically constrained, and sometimes fails to capture
the full range of possible policy interventions [52], including the
deep uncertainty inherent in climate projections [25].
Simulation-based approaches have emerged as crucial tools for
addressing these limitations. They enable policy-makers to explore
potential outcomes in a risk-free environment, facilitating the eval-
uation of various policy combinations and their long-term implica-
tions [51]. Being able to quantify the forecasted effects of policies
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Current Limitations:

- Reward definition; requires principled
exploration of solution space.

- Scaling to large state spaces
(>100 variables).

- Uncertainty propagation from linked
socio, economic, and enviroment
sub-simulations.

- Validating optimal solutions and
identifying catastrophic regions of
the solution space.

- Learning a distribution of potential
optimal solutions.

- Explainability/Interpretability of agent
decision making.

ﬁmate Simulation

(e.g. Earth System Model,
Emulated Climate Model,
Integrated Assesment Model)

Updated Environmental

\ Conditions

Figure 1: On the right: A conceptual framework of a multi-agent climate simulation system. The outer climate simulation
is imbued with socio-economic agents, in this case three geographical regions. Agents make independent decisions while
engaging in cooperative/competitive interactions (white arrows). A central simulation engine (grey) processes agents’ actions
(dashed black lines) for the linked socio, economic, and environmental simulations, updating the environmental conditions
accordingly. On the left: An enumeration of six key technical open challenges currently facing such systems.

not only guides the policy derivation process but also provides evi-
dence to address concerns raised by critics [2]. Earth System Mod-
els (ESMs) provide a crucial simulation framework, offering high-
resolution representations of atmospheric, oceanic, and terrestrial
processes [8]. For example, they have directly informed national
carbon budgets and adaptation strategies by simulating changes in
temperature, precipitation, and extreme weather events [41]. How-
ever, their utility in policy-making is generally constrained as the
influence of society is often not an internal process in these models.
Exogenous variables, such as atmospheric carbon, are changed over
time to “simulate” anthropogenic effects, with limited feedback
on how the changing climate would affect society [43]. Instead,
Integrated Assessment Models (IAMs) combine socio-economic
and environmental components to model climate socio-economic
interactions, representing the current state-of-the-art in climate
policy simulation. Generally, they use simplified environmental
processes derived from ESMs but the incorporation of linked socio-
economic simulations allows for a more defined feedback loop
between the environment and society. Notable examples include
the DICE model [27], REMIND [18], and GEMINI-E3 [1]. On the UN
website they publicly list twenty-nine IAMs used for their decision
making [48], as an example GEMINI-E3 was used to analyze the
future CO;, emission trajectories of the national policies made at
the COP26 Glasgow conference [49]. IAMS can be preferable to
ESMs as it allows a more direct way to evaluate policy interven-
tions as cascading effects between environment and society are
linked. Importantly the problem can be “flipped”; we can optimize
for an idealistic policy. We focus in on IAMs due to this feature, as in
ESMs this is not as connected. In ESMs we could define optimizing
criteria, but the resultant solution has no explicit connection to a
policy and there are no clear “actions”. Traditional optimization
approaches for IAMs (for example Model Predictive Control [9])
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solve for a set utility function. However, may rely on simplifying as-
sumptions, discrete state spaces, and local linear approximations to
make the problem computationally tractable [3, 46]. These solvers
typically only explore a limited portion of the possible solution
space, potentially missing innovative policy combinations [31]. On
top of this, most models use highly aggregated representations of
socio-economic agents, failing to capture the diversity of stake-
holder behaviors and interactions [22]. Finally, these approaches
in IAMs often focus on finding a single “optimal” solution, which
may not adequately capture the full range of possible outcomes
[57]. This in itself can fail to capture some notion of uncertainty
that exists in both climate system responses and socioeconomic
developments.

These limitations point to the need for more sophisticated ap-
proaches that can better handle uncertainty, complex system dy-
namics, interactions between heterogeneous agents, and the vast
solution space of possible policy combinations. Modern computa-
tional techniques, particularly Reinforcement Learning (RL) and
Multi-Agent Reinforcement Learning (MARL), offer promising ca-
pabilities to address these challenges. RL approaches can overcome
these limitations by providing more robust exploration of policy
spaces, not requiring linear assumptions, and improved handling
of uncertainty. MARL approaches can better represent agent het-
erogeneity for resilient policies. For a single agent scenario, the
recent work of [46] and [58] applied an RL agent into an IAM, that
generated policy guidance pathways towards a defined “economic
and environmental positive future”. Both [46] and [58] use a sin-
gular agent, hence assuming a “unified” earth, in which there is a
collectively shared goal, restricting the potential for agent hetero-
geneity. For agent heterogeneity, [60] created the RICE-N model,
itself an extension of the Regional Integrated model of Climate and
the Economy (RICE) model developed in [24] that models twelve
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global regions. The RICE-N model imbues an IAM with trade and
negotiation dynamics for further interactions between agents [60].
Further, [38] extended the environment in [58] towards multiple
agents, using the intepretability gained from the low-dimensional
environment to understand policy pathways.

2 TOWARDS A FRAMEWORK FOR MARL
DERIVED CLIMATE POLICY

ESMs and IAMs can be used to validate potential policy interactions
in a safe simulated space. More importantly we can work the other
way and derive optimal policies. Whilst ESMs can be anthropogeni-
cally influenced, we focus on IAMs as a case study since they have
a more direct connection between socio and environmental sys-
tems that better suite optimization. RL is able to model non-linear
stochastic systems, greatly aligning its use with IAM dynamical
systems, and accounting for long term reward well posits its use
in policy trajectory derivation. Importantly as a first step, how can
we reformulate JAMs as an RL problem, or more concretely can
we setup an IAM as a Markov Decision Process (MDP) [36] for
RL or Stochastic Game (SG) [40] for MARL? IAMs already share
significant structural similarities with RL environments; they inher-
ently require objective functions if optimized, that can be used as a
reward function. Further, actions can be defined as varying model
parameters over time to reflect some policy trajectory. For example,
investment decisions, policy implementations, and technological
adoption rates. To summarize, all that is needed to utilize RL/MARL
with an IAM is defining a set of actions, and accessing outputs of
a running simulator or porting the simulator into a programming
language that is suited for RL/MARL research.

Why Use MARL? Anthropogenic climate change inherently in-
volves heterogeneous actors with mixed motives, strategic interac-
tions, and complex cooperation-competition dynamics - elements
that single-agent RL cannot adequately capture. Mirroring major
criticisms in the IAM literature where economic and behavioral
dynamics are poorly represented by a singular entity [19, 22]. Fur-
ther, MARL’s ability to model long-term strategic behavior while
accounting for multiple interacting entities makes it particularly
suitable for climate policy modeling [12, 15].

What are we Optimizing with MARL? A clarification upon
moving to MARL is how we view the optimization. We believe
there are two main views that necessitate certain restrictions on
the MARL application. Firstly, one could focus on purely modeling
all heterogeneous agents interacting together - we want to under-
stand the dynamics between agents as some form of sequential
social dilemma (SSD). MARL has emerged as a powerful framework
for studying SSDs and “tragedy of the commons” type scenarios,
offering insights into emergent social dynamics and equilibrium be-
havior. Unlike traditional game-theoretic approaches that often rely
on one-shot interactions, MARL enables repeated sequential deci-
sions with complex state dynamics [15]. This approach has proven
particularly valuable in commons problems, where agents must
balance immediate individual rewards against long-term collective
welfare [12]. These studies collectively suggest that MARL not only
serves as a tool for finding Game-Theoretic equilibria without heavy
assumptions but also provides insights into the mechanisms that
drive the evolution of social behavior and cooperation in complex,

2892

AAMAS 2025, May 19 - 23, 2025, Detroit, Michigan, USA

dynamic environments [33, 47]. Results from this view-point can
help domain specialists understand the effects of certain simulation
or agent parameters on an IAM equilibrium.

Secondly, a more applicative approach entails planning policy
pathways for one or a subset of the agents, and using representa-
tive models of other entities. The resultant pathways can be used
to guide decisions by policy makers, as the framework provides
evidence of their validity. As an example use case, the other agents
in the simulation (that we have no agency over in reality) could
be trained using imitation learning on historical data to represent
in-silico versions of real-world entities. The MARL agent(s) can
learn a best response to these pre-trained agents dependent on the
validity not only of the IAM, but also the representative agents. This
approach shares similarities with the domain of Ad-Hoc Teamwork
[45, 53, 54], which explores how agents can learn to interact with
novel and unknown partners. This second framework necessitates
the use of decentralized algorithm approaches as agents must not
share model parameters, rewards, or observations.

3 OPEN CHALLENGES

Reward Definition. A common issue with any optimization ap-
proach is the objective function, which requires some bias towards
a chosen target variable or parameter [35]. Motivating these is
tricky and is up to the modelers discretion [35]. Similarly for RL
and MARL we have the definition of a reward function, which can
be an arbitrary choice. There are two sides of the coin here, rewards
in RL/MARL can be more abstract than objective functions. For ex-
ample a binary reward for reaching a certain end state, that encodes
complex objectives like sustainability and equity, but may mask
important nuances of the underlying simulation [42]. We could
set rich reward signals such as directly relating to a normalized
economic or environmental variable. In this domain even dense
rewards may receive many sequential negative “poor” rewards
(e.g., strict legislation) until a “positive” outcome is reached. This
is a typical deep exploration task in RL (e.g. deepsea [30]), which
generally require uncertainty based exploration methods to fully
search the solution space [6]. Uncertainty based exploration in RL
is an extensive field [7, 28, 29], but is not so explored in MARL
[11, 20, 39, 61]. Due to the non-stationarity in the transition func-
tion there seems even more of a need for principled exploration.
On top of this, the climate can change rapidly as tipping points
are reached requiring quick behavioral responses from the other
agents, both exacerbating non-stationarity [5].

Scalability. RL and MARL approaches can be more adept in the
complex IAM environment over traditional optimal control ap-
proaches, but can similarly struggle with scalability. Particularly
in MARL where increasing the number of agents can lead to an
exponential growth of state and action spaces in centralized train-
ing approaches [59]. Decentralized approaches which are required
for the second MARL viewpoint, are generally able to scale more
easily as model parameters are not shared. However, coordination
becomes more challenging and thus requires more complex method-
ologies that impact scaling, especially as numbers of agents grow
beyond hundreds. Further compounding the issue, large scale IAMs
such as the Intertemporal General Equilibrium Model [26] that has
4000 endogenous variables, lead to a very large state space for any
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RL application. Reaching these IAMs not only raises challenges in
the algorithmic side, but these large-scale simulators require much
larger computational budgets, further increasing training times.
The difficulty lies in coupling these systems - economic shocks
influence social responses, which affect climate policy implementa-
tion, creating complex cascade effects [23].

Uncertainty Representation. Understanding model uncertainty
is inherent to the downstream use, it is imperative to understand
when our temporal predictions become no better than random
choices. IAMs contend with significant sources of uncertainty from
many sources. Each separate socio-economic and environmental
model has its own epistemic uncertainty stemming from model-
ing assumptions and aleatoric uncertainty from inherent noise
in the underlying process. As these models are all linked there
is further uncertainty in their interactions, particularly climate
sensitivity, damage functions, and economic growth projections
[10, 34]. Further, IAMs bridge multiple temporal and spatial scales,
from short-term economic decisions to long-term climate dynamics.
Uncertainty compounds across these scales, making it difficult to
accurately represent interactions between local impacts and global
processes [50]. Decision making becomes intractable as many cli-
mate risks exhibit heavy-tailed probability distributions [56]. As dis-
cussed earlier, uncertainty-driven methods in RL can bring deeper
exploration of the solution space and have a chance to adapt to
these regions of greater uncertainty. However, typically exploration
is guided by epistemic uncertainty of the RL agent and does not
account for the aleatoric uncertainty stemming from the simulator
[7]. Importantly, how can we factor in the multiple sources of un-
certainty from the linked models, to get better calibrated notions
of uncertainty in the suggested solutions?

Solution Validation. Validating adaptions of IAMs to MDPs or
SGs can be fairly straightforward, simulation dynamics can be
compared, usually with minimal discrepancy as shown in [38].
Comparing traditional optimization approaches with the RL and
MARL solution is fairly similar. Distance metrics between potential
pathways, or final visitation states quantify the performance of the
framework. The real challenge lies in validating simulation solu-
tions with real world applicability, connecting to broader questions
in simulation intelligence and model validation [14]. Perfect valida-
tion against real-world outcomes, particularly for long-term climate
predictions, is fraught with risk due to the inherent stochasticity of
such systems. Importantly, it can be easier to identify and validate
the unfeasible or undesirable trajectories, which may enter areas
of the solution space that we can have more assurance on being
incorrect. Mapping out dangerous trajectories provides valuable
insights for decision-makers to avoid catastrophic scenarios. Quan-
tifying and understanding negative outcomes can be as crucial as
identifying optimal solutions.

Distribution of Solutions. Traditional optimization approaches
usually provide only one optimal solution without describing the
robustness of said approach [57]. Due to the inherent uncertainties
of IAMs, and the challenges from exactly following a projected
pathway, solutions that have more tolerance for error, in that they
are more resilient to shocks or tipping points, are preferable. In
RL/MARL this is possible by evaluating optimal agent policies with
various initial states to get a distribution of solutions. It can be a
cumbersome approach, as if the optimal solution is found to be
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non-robust, the agents must be retrained and the process iterated.
Instead recent work by [17] finds a diverse range of optimal solu-
tions in complex highly dynamic environments.

Explainability & Intepretability - Explainability is an extensive
challenge in any use of Machine Learning, but especially so in
RL/MARL when using complex non-linear models. While tradi-
tional control methods like MPC offer clearer insights into their
decision-making through explicit optimization objectives and con-
straints, deep RL methods often operate as black boxes. Most ap-
proaches provide post-hoc explanations that attempt to provide
understanding between agent actions and certain states. Our frame-
work provides policy trajectories in the solution space of the IAM,
but these larger state spaces easily extend beyond human inter-
pretable three-dimensional spaces. How are downstream users able
to interpret solutions, are we visualize policy trajectories in high-
dimensional spaces?

4 LIMITATIONS

Primarily, the MARL solution can only be as valid as the underly-
ing simulator; improved optimization solutions cannot transcend
the constraints of an imperfect model. This becomes particularly
problematic in these environmental domains characterized by un-
precedented scenarios or complex emergent phenomena, such as
extreme weather patterns as we pass climate tipping points [5].
Current climate simulators may struggle to accurately model the
feedback loops between anthropogenic caused rising temperatures
and the downstream effects, leading to potentially dangerous blind
spots in MARL-based policy recommendations. While there has
been progress in open-ended learning within RL frameworks [55],
this capability must be matched by equally adaptable simulation
environments - a requirement that may exceed current modeling
capabilities. However, these limitations do not entirely diminish the
value of our approach; since our framework is agnostic to the un-
derlying world system model (ESM or IAM or more), it can readily
incorporate improved simulators as they become available, ensur-
ing adaptability across various domains and modeling paradigms.

5 CONCLUSION

This paper presents a framework for enhancing climate policy
exploration through the integration of MARL with IAMs. While
MARL offers promising capabilities for handling non-linear dynam-
ics, agent heterogeneity, and uncertainty quantification, significant
challenges remain. The framework’s success hinges on addressing
key challenges including principled exploration in sparse reward
settings, scalability of both algorithms and simulations, and the
propagation of uncertainty across coupled systems. Moreover, trans-
lating MARL-derived solutions into actionable policies requires ad-
vances in explainability and visualization techniques. We highlight
three promising research directions: 1. uncertainty-driven MARL
algorithms to handle the multiple sources of uncertainty inherent
in IAMs; 2. MARL for extensive state spaces that may rely upon
linked emulations; 3. explainable RL techniques specifically tailored
for large state spaces. We hope that this position paper drives ef-
forts towards the improvement of simulation derived climate policy,
supporting political guidance to return the Earth’s trajectory onto
a habitable and stable future.
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