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ABSTRACT

Deploying teams of agents for many coordination tasks such as
search and rescue missions or deep ocean exploration promises
effective solutions. However, these tasks generally require a team of
agents to take highly coordinated joint actions, which are difficult to
unearth under sparse rewards (returning the same value or zero for
many joint actions). The previous works have shown that having a
large coverage over behavior space via learning diverse behaviors is
an effective method to address reward sparsity. Because multiagent
behavior spaces are of higher-dimensions than single-agent spaces,
multiagent behavior generation is often intractable. We introduce
entropy seeking agents to learn diverse behaviors for multiagent
systems to address reward sparsity. Our results show that the pro-
motion of diversity among behaviors within the behavior space
effectively, resulting in the discovery of collaborative behaviors.
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1 INTRODUCTION

Applications of multiagent systems in various environments are
rapidly evolving [2, 19, 21, 22, 26]. Especially, these systems offer
several opportunities in remote exploration missions, such as space
exploration [12, 25], and deep ocean exploration [24, 27]. However,
determining what these teams should learn, before their deploy-
ment in remote missions, is crucial for success. For example, a
behavior achieving an objective in a Martian mission (e.g., discov-
ery of river traces on Mars) is difficult to design, because of the lack
of knowledge about the environment. Especially considering that
tasks often require close coordination among multiple agents, the
complexity of behaviors in such problems increases significantly.
In a typical multiagent RL (MARL) framework, agents are trained
individually, each with its own reward function that provides feed-
back after every action. However, their collective goal is to maxi-
mize a shared team reward. This dual focus can lead to conflicting
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objectives, complicating the learning of effective team behaviors.
Consider the scenario where two rovers on Mars must coordinate
to collect samples from the same rock to achieve a team objective;
if each rover collects samples from different rocks to maximize its
individual reward, they fail in the team objective. This highlights
a crucial challenge where agents need to align their individual ac-
tions towards a common objective, particularly when the desired
team behavior requires a series of joint actions rewarded sparsely
(the reward remains zero for most joint actions). The complexity of
aligning these objectives underlines the brittleness of the perfor-
mance in multiagent tasks, emphasizing the necessity for strategies
that effectively integrate individual learning with team goals.

In our work, we propose both evolutionary and purely gradient-
based learning frameworks where we introduce entropy seeking
agents. We enable agents to explore at agent level, while we exploit
the true global objective at team-level. Experiments show that our
agents discover highly collaborative behaviors in difficult tasks.

2 BACKGROUND

To learn behaviors achieving close coordination among agents, var-
ious approaches have been explored [23]. In multiagent learning,
there have been two main trends of algorithms to address this chal-
lenge: evolutionary algorithms (EAs), reinforcement learning (RL)
algorithms [1, 17, 18, 28]. While these algorithms offer promising
solutions, they both have a distinct way of incorporating feedback
mechanisms. EAs generate a population of behaviors, and execute
them in an environment and evaluate them using the accumulated
feedback which represents their fitness within the population. On
the other hand, RL algorithms, by modeling problems using Markov
decision processes (MDPs), leverage immediate feedback—or re-
ward—from the environment to refine the behaviors based on the
outcomes of specific actions in given states. Ergo, a behavior is
modified to obtain a successful mapping of the action given a state.

In multiagent settings, a reward function outputting an agent-
specific value after every action often leads the algorithms to narrow
areas during the policy search. A fitness value representing the
whole team’s performance carries noisy information because it
includes the effects of all agents’ actions. Hence, agents fail to
modify their individual behaviors to contribute to the team fitness.

Multiagent evolutionary RL (MERL) [14] addresses the struc-
tural problems of both EAs and RL algorithms by implementing a
population employing mechanisms used in both families of algo-
rithms. Within MERL, the EA component maintains a population
of team behaviors, while the RL module focuses on learning local,
agent-specific behaviors. This integrated structure facilitates a hier-
archical learning where the EA learns the team behavior and the RL
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component learns individual behaviors. While MERL has demon-
strated effectiveness across various multiagent domains [13, 14],
it still suffers from the misalignment between the team and indi-
vidual objectives. This misalignment, primarily stemming from the
difficulty of designing task-specific rewards for individual agents,
significantly hinders effective exploration. Ergo, its performance
diminishes in complex tasks and, when the team reward is sparse,
it tends to get restricted to a narrow portion of the policy space [3].

3 ENTROPY SEEKING AGENTS

In our work, we show that exploring observation space is a power-
ful technique that enables agents to solve complex multiagent tasks
and results in learning diverse behaviors without explicitly search-
ing for diverse behaviors. However, the strategical exploration of
state spaces in multiagent systems is of considerable challenges.
In our first contribution, we propose Novelty Seeking Multiagent
Reinforcement Learning (NS-MERL) [3, 8] where we introduce
observation entropy maximizing rewards that enable agents to effi-
ciently explore their observation space. This allows us to balance
exploration at agent-level and exploitation at team-level. Agent-
level exploration leads to the emergence of team-level cooperative
behaviors, even in scenarios where the agents are required to take
highly coordinated joint actions. Our experiments show that in
rover domain [1], our entropy maximizing rewards result in a much
better and efficient coverage of the behavior space (Figure 1).
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Figure 1: Behavior spaces covered during EA’s training. Each
behavior is represented by the average speed and steering
by a single agent throughout an episode. Covered space by
exploitative (task-oriented) agents is on the Left, by entropy
seeking agents is on the Right. The color gradient represents
the team fitness of a behavior’s episode [3]

An important challenge in the implementation of entropy max-
imizing rewards is the high dimensionality of the state space we
seek to explore. Exploring a joint state space can enable us to dis-
cover joint states where agents accomplish collaborative tasks, but
typically, increasing number of agents results in a growth in the
state space; hence, we need a technique that can handle both the
growing dimensions of the joint state space. Therefore, exploring
agent-level observation space offers significantly greater feasibility.
However, in high dimensional state spaces, regardless of values
being discrete or continuous, state vectors can be influenced by
minimal actions; hence, each state will likely occur once. Our sec-
ond work, state entropy maximization for multiagent learning [7],
tackles the problem of achieving efficient coverage in high dimen-
sional multiagent state spaces. We build this on NS-MERL. Though
NS-MERL discovers is effective in complex tasks, it does not scale
to state spaces with high dimensions.
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Figure 2: Impact of our observation entropy maximizing re-
ward against employing no entropy (C-MAPPO), and policy
entropy (C-MAPPO (w. policy entropy)) [10].

Nevertheless, agents trained to maximize their observation space
coverage can result in violations of safety requirements in real-
world applications. For instance, behaviors aimed at extensive state
space coverage might overlook the risk of collisions with teammates
unless it is integrated into the task objective. Recent studies have
demonstrated that engineering behaviors through constraints is
more effective than optimizing them via reward shaping [10, 15, 20].
However, defining such constraints introduces a new objective to
optimize. This often leads to three conflicting objectives in multia-
gent systems. Our third contribution [4-6] explores the challenge of
harmonizing constraints with task objectives in constrained multia-
gent systems. Our observation entropy seeking agents enable MARL
algorithms like MAPPO [29] to discover both high-performing and
safe behaviors (Figure 2) compared to the common practices of pol-
icy entropy maximization and exploitative agents. The constraints
are defined under thresholds and on the top figure has a lower
coordination requirement, but due to lower threshold the other
methods fail, while E2C agents performs the best. Under higher
coordination and relaxed threshold, E2C achieves higher reward,
while matching the same cost with the others.

4 PROPOSED RESEARCH

While learning strategies like efficient exploration of the state space
of agents, neural networks are capable of maximizing this coverage
as an objective; however, they fail to capture the sequential learning
of visiting diverse set of states. Recurrent neural networks (RNNs)
are able to capture such sequences. Especially, in partially observ-
able settings [16], RNNs have been shown to be effective [9, 11]. In
our proposed direction, we will propose episodic multiagent explo-
ration, where we train multiagent systems to effectively cover both
joint state space and observation space of the individual agents
within the framework of MERL that will allow us to maintain a
search in the collaborative portion of the joint state space.
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