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ABSTRACT
Over the last couple of years, causality has become of bigger interest
to the AI community. It has, among other things, been used to
generate explanations of black-box models. Despite this interest,
research into causality in strategic multi-agent systems settings
has been lacking. This project intends to develop methods to study
causality in multi-agent systems, with the goal of determining
accountability of system outcomes. In order to do this, we first
discuss what we understand by causality. We then introduce a first
attempt at developing a causal model for a strategic multi-agent
setting. Finally, we discuss how causal questions could be answered
more efficiently using abstraction techniques.
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1 INTRODUCTION
Consider a self-driving car that, in order to be permitted on the
road, still requires the driver to pay attention. Now imagine that
this car crashes into a tree that fell over the road during a storm.
Should we blame the driver for this? After all, they must have been
distracted when they should have been paying attention. Or should
we maybe blame the car? It should in normal circumstances have
been capable of driving safely on its own, the human driver having
to pay attention was just a safety measure. Or can we blame the
storm for felling the tree? After all, there are not normally trees on
the road. In order to determine the answer to these questions, we
must first ask ourself what caused the collision.

Causality has been studied since antiquity [8], but the modern
view of causality dates back to Hume’s work in the 18th century
[10]. Nowadays, research distinguishes two different notions of
causality, type causality and actual causality [8]. Type causality fo-
cuses on general statements and typically tries to use causal notions
to predict future events. We find type causality in statements like:
“being distracted while driving causes accidents," and “a bad posture
will cause problems with your spine." Actual causality on the other
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hand focuses on specific events and generally tries to explain why
an event happened. We find actual causality in statements like:
“the driver hitting the gas pedal instead of the brakes caused the
collision," and “my neck hurts because I was in a car-crash."

There have been quite a few different attempts at giving a formal
definition for actual causality over the years (see for example [2,
3, 6, 7, 9, 12]). Most formal definition use Pearl’s structural causal
model framework [14]. In such causal models the world is described
in terms of variables, which are divided into a set of exogenous and
a set of endogenous variables. The exogenous variables are variables
whose values are determined by causes outside of the model [8].
These causes are not really of interest to the modeller and often,
the values of the exogenous variables will be determined through
a probability distribution [8]. The causes of endogenous variables
are of interest to the modeller. The endogenous variable values
are consequently determined by either exogenous variables, or
other endogenous variables [8]. Every endogenous variable has a
corresponding structural equation that specifies how the value of
this variable is determined by the other variables [14].

People have claimed that a formal definition of actual causality
requires two main components [15]. Firstly, we should require that
the potential cause and the event have both actually happened.
Secondly, there has to be some condition that says that if the cause
had happened differently, then the event should also have been
different, this is a type of counterfactual argument. This is reflected
in most definitions (e.g. [2, 6, 9]) and there is indeed experimental
evidence that people reason about causality in such counterfactual
ways [5]. The simplest definition of causality, the but-for definition,
just simply takes these two requirements [8]. In our earlier example
this would lead to us concluding that the driver being distracted is a
cause of the collision, just in case that there was a collision and the
driver was distracted, and that if the driver had not been distracted
there also would not have been a collision. However, the but-for
definition is seen as too restrictive by most people, but the different
formal definitions of actual causality are testament to how hard it
is to find a formal definition that people agree on. The most well
known definition of actual causality is the Halpern-Pearl Definition,
but it has seen several iterations over the years [8].

Definitions of actual causality have been used in AI to provide
explanations of automated decisions and to determine which part
of a system should be held responsible for unwanted outcomes.
For example, to provide explanations of the decisions of a deep
neural network, its structure could be described as a structural
causal model [13]. The user could use this to reason about how
each component of the neural network affects the outcome.

Because agents can causally influence each other in multi-agent
settings, it is difficult to assign responsibility for certain outcomes to
a specific group of agents. This project aims to develop techniques
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to make these causal influences more explicit. For this, we will
introduce a way to combine strategic multi-agent settings with
causality. Afterwards, we will study how to make this combination
more efficient, using abstraction techniques for causal models.

2 DEFINING RESPONSIBILITY IN
MULTI-AGENT SYSTEMS USING CAUSALITY

In a multi-agent system it is important to be able to determine
where the responsibility for an outcome lies. If we do not know
what part of the system was responsible for an unwanted outcome,
we can also not know how to avoid such an outcome in the future.

While responsibility has been defined using just agent strategies
[16], other approaches argue that an agent has to have been a
cause of the outcome in order for it to be responsible for it [4].
Conversely, in the agent strategy approach, a group of agents is
seen as responsible for an outcome if they had a strategy to prevent
it. We have introduced a causal concurrent game structure (causal
CGS) in order to attempt to unify these two approaches [11]. A
concurrent game structure (CGS) is a type of transition system. It
consists of states and possible actions for agents in each state. CGS
allow us to reason about agent strategies in multi-agent settings.

To construct a causal concurrent game structure, we start with
a recursive causal model (meaning that the variables do not have
cyclic dependencies) where the variables can attain finitely many
values and where these values are deterministically determined.
In this model, we partition the endogenous variables into a set of
agent and a set of environment variables. Agent variables are those
variables that will be directly influenced by the agents of the model,
and the environment variables are all other variables. We use the
ancestral relations of the variables in the acyclic causal graph of
the model to determine the order in which the agents are allowed
to take their actions in the causal CGS. We see interventions on the
causal model as possible agent actions.

We can show that a group of agents is a but-for cause of a certain
outcome in a structural causal model if and only if they had a
strategy to prevent it in the causal CGS based on the SCM [11]. We
have also shown a more complicated result for a group of agents
that is a cause according to the HP definition. These results show a
relation between responsibility as defined by having an ability to
avoid an outcome and as defined by being a cause of the outcome.

So far, when developing the causal CGS, we have only looked
at deterministic and recursive models. However, in many practical
use cases, the causal models are probabilistic, so we would like to
see whether we can extend our model to a probabilistic setting as
well. We believe that this is not necessarily straightforward. For
one, concurrent game structures are also deterministic, so we need
to either use a different type of model (Markov games for example),
or extend CGS to deal with probabilities. A second problem would
be that many probabilistic causal models have real variable values.
Our causal CGS only works for finite-valued variables and in order
to extend our approach to infinite values we might want to think
about grouping values together in order to give us finitely many
options again.

Another possible extension would be allowing for non-recursive
models, as assuming that the model is acyclic reduces our expres-
siveness. Assuming that all relations are acyclic makes it impossible

for us to model mutual dependencies among agents. Nevertheless,
this extension would not be simple, as determining the order in
which agents get to take actions would be harder. Moreover, evalu-
ating the states would be problematic as variable values will depend
on each other. Still, we would like to see if adding a temporal com-
ponent to the model could help mitigate these problems. Therefore,
while we feel that it would be natural to attempt to extend our defi-
nition of causal CGS to probabilistic and non-recursive models as
well, we foresee several challenges when defining these extensions.

3 EFFICIENTLY REPRESENTING CAUSALITY
IN MULTI-AGENT SYSTEMS

Structural causal models can become quite complex when there are
a lot of variables involved. Moreover, our causal CGS is polynomial
in size of the original causal model. It would hence be beneficial to
develop ways to abstract the causal model, so that it becomes less
complex and more easily interpretable.

There has been recent research into abstracting causal models by
Beckers and Halpern [1]. In their paper they define a higher-level
model to be an abstraction of a lower-level model if there exists a
surjective function, subject to some extra constraints, between the
variable values of the lower-level model and the variable values of
the higher-level model.

While this definition seems promising, there are no formal results
to support that this definition is a good one. This is in general
something that seems to be lacking in papers that aim to equate
causal models. We hence intend to develop methods that will make
it more clear what we mean when we say that a certain causal
abstraction technique is a good one.We intend to do this by defining
how causal relations should carry over between models.

However, comparing causal relations in different models is not a
simple task. The models have different variables, so while ideally
one would like that if a variable was a cause of an event in the
first model, it is also a cause of this event in the second model, this
is impossible, given that the variable (or even the event) may not
exist in the second model. Nevertheless, in the Beckers & Halpern
paper, the variable in the original model is related to variables in
the second model through the surjective function on the variable
values [1]. We aim to see whether we can use this function to see
whether the variables it relates have similar causal relations.

4 CONCLUSION
We have discussed why having a decent framework to discuss
causality in multi-agent systems is needed. A first framework has
been introduced, using concurrent game structures, but this can
only be used for deterministic, recursive models. We intend to
extend this framework in the future and to develop techniques to
help with the evaluation of large-scale models.
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