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ABSTRACT
Offline Reinforcement Learning (RL) relies heavily on the quality
of datasets to derive effective policies. The dataset characteristics
(such as Trajectory Quality or State-Action Coverage) impact the
performance of the learned policy. Typically, these problems are
solved by enhancing the algorithms used in the process (such as
regularization methods and others). Despite recognizing these char-
acteristics as crucial for determining the quality of a learned policy,
what constitutes a "good" dataset remains ambiguous. This thesis
explores methodologies for predicting the learning performance of
offline RL datasets and optimizing their composition to improve
policy outcomes. By representing datasets as images and using Con-
volutional Neural Networks (CNNs), we predict policy performance
and enable efficient dataset reduction using genetic algorithms. Pre-
liminary experiments demonstrate the potential for dataset size
reduction while maintaining or enhancing policy quality.
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1 INTRODUCTION
There has been a significant rise in applying Reinforcement Learn-
ing (RL) [15] to domains requiring pre-collected data, such as health-
care, autonomous systems, and industrial processes. Offline RL [10],
in particular, has gained attention for its ability to learn effective
policies without needing online interactions, thereby avoiding risks
associated with exploration in unsafe or costly environments. How-
ever, the performance of offline RL is heavily influenced by the
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quality and composition of the dataset, making the task of evaluat-
ing and optimizing datasets crucial for success [13, 14].

Current research often focuses on improving offline RL algo-
rithms but overlooks the dataset’s role in determining policy qual-
ity. Metrics like Trajectory Quality (TQ) and State-Action Coverage
(SACo) [14] provide some insights into dataset suitability but fail to
account for some aspects such as state distributions or suboptimal
trajectories. These challenges motivate the need for a rapid, scalable
method to evaluate dataset quality and optimize its composition.

This thesis introduces a novel approach that represents offline
RL datasets as images, leveraging Convolutional Neural Networks
(CNNs) [9] to predict policy performance. Additionally, a genetic
algorithm [6] framework is proposed to reduce dataset size while im-
proving policy performance. Preliminary experiments demonstrate
the feasibility of this approach across a range of RL environments.

2 BACKGROUND
Offline RL problems are typically solved by managing the distribu-
tional shift [4] from the algorithm perspective. The first algorithm
proposed to solve this issue was Batch Constrained Q-Learning
(BCQ) [5]. This algorithm suggested restricting the learned policy
close to the behavior of the dataset. Some other algorithms imple-
mented slight differences such as BEAR [7] and PLAS [20]. Another
approach is to add a regularization term in the training process by
learning a conservative function as in Conservative Q-Learning
(CQL) [8]. Lastly, algorithms used the estimation of the epistemic
uncertainty to vary the restrictions applied to the learning process
like Random Ensemble Mixture (REM) [2].

Various methods estimate dataset performance, such as ERI [16],
TQ, and SACo [13, 14], which assess data quality. However, these
metrics do not accurately predict performance after training, as
they only average expected returns from the dataset’s episodes and
ignore mixtures of policies. Algorithms like LBRAC-v [19] address
this by assuming datasets come from different behavior policies
and using latent variable models to group trajectories accordingly.
While thismitigates the degeneration issue fromBRAC-v [17], it still
does not estimate overall dataset performance. DVORL [1] improves
this by using data valuation to estimate quality for task-specific
selection, but it requires a target dataset for the KL divergence
metric, making it impractical without one.

3 METHODOLOGY AND RESULTS
In offline RL, dataset quality is estimated by evaluating the perfor-
mance of a learned policy, denoted as 𝜋 , in an RL framework with
parameters 𝜃 . The expected return of a policy can be expressed as:
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ĴRL (D | 𝜃 ) = 1
|𝐸 |
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where 𝐸 is a set of episodes, 𝑡𝑒 is the final timestep of episode
𝑒 , and 𝑟𝑒𝑡 is the reward at time 𝑡 . However, this method is time-
consuming, prompting the need for a predictive model to estimate
performance quickly. The Performance Prediction Problem (P3)
is defined as Ĵ𝑀 (D | 𝜃 ) ≈ J (𝜋D | 𝜃 ) where Ĵ𝑀 is a function
that approximates the return of the best policy 𝜋D learned from
D (the dataset). Since such a function cannot be computed directly,
we propose using a neural network. Offline RL datasets are usu-
ally composed of numerical values representing states. However,
representing each episode with tuples of state values is impracti-
cal. Instead, we decide to represent datasets as images, capturing
spatial information beneficial for deep neural networks, especially
convolutional neural networks (CNNs).

To represent datasets as images, the state dimensionality and
environment dynamics must be considered. Different approaches
are proposed and evaluated across three domains: Frozen Lake
(discrete, bi-dimensional, delayed reward), Mountain Car (contin-
uous, bi-dimensional, delayed reward), and Acrobot (continuous,
6-dimensional, instant reward). The proposed representations are:

• State Scatter Plots: States are visualized as scatter plots, with
dimensionality reduction techniques like PCA [12] or au-
toencoders [3] used for high-dimensional spaces. The scatter
plots show state distributions or the reduced state spaces.

• Rendered Images: State frames are gathered, converted to
grayscale, and thresholded to isolate objects from the back-
ground. Then the pixel values are summed and normalized
to highlight environmental features. This representation cap-
tures motion.

The input to the CNN model is a transformed image of dataset
D, generated using either state abstraction or rendered images.
The goal is to predict the dataset’s expected return. Given the
characteristics of each domain, the expected return is considered
differently. In Frozen Lake and Mountain Car, we consider the
confidence that the model has for a given dataset to be "good". In the
case of Acrobot, we predict the actual value of the expected return.
Figure 1 shows the results for Frozen Lake which demonstrates that
the CNN models can predict the expected return of the datasets
with the image representations.

Another problem to tackle is the sub-optimality of the data and
the mixture of policies. Several approaches aim to reduce datasets
by keeping only useful data for training. Discriminator-Weighted
Offline Imitation Learning [18] integrates a discriminator with BC
to weight data based on expertise. COIL [11] filters datasets using
KL divergence, assuming independent policies for each trajectory.

We frame the problem as a multi-objective optimization task,
aiming to minimize dataset size while maximizing policy quality.
We do a simplification by combining both objectives into a sin-
gle function 𝜓 (D) = 𝑓 (Ĵ (D | 𝜃 ), |D|) where Ĵ (D | 𝜃 ) is an
estimate of the return (the CNN model in our case). The Episode
Selection Problem (ESP) seeks to find a reduced subset D∗ ⊆ D
that maximizes𝜓 , that is D∗ = 𝑎𝑟𝑔𝑚𝑎𝑥D′⊆D𝜓 (D′)

While a brute-force approach could theoretically solve this by
evaluating all possible subsets, it is computationally impractical
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(a) Frozen Lake Rendered
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(b) Frozen Lake Abstraction

Figure 1: Results from the CNN models using rendered (left
column) and state (right column) representations in Frozen
Lake. The plot shows the distribution of confidence provided
by the model for "good" (red) and "bad" (blue) datasets.

due to the exponential growth of subsets. Instead, we propose using
a genetic algorithm (GA) for a suboptimal solution. Each individual
in the population represents a subset of episodes from the input
dataset. A chromosome is encoded as a binary string, where each
bit represents whether an episode is included in the subset. The
fitness function is based on the ESP metric𝜓 .

Formally, if D = {𝑒1, 𝑒2, . . . , 𝑒𝑀 } is the dataset, with 𝑒𝑖 being
the i-th episode, each individual 𝑥 ∈ 𝑋 is a binary vector 𝑥 =

𝑥1, 𝑥2, . . . , 𝑥𝑀 , where𝑥𝑖 ∈ {0, 1}. The corresponding reduced dataset
is mapped by 𝜌 (𝑥) = {𝑒𝑖 ∈ D | 𝑥𝑖 = 1}. The fitness of an individual
𝑥 is computed as 𝜙 (𝑥) = 𝜓 (𝜌 (𝑥)).
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Figure 2: Comparison of performance of the genetic algo-
rithm against random and full datasets for Frozen Lake.

Figure 2 shows the results of reducing the dataset to keep only
the useful data. We can keep the same policy performance while
reducing the number of updates during the training process. Addi-
tionally, we compare the results with random selections to prove
that the GA obtains better and more consistent results.

4 FUTUREWORK
We intend to test our method in more complex environments with
continuous action spaces. Adapting it to other representation forms
is also a potential path. Furthermore, exploring new RL applications
may lead to developing innovative dataset-reduction techniques
and testing their capabilities in other fields like transfer learning.
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