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ABSTRACT

The transportation system is undergoing several transformations
at once: The pressing need to become environmentally sustainable,
reflected by the increased uptake of electric vehicles. The inter-
twined trends of transportation servitization and platformization
that often culminate in user-facing applications that bundle all
mobility-on-demand offers together. This dynamic system com-
prises heterogeneous services that interact with each other. Uncer-
tainty is imposed by competition and regulation from policy, as
actors behave self-interested. I explore the use of agent-based mod-
eling and multi-agent simulation, configured with empirical data,
for realistic scenario analysis of services, markets, and policy. In this
piece, I dive deeper into one example of that research agenda: The
coordination of a scarce resource (charging infrastructure) among
competitors (ride hailing operators).
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1 INTRODUCTION

Transportation systems are undergoing fundamental changes [26]
and the future of urban mobility is likely to be centered around
fleets that offer mobility-on-demand (MoD) services to their cus-
tomers [20]. This includes, but is not limited to, vehicle sharing
with micro-mobility modes and cars, ride hailing, and ride pooling
in van-like vehicles. Such MoD systems offer greater efficiency in
sustainability and urban space, as well as operator profitability [25],
without compromising user convenience. Still, researchers have
identified challenges associated with the operations of such ser-
vices [22], specifically related to service and charging [12, 15, 17],
especially when the fleet consists of electric vehicles (EV). Not
only that, but it is accompanied by the possibility for completely
new business models, each with their own set of problems to solve,
including acceptance [2, 5, 23].
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While research has tackled a multitude of such problems, includ-
ing customer allocation, relocation, and charging [4, 9, 14], the set
of unsolved problems remains large, and grows with advances in
technology like the emergence of smart markets [7]. Additionally,
the sphere of urban mobility is regulated to a varying degree of
strictness, and recent examples show that the absence of well imple-
mented regulation has a detrimental effect on the system [6, 21, 24].
These three factors, services, markets, and policies together form a
complex construct of interactions that have a major impact on the
urban mobility system and its inner workings. Understanding the
impact of any change to the system on other actors and on system-
wide metrics such as environmental impact, cost, or social inclusion
is crucial. Prescriptive analytics can be a real game changer [8], and
yet, the system’s large-scale, dynamic, and stochastic nature often
makes it unsuitable for analytical methods [19].

1.1 Smart Sustainable Mobility Models and
Simulation Framework (SSMMS)

In my PhD I try to tackle the described problem with a mixture of
agent-based modeling (ABM) and simulation of the environment
and all relevant actors within [18]. For this, I develop a sophisticated
multi-agent simulation (MAS), configured with empirical data, able
to replicate the intricate interdependent processes in an urban
mobility system. I then use the MAS as a test bed for any ABM
of counterfactual service and policy interventions [27]. I model
each problem through different agents that follow a programmed
behavior according to information available in the environment,
both from other agents and non-agentic, stateful objects. Stateful
objects can include, for example, charging stations or vehicles (if not
autonomous, that is). The agents interact with each other and the
stateful objects, leading to emergent system-level behavior, which
I can then use for scenario analysis.

The MAS takes a mesoscopic perspective, as it does not simulate
microscopic travel itineraries of individual inhabitants (like MatSIM
[16]) nor simply use stochastic outcome models for system-level
metrics. Rather, it utilizes ephemeral user agents characterized by
a spatio-temporal travel demand: The modelled city, is discretized
into cells, and as time progresses, generator processes in each cell
draw inter arrival times from a Poisson distribution. After waiting
for that arrival time, a user agent is spawned at that origin cell
and draws a destination cell for its transport task from a multi-
nomial distribution of weekday, time bucket, and spawning cell
[13]. The MAS software itself is highly modularized, parametrized,
and configurable. To exemplify: Any service operator has a module
that commands day-to-day operations like allocation of customer
requests, relocation, and charging of vehicles. This module can be
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switched out for any agent that implements its interface. It could
be a simple agent that follows a rule based agenda or it could be
a learning agent, and if it is a learning agent, because the rein-
forcement learning (RL) interfaces are standardized as well, the
underlying model can be switched out analogously. This is true for
all agents in the simulation.

2 EXAMPLE: COORDINATION OF SCARCE
RESOURCES AMONG COMPETITORS

Servitization and electrification are driving rapid growth in commer-
cial EV fleets, but charging infrastructure (CI) is a scarce resource
constrained by regulation and cost. This creates a challenge: coor-
dinating fleet charging is essential [4, 11], but hindered when those
fleets compete for the same business. This is the case we consider:
Ride-hailing services that compete for users and a shared CI. We
propose a privacy-conserving auction mechanism for coordinating
a number of competitors on a shared, scarce resource, enabled by
autonomous bidder and auctioneer agents.

2.1 Model and Simulation

We, again, employ ABM to construct what we call the mechanism en-
vironment within the described simulation environment described
before, as depicted in Figure 1. We augment the CI with a new
agent, the auctioneer, that owns and brokers information about
the CIL. Similarly, we replace the fleet objects and their rule-based
operations with fleet agents that can interface with this auctioneer
agent. Because we abstract from the travel demand that user agents
create using charging demands that endogenously arise as a result,
this environment does not need to have direct interaction with the
rest of the simulation. The result of the agents bidding for capacity,
possibly winning some, and incorporating this into their charging
operations planning merely reflects in a changed capability to serve
customer demands based on the fleet’s state of charge.
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Figure 1: Simulation and Mechanism Environment
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The vehicles drain battery during the fulfillment of travel tasks.
The operator agents periodically check the fleets’ vehicles SOC and
informs its value function for the next round of the auction with this
fleet state. Auctions run in parallel for each district, with a certain
number of charging stations available in each district. The auctions
run frequently for a specified period with a look ahead to that
auctioned period. After auction results are announced, operators
execute a configurable charging strategy based on the acquired
reservations and their fleets’ charging demands by creating charging
tasks. Acquired reservations are subject to the bidding behavior
of all other fleet operators. As a default, fleet operators consider
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a suite of heuristic methods for creation of these charging tasks,
commonly employed in the literature, specifically a combination of
greedy algorithms and rule-based heuristics [3].

2.2 Chicago Case Study

We configure the demand distributions and other parameters using
real-world data from ride-hailing providers in the city of Chicago in
the year 2022 City of Chicago [10]. We consider three benchmark
cases: First, an uncoordinated shared CI with first-come first-serve
coordination and myopic, optimistic charging task planning. Sec-
ond, a private infrastructure for each operator with ahead-planning
using next-period downtime minimization. Last, the proposed co-
ordinate shared infrastructure with the same myopic charging task
planning, but without the uncertainty revolving around charging
station availability in the next period. Figure 2 shows customer ser-
vice rate of a simulated week. These results indicate that the auction-
based coordination outperforms first-come first-serve shared in-
frastructure and performs comparable to individual infrastructure,
while keeping sensitive charging demand information private.
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Figure 2: Service Fulfillment Rate, Opportunistic Users

3 CONCLUSION AND FUTURE WORK

This proposal highlights one instantiation of the described SSMMS
research framework, the coordination of competing ride hailing
fleets on shared CI through a market mechanism enabled by au-
tonomous smart bidding agents [1]. We demonstrate the potential of
ABM and simulation for tackling intricate real-world problems with
approaches that cannot be evaluated theoretically or analytically
only. The SSMMS framework is the cornerstone to all other research
projects of my PhD: In one, I look at shared mobility service ten-
ders in cities, which regularly need to balance cost, environmental
concerns, and accessibility. I use a simulation-based evolutionary
algorithm to generate a solution set for the multi-objective opti-
mization problem that the potential fleet sizes of each mode (bike,
scooter, moped, car) pose. In another, I model a public transport
system where buses are common-goal oriented learning agents
that can deviate from their planned route if they could serve more
passengers along the alternative route. The SSMMS framework has
also proven to be valuable for other researchers in my group, and
I hope to open-source the software in the near future to provide
this ABM-driven scenario analysis of urban mobility to a larger
community.
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