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ABSTRACT
In the fair division of items among interested agents, envy-freeness

is possibly the most favoured and widely studied formalization of

fairness. For indivisible items, envy-free allocations may not exist in

trivial cases, and hence research and practice focus on relaxations,

particularly envy-freeness up to one item (EF1) and up to any item

(EFX). Though EFX is a tighter relaxation, a significant reason for

the popularity of EF1 is the simple fact of its existence.

This raises the question if in fact EF1 allocations exist for all val-
uations. Towards this objective, we present three results. We show

that for all valuations, there exists an EFX allocation with charity,

when some non-envied subset of items can remain unallocated.

Secondly, we consider two new but natural classes of valuations: (i)

Trilean valuations — an extension of Boolean valuations — when

the value of any subset is 0, 𝑎, or 𝑏 for any integers 𝑎 and 𝑏, and

(ii) Separable single-peaked valuations, when the set of items is

partitioned into types. For each type, an agent’s value is a single-

peaked function of the number of items of the type. The value for

a set of items is the sum of values for the different types. We prove

the existence of complete EF1 allocations for identical trilean valu-

ations for any number of agents and for separable single-peaked

valuations for three agents. For both classes of valuations, we also

show that complete EFX allocations do not exist.
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1 INTRODUCTION
Fair division refers to the fundamental problem of allocating a set

of items — called manna — fairly among a set of agents. The items

to be allocated could be as diverse as seats in courses in a university,

items in a contested inheritance or divorce proceedings, carbon

credits among nations, chores among members of a household, cab

fare for a shared ride, household rent among roommates, etc. These

problems are frequent and universal and have naturally attracted a

lot of attention from researchers in various fields.

Given the widespread applications, a number of different formal-

izations of what it means to be fair have naturally been proposed.

A popular and possibly predominant formalization is envy-freeness,
which informally requires that each agent prefers her own allo-

cated manna over the allocation to any other agent. When items are

indivisible and have to be wholly allocated to a single agent, envy-

free allocations may not exist, and hence relaxations are studied.

The most prevalent relaxation is envy-freeness up to one item (EF1),
which allows envy among agents as long as this envy is eliminated

by removing a single item [15, 30]. Envy-free allocations are a focus

of theoretical research and also implemented in practical tools, e.g.,

spliddit.org [25, 37], and fairoutcomes.com [38].

In fair division, given a set 𝑀 of items to be allocated among

𝑛 agents, we assume that each agent 𝑖 has a valuation function

𝑣𝑖 : 2
𝑀 → Z that specifies a value for each subset of items. An

allocation 𝐴 = (𝐴1, . . . , 𝐴𝑛) is a partition of 𝑀 where agent 𝑖 gets

the set 𝐴𝑖 . An allocation is EF1 if, whenever 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ), there
is an item 𝑥 ∈ 𝐴𝑖 ∪ 𝐴 𝑗 so that 𝑣𝑖 (𝐴𝑖 \ {𝑥}) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}), i.e., on
removing item 𝑥 , agent 𝑖 weakly prefers her own allocation to 𝑗 ’s

allocation. A stricter notion than EF1 is EFX, where an allocation 𝐴

is EFX if, whenever 𝑖 envies 𝑗 , this envy is resolved by removing

any item with a positive marginal value (a good) from 𝐴 𝑗 , as well

as any item with a negative marginal value (a chore) from 𝐴𝑖 .
1

For a formalization such as EFX or EF1 to be practically relevant,

an important criterion is existence. If a notion of fairness is not

easily satisfied or does not exist in an instance, its practical use

is limited. Unfortunately, EFX allocations are not known to exist

beyond three agents, even for nondecreasing additive valuations.

1
An even stricter notion requires the envy to be resolved by removing any item with

nonnegative marginal value from𝐴 𝑗 , and any item with a nonpositive marginal value

from𝐴𝑖 . This is made precise later.
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With nonmonotone additive valuations, or non-additive valuations,

EFX allocations are known to not exist [16, 21, 28]. However, if we

allow some items to remain unallocated (or be donated to charity),

then EFX allocations are known to exist for general monotone

valuations [12, 20]. As a relaxation of EFX, EF1 allocations exist in

very broad classes of valuations. The robustness of EF1 existence, as

well as algorithms for obtaining such allocations, have encouraged

research into broader objectives. For example, researchers have

studied allocations that are EF1 satisfying other properties such as

Pareto efficiency [8, 10, 24], strategy-proofness [2, 3]), and ex-ante

envy-freeness [6, 22]).

Initial results established the existence of EF1 allocations for

monotone valuations of the agents [30]. A different algorithm is

known for nonmonotone but additive valuations when each agent

has a positive or negative value for each item and values a subset at

the sum of the individual item values [7, 8]. These were extended

to the large class of doubly monotone valuations, where each agent

partitions the items into goods and chores; the goods always have

nonnegative marginal value for the agent, while chores always

have nonpositive marginal values [14]. While this is a broad class,

one particular property not captured by doubly monotone valua-

tions is when “too much of a good thing is bad.” Doubly monotone

valuations require an agent’s good to always be a good, no matter

what other items the agent is allocated. But this is often not the

case. For example:

• Our daily diet requires specific amounts of fats, sugars, pro-

teins, etc. For each nutrient — fats, sugars, proteins, etc. —

there is a recommended threshold. Consuming excess of a

nutrient, or too little, can both be harmful. Thus an item

which initially has positive dietary value, may have negative

value if too many similar items have already been consumed.

• Another example is the composition of a research lab, con-

sisting of postdocs, PhDs, undergraduates, etc. Typically a

PI looks for an ideal number of each type of researcher. Both

fewer and more researchers of a particular type may hinder

the research agenda.

Moulin also provides an example of such valuations [32].

Towards establishign EF1 existence for arbitrary valuations, a

possible approach to this goal is to consider discretized valuations,

i.e., to restrict the range of possible values for any bundle to a smaller

set, and obtain results on the existence of EF1. In this direction,

prior work shows that EF1 allocations exist if (a) all agents have

values that are in {0, 1} for all sets, or (b) agents are identical, and
have values in {0,−1} for all sets [16].2

In this paper, we present results for both EFX and EF1 allocations.

Firstly, we show that if we allow a subset of items to be donated to

charity, then there always exists an EFX allocation for arbitrary val-

uations. The subset of items donated has the property that no agent

envies them. Secondly, for complete EF1 allocations, we extend

previous results on the existence in two directions.

(1) We show that EF1 always exists for identical trilean valua-

tions — when agents are identical, and the value for each set

of items is 0, 𝑎, or 𝑏 for any integers 𝑎, 𝑏. Our work builds

on prior work on Boolean {0, 1} and {0,−1} valuations.

2
More specifically, existence is shown for the more restricted class of EFX allocations.

Trilean valuations are naturally motivated from two differ-

ent perspectives. Practically, trilean valuations allow agents

to express dissatisfaction (with value = −1), neutrality or

irrelevance (value = 0), or satisfaction (value = +1) with their

allocation, which allows finer-grained user inputs. Theo-

retically, this is a step towards EF1 for arbitrary (though

identical) valuations by considering discretized valuations,

i.e., when all values lie in a finite set.

Along the way, we extend prior work to show that EF1 allo-

cations also exist for non-identical {0,−1}-valuations.
(2) We introduce a new class of valuations that we call separable

single-peaked (SSP) valuations. For SSP valuations, the set of

items is partitioned into 𝑡 types. For each type of item 𝑗 , each

agent has a threshold 𝜃𝑖 𝑗 . Agent 𝑖’s valuation for type 𝑗 is

single-peaked with peak 𝜃𝑖 𝑗 : it monotonically increases with

the number of items up to 𝜃𝑖 𝑗 , and monotonically decreases

after that. The valuation is additive across items of different

types. Thus, these are a relaxation of separable piece-wise

linear concave valuations, widely studied in fair division and

market equilibria (e.g., [19, 23]).

We note that both the examples considered previously — of

getting balanced nutrients in a diet, and of research group

composition — are naturally captured by separable single-

peaked valuations. The types correspond to nutrients in the

diet example, and type of researcher in the research group

example.

For SSP valuations, we show two results: we show that EF1

allocations exist either when agents have the same threshold

for a type, and when agents have different thresholds, but

there are three agents. Finally, we give a tight example to

show that complete EFX allocations do not exist for the two

valuation classes studied, even for two identical agents and

three items.

Because of space limitations, the missing algorithms and proofs

are provided in the full version of the paper [13].

2 RELATEDWORK
Fair division has traditionally focused on allocating divisible re-

sources, also known as cake-cutting. A survey on computational

results for cake-cutting is presented by Procaccia [35]. For non-

monotone valuations (sometimes called “burnt cake”), results are

known only when the number of agents is either 4 or a prime

number [31, 36].

For indivisible manna, EFX allocations were studied by Plaut

and Roughgarden [34], and shown to exist for general monotone

valuations if there are two agents, or if all agents were identical. This

was extended to three agents [20] and then to more agents of three

types [29]. With nonmonotone additive valuations, or non-additive

valuations, EFX allocations are known to not exist [16, 21, 28].

Various relaxations of EFX are also studied [4, 5, 34]. A partic-

ular relaxation of interest to us is EFX with charity, when certain

items may remain unallocated, subject to constraints. The notion of

allocations with charity was introduced by Caragiannis, Gravin and

Huang [17]. They showed that with nondecreasing additive valua-

tions, there exists a partial allocation that is EFX, and for which the

Nash welfare (or the geometric mean of the agents’ utilities) is at
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least half the maximum possible. The remaining items are said to be

donated to charity. For nondecreasing monotone valuations, there

exists a partial allocation that is EFX and where (i) no agent envies

the set of unallocated items, and (ii) the number of unallocated

items is at most 𝑛 − 2 [12, 20]. This is a remarkably strong result,

since it holds for general monotone valuations.

The existence of EF1 allocations for monotone nondecreasing

valuations — when all items are goods — was given by Lipton et al.

[30]. For additive nonmonotone utilities a double round-robin al-

gorithm for EF1 allocations was given by Aziz et al. [7, 8]. These

results were extended to doubly monotone valuations [14] by suit-

ably modifying the envy-cycle elimination algorithm of Lipton et

al.

EF1 allocations always exist for two agents, with general valua-

tions [16]. Further, EFX allocations exist (a) for Boolean valuations,

i.e., 𝑣𝑖 (𝑆) ∈ {0, 1} for any agent 𝑖 and set 𝑆 of items, and (b) for iden-

tical and negative Boolean valuations, i.e., 𝑣𝑖 (𝑆) = 𝑣 (𝑆) ∈ {0,−1}
for all 𝑖 , 𝑆 . An EFX allocation is also an EF1 allocation. We note that

these existence results are through a variety of different techniques

— envy-cycle elimination, round-robin, sequential allocation of min-

imal subsets, local search, etc. It remains open if an EF1 allocation

exists for arbitrary valuations, even, e.g., for the case of 3 identical

agents.

EF1 is also considered alongside Pareto-optimality (PO), where

an allocation is PO if no allocation gives at least as much utility

to every agent and strictly higher utility to at least one agent. It

is known that an EF1 and PO allocation always exists for additive

goods and can be computed in pseudopolynomial time [10, 18, 33].

For additive chores and mixed items, partial results are known [8,

24, 27].

Besides envy-freeness, numerous other fairness notions are also

studied in the literature, including proportionality, equitability, and

maximin share. Amanatidis et al. [1] present a survey on recent

developments on these.

3 BASIC NOTATION
A fair division instance with indivisible manna is specified by a

set 𝑀 of𝑚 items, a set 𝑁 of 𝑛 agents, and for each agent 𝑖 ∈ 𝑁 ,

a valuation function 𝑣𝑖 : 2
𝑀 → Z that specifies a value for each

subset of items with 𝑣𝑖 (∅) = 0. We useV = (𝑣1, . . . , 𝑣𝑛) to denote a
valuation profile. Agents are identical if 𝑣𝑖 (𝑆) = 𝑣 (𝑆) for all agents
𝑖 ∈ 𝑁 and all subsets 𝑆 ⊆ 𝑀 . An allocation 𝐴 = (𝐴1, . . . , 𝐴𝑛) is a
partition of items where agent 𝑖 gets the set 𝐴𝑖 . The set of items

allocated to an agent is also sometimes called a bundle. An allocation
is envy-free if for all agents 𝑖 , 𝑗 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ), i.e., each agent

prefers their own bundle to that of any other agent’s. An allocation

is envy-free upto one item (EF1) if, whenever 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝐴 𝑗 ), there
is some item 𝑥 ∈ 𝐴𝑖 ∪𝐴 𝑗 so that 𝑣𝑖 (𝐴𝑖 \ {𝑥}) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}). Given
an allocation 𝐴, we say a subset 𝑁 ′ of agents is mutually EF1 if the
EF1 condition holds for every pair of agents in 𝑁 ′.

To formally define EFX allocations for nonmonotone valuations,

for agent 𝑖 and subset 𝑆 ⊆ 𝑀 , let 𝑀+𝑖 (𝑆) = {𝑥 ∈ 𝑆 | 𝑣𝑖 (𝑆) >

𝑣𝑖 (𝑆 \ {𝑥})} be the set of items with positive marginal value (goods),

𝑀−𝑖 (𝑆) = {𝑥 ∈ 𝑆 | 𝑣𝑖 (𝑆) < 𝑣𝑖 (𝑆 \ {𝑥})} be the set of items with neg-

ative marginal value (chores), and𝑀0

𝑖 (𝑆) = {𝑥 ∈ 𝑆 | 𝑣𝑖 (𝑆) = 𝑣𝑖 (𝑆 \
{𝑥})} be the items with zero marginal value. Then allocation 𝐴 is

EFX
0

0
if, whenever agent 𝑖 envies agent 𝑗 , the set𝑀+𝑖 (𝐴 𝑗 ) ∪𝑀0

𝑖 (𝐴 𝑗 )
∪𝑀0

𝑖 (𝐴𝑖 ) ∪𝑀−𝑖 (𝐴𝑖 ) is nonempty, and for every𝑥 ∈ 𝑀+𝑖 (𝐴 𝑗 ) ∪𝑀0

𝑖 (𝐴 𝑗 )
∪𝑀0

𝑖 (𝐴𝑖 ) ∪𝑀−𝑖 (𝐴𝑖 ), 𝑣𝑖 (𝐴𝑖 \ {𝑥}) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}). A more relaxed

version of EFX is EFX
+
− , which ignores items with zero marginal

value: Allocation 𝐴 is EFX
+
− if, whenever agent 𝑖 envies agent 𝑗 ,

the set𝑀+𝑖 (𝐴 𝑗 ) ∪𝑀−𝑖 (𝐴𝑖 ) is nonempty, and for every 𝑥 ∈ 𝑀+𝑖 (𝐴 𝑗 )
∪𝑀−𝑖 (𝐴𝑖 ), 𝑣𝑖 (𝐴𝑖 \ {𝑥}) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}).

We introduce additional notation specific to the valuations we

study in the relevant sections.

4 EFX WITH CHARITY
It is known that for nondecreasing monotone valuations, there

exists a partial allocation that is EFX where (i) no agent envies

the set of unallocated items, and (ii) the number of unallocated

items is at most 𝑛 − 2 [12, 20]. The unallocated goods are said to

be allocated to charity. This is a remarkably strong result since it

holds for general monotone valuations.

We first show that these results can be nearly replicated for

arbitrary nonmonotone valuations. That is, for 𝑛 agents with any

valuations, there exists a partial allocation 𝐴 = (𝐴1, . . . , 𝐴𝑛) that
is EFX, and for which no agent envies any subset of the unallo-

cated items. Thus if 𝑃 = 𝑀 \ ⋃𝑖∈𝑁 𝐴𝑖 is the set of unallocated

items, then for each agent 𝑖 and any set 𝑆 ⊆ 𝑃 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝑃). We

thus nearly obtain the same results as in prior work for a much

broader class of valuations, but lose the bound on cardinality of the

set of unallocated items. Algorithm 1 obtains the required partial

allocation. We note that the algorithm is conceptually similar to

previous algorithms which also look for minimally envied subsets

(e.g., [16, 20]).

Algorithm 1 EFX-with-charity

Input: Fair division instance (𝑁,𝑀,V).
Output: A partial EFX allocation 𝐴.

1: Initialize 𝐴 = (∅, . . . , ∅), 𝑃 = 𝑀 {𝑃 is the set of unallocated

items.}

2: while (∃𝑖 and items 𝑆 ⊆ 𝑃 such that 𝑣𝑖 (𝐴𝑖 ) < 𝑣𝑖 (𝑆)) do
3: Let 𝑆 ′ ⊆ 𝑃 be a minimum cardinality set so that for some

agent 𝑖′, 𝑣𝑖′ (𝐴𝑖′ ) < 𝑣𝑖′ (𝑆 ′)
4: 𝑃 = 𝑃 ∪ 𝐴𝑖′ \ 𝑆 ′, 𝐴𝑖′ = 𝑆 ′ {No agent envies 𝑆 ′ \ {𝑥} for all

𝑥 ∈ 𝑆 ′.}
5: Return 𝐴 = (𝐴1, . . . , 𝐴𝑛)

Theorem 1. For agents with arbitrary valuations, Algorithm 1
returns a partial allocation𝐴 that is EFX0

0
, and so that no agent envies

any subset of unallocated items.

Proof. Firstly, we note that every time the while loop executes,

the value for agent 𝑖′ that gets set 𝑆 ′ strictly increases, while the

allocation to the other agents is unchanged. Hence there is a Pareto

improvement with each iteration, and the algorithmmust terminate

in finite time. Secondly, clearly when the algorithm terminates, no

agent envies any subset of 𝑃 , the set of unallocated items (or 𝑃

itself).

We thus need to show that the partial allocation 𝐴 is EFX
0

0
.

Suppose 𝑖 envies 𝑗 in 𝐴. Since 𝑣𝑖 (𝐴𝑖 ) ≥ 0, 𝐴 𝑗 ≠ ∅. Then for all

𝑥 ∈ 𝐴 𝑗 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}). Hence also 𝑀+𝑖 (𝐴 𝑗 ) ≠ ∅. Further, if
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𝐴𝑖 ≠ ∅, then for all 𝑥 ∈ 𝐴𝑖 , 𝑣𝑖 (𝐴𝑖 ) > 𝑣𝑖 (𝐴𝑖 \ {𝑥}) (else 𝐴𝑖 would not

have been a minimum cardinality envied set when 𝑖 received 𝐴𝑖 ).

Thus 𝑀−𝑖 (𝐴𝑖 ) ∪𝑀0

𝑖 (𝐴𝑖 ) = ∅, and hence for all items 𝑥 ∈ 𝑀+𝑖 (𝐴 𝑗 )
∪𝑀0

𝑖 (𝐴 𝑗 ) ∪𝑀0

𝑖 (𝐴𝑖 ) ∪𝑀−𝑖 (𝐴𝑖 ), 𝑣𝑖 (𝐴𝑖 \ {𝑥}) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}). □

5 TRILEAN VALUATIONS
For a fair division instance, valuations are trilean if for some𝑎,𝑏 ∈ Z,
for every agent 𝑖 ∈ 𝑁 and 𝑆 ⊆ 𝑀 , 𝑣𝑖 (𝑆) ∈ {0, 𝑎, 𝑏}. Valuations are
Boolean {0, 1}-valued if for every agent 𝑖 and subset 𝑆 of items,

𝑣𝑖 (𝑆) ∈ {0, 1}. Similarly, valuations are Boolean {0,−1}-valued if

for every agent 𝑖 and subset 𝑆 of items, 𝑣𝑖 (𝑆) ∈ {0,−1}.
To show EF1 exists for identical trilean valuations, we claim that

it is sufficient to prove existence for two cases: 𝑎 = 1, 𝑏 = 2, and

𝑎 = −1, 𝑏 = 1. This is immediate if either 𝑎 or 𝑏 is nonnegative. It

also holds if 𝑎 and 𝑏 are both negative, with the proof provided in

the full version of the paper.

Proposition 2. Suppose an EF1 allocation exists in all instances
(𝑁,𝑀,V) with identical agents, where either 𝑣 (𝑆) ∈ {0, 1,−1} for
all 𝑆 ⊆ 𝑀 , or 𝑣 (𝑆) ∈ {0, 1, 2}. Then an EF1 allocation exists in all
instances with identical agents where 𝑣 (𝑆) ∈ {0, 𝑎, 𝑏} for any integers
𝑎, 𝑏.

Our proof for trilean valuations will thus focus on these two

cases, called negative trilean if values are in {0,−1, 1}, and positive

trilean if values are in {0, 1, 2}.
Since EF1 studies values of sets upon removal of items, we in-

troduce some notation for this. For a set of items 𝑆 , any immediate

subset (𝑆 ′ ⊂ 𝑆 s.t. |𝑆 ′ | = |𝑆 | − 1) is called a child of 𝑆 .

Definition 1. For an agent 𝑖 and a subset 𝑆 of items, and 𝑎, 𝑏 ∈ Z,
• We use 𝑣𝑖 (𝑆) = 𝑎 → 𝑏 to denote that 𝑣𝑖 (𝑆) = 𝑎, and for some

item 𝑥 ∈ 𝑆 , 𝑣𝑖 (𝑆 \ {𝑥}) = 𝑏.
• We use 𝑣𝑖 (𝑆) = 𝑎 ⇒ 𝑏 to denote that 𝑣𝑖 (𝑆) = 𝑎, and for every
𝑥 ∈ 𝑆 , 𝑣𝑖 (𝑆 \ {𝑥}) = 𝑏.
• For 𝐵 ⊂ Z, we use 𝑣𝑖 (𝑆) = 𝑎 ⇒ 𝐵 to denote that 𝑣𝑖 (𝑆) = 𝑎,
and for every 𝑥 ∈ 𝑆 , 𝑣𝑖 (𝑆 \ {𝑥}) ∈ 𝐵.

For example, 𝑣𝑖 (𝑆) = 0→ 1 denotes that 𝑣𝑖 (𝑆) = 0, and ∃𝑥 ∈ 𝑆 for

which 𝑣𝑖 (𝑆 \ {𝑥}) = 1. The notation 𝑣𝑖 (𝑆) = −1 ⇒ {−1, 0} denotes
that 𝑣𝑖 (𝑆) = −1, and on removal of any 𝑥 ∈ 𝑆 , 𝑣𝑖 (𝑆 \ {𝑥}) is either
−1 or 0.

A note on Boolean and trilean valuations. In our work, we use

trilean for intances where any set of items has one of three values.

We note that the term dichotomous valuations has been used earlier

for the case where any item has 0 or 1 marginal value [9] (and

thus a set of items can take any value between 0 and𝑚). However

various other terms have also been used for this case, including

binary [11, 26] and bivalued instances [24]. Bérczi et al. [16] use

Boolean and negative Boolean for instances where any set of items

has one of two values. Given that there is a lack of consistent

notation, and that we are the first to study this class of valuations,

we believe the use of trilean to denote the valuations we study is a

reasonable choice.

5.1 Boolean Valuations
As noted, Bérczi et al. show that for Boolean {0, 1} valuations, there
exists an EFX allocation, and give an algorithm for this [16]. They

also give an algorithm for obtaining an EFX allocation for identical
Boolean {0,−1} valuations. Since EFX is a stronger requirement

than EF1, these algorithms give EF1 allocations for the respective

cases. This however leaves open the existence of EF1 allocations

for nonidentical Boolean {0,−1} valuations.3 In the full version of

the paper, we give such an algorithm, called NegBooleanEF1. Our

algorithm is similar to the algorithm for Boolean {0, 1} valuations,
with suitable modifications for negative valuations. We use certain

properties of the allocation produced by this algorithm later, in our

result for trilean valuations (Proposition 6).

Theorem 3. Given a fair division instance with negative Boolean
valuations, Algorithm NegBooleanEF1 returns an EF1 allocation in
polynomial time.

5.2 Negative Trilean Valuations
In this section, we establish the existence of EF1 allocations when

agents are identical and their valuations are negative trilean. We

prove the following theorem in the remainder of this section.

Theorem 4. Every instance with identical negative trilean valua-
tions has an EF1 allocation.

Before we give a brief description of how we achieve this, let us

define a few terms.

While executing our algorithm, each agent will belong to one

or more sets, depending on the bundle allocated to the agent. This

classification forms the basis of our algorithm and the analysis,

as it clarifies when EF1 violations occur. The conditions on EF1

violations are shown in Lemma 5.

(1) Unallocated: U = {𝑖 : 𝐴𝑖 = ∅}.
(2) Zero: Zero = {𝑖 : 𝑣 (𝐴𝑖 ) = 0}.
(3) Favourable: Fav = {𝑖 : 𝑣 (𝐴𝑖 ) = 1→ −1 or 𝑣 (𝐴𝑖 ) = −1→ 1}.
(4) Flexible: Flex+ = {𝑖 : 𝑣 (𝐴𝑖 ) = 0 → 1}, and Flex− = {𝑖 :

𝑣 (𝐴𝑖 ) = 0→ −1}.
(5) Resolved: Res+ = {𝑖 : 𝑣 (𝐴𝑖 ) = 1 → 0}, and Res− = {𝑖 :

𝑣 (𝐴𝑖 ) = −1→ 0}.
(6) Bad: Bad+ = {𝑖 : 𝑣 (𝐴𝑖 ) = 1 ⇒ 1}, and Bad− = {𝑖 : 𝑣 (𝐴𝑖 ) =
−1 ⇒ −1}

Note that the above sets are not mutually exclusive (e.g., an agent

could be in both Flex− and Flex+, and an agent in U is also in Zero),
but are exhaustive, i.e., for any allocation 𝐴 and identical trilean

valuations for the agents, each agent 𝑖 falls in one or more of the

above sets. We will not explicitly move agents in and out of these

sets. Rather, agents will acquire or lose membership depending on

the bundle allocated to them.

We use these terms to describe the respective sets as well. Thus

a set of items 𝑆 is:

(1) Zero-valued if 𝑣 (𝑆) = 0.

(2) Favourable if 𝑣 (𝑆) = 1→ −1 or 𝑣 (𝑆) = −1→ 1.

(3) Flexible if 𝑣 (𝑆) = 0→ 1 or 𝑣 (𝑆) = 0→ −1.

(4) Resolved if 𝑣 (𝑆) = 1→ 0 or 𝑣 (𝑆) = −1→ 0.

(5) Bad if 𝑣 (𝑆) = 1 ⇒ 1 or 𝑣 (𝑆) = −1 ⇒ −1.

3
For identical valuations, there is a reduction from finding an EF1 allocation in Boolean

{0, −1} valuations to finding one in Boolean {0, 1} valuations — replace each −1 value

with +1, and find an EF1 allocation𝐴 in the resulting {0, 1}-valued instance. Then𝐴

is an EF1 allocation in the original {0, −1}-valued instance as well. This reduction,

however, does not work for nonidentical valuations.
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Apart from the set Fav, agents in the same set have the same

value for their bundles, and hence do not envy each other. Given

an allocation 𝐴 and a pair 𝑖 , 𝑗 of agents, we now use these sets to

give necessary conditions for the violation of EF1.

Fav

Flex− (0→ −1)

Res− (−1→ 0)

Bad− (−1 ⇒ −1)

Flex+ (0→ +1)

Res+ (1→ 0)

Bad+ (1 ⇒ 1)

Zero (0)

Figure 1: The edges depict possible EF1 violations between
different sets of agents.

Lemma 5. Given agents with identical negative trilean valuations
and an allocation 𝐴, agents 𝑖 , 𝑗 are NOT mutually EF1 only if:4

(1) 𝑖 ∈ Bad+, and 𝑗 ∈ Zero ∪ Flex− ∪ Res− ∪ Bad− , or
(2) 𝑖 ∈ Bad− , and 𝑗 ∈ Zero ∪ Flex+ ∪ Res+ ∪ Bad+, or
(3) 𝑖 ∈ Res+ and 𝑗 ∈ Res− .

In particular, note that agents in Fav are mutually EF1 with every

other agent, regardless of the other agent’s bundle. The lemma is

depicted in Figure 1, with edges between various sets showing

possible EF1 violations.

The name of the sets (favourable, flexible, resolved, and bad) are

an attempt to describe how the sets are used in our algorithm as

well. Favourable sets are good for us since they are mutually EF1

with all other sets. Flexible sets are the next best, since they have the
least number of EF1 violations among the remaining sets. Resolved
sets stay fixed once assigned: Once an agent is assigned a resolved

set, her bundle does not change (an agent assigned a flexible set

may however have her allocation modified later). Finally, a bad
set is so named because in our algorithm, any EF1 violation must

involve a bad set.

At a very high level, our algorithm proceeds by first allocating

favourable sets until there are no more, then by allocating flexible
sets until the remaining set of items is either zero-valued or Boolean-

valued ({0, 1} or {0,−1}). If the remaining set is zero-valued, we

assign it and return the resulting allocation. By Lemma 5 this is

EF1. If the remaining set is Boolean-valued, then we use the pre-

vious algorithms for Boolean values to allocate resolved and zero
sets. Eventually, we will be left with possibly a single bad set. The

resolved sets and the bad set assigned will be of the same sign (ei-

ther Res+ and Bad+, or Res− and Bad−). It follows from Lemma 5

that the only possible EF1 violations will be between the flexible

sets and the single bad set, which we will then fix in Algorithm

FixEF1ViolationsNeg.

4
Note that U ⊆ Zero.

We now describe our algorithm in more detail. We first allocate

any favourable sets (𝑣 (𝑆) = 1 → −1 or −1 → 1) to the first 𝑛 − 1

agents, as long as there are any favourable sets. If there are items

remaining but no more favourable sets, and not all agents in [𝑛− 1]
are allocated, let𝑀 ′ be the set of items remaining. If 𝑣 (𝑀 ′) = 0 (or

𝑀 ′ = ∅), we assign 𝑀 ′ to the next agent and return the resulting

allocation. Else, we next try and find maximal flexible sets. That is,
if 𝑣 (𝑀 ′) = 1, we look for a maximal set 𝑆 such that 𝑣 (𝑆) = 0→ −1,

and if 𝑣 (𝑀 ′) = −1, we look for a maximal set 𝑆 such that 𝑣 (𝑆) =
0→ 1. If 𝑀 ′ is trilean, such a set 𝑆 must exist: since there are no

favourable sets, if𝑀 ′ and 𝑆 ⊂ 𝑀 ′ have opposite signs, there must

exist a set 𝑇 so that 𝑆 ⊂ 𝑇 ⊂ 𝑀 ′ and 𝑣 (𝑇 ) = 0.

If after allocating any flexible sets to agents in [𝑛 − 1], at least
two agents remain and 𝑣 (𝑀 ′) = 0, assign𝑀 ′ to the next agent and

return the resulting allocation, which is EF1. If 𝑣 (𝑀 ′) ≠ 0 then𝑀 ′

is either Boolean {0, 1}-valued or Boolean {0,−1}-valued. We then

call the respective algorithms for obtaining EF1 allocations for these

respective cases. This completes the allocation, though there may

be EF1 violations. We then call Algorithm FixEF1ViolationsNeg to

fix any violations.

The remaining case is that all agents in [𝑛−1] have been allocated
either favourable or flexible sets. In this case, we allocate the re-

maining items to agent 𝑛, and call Algorithm FixEF1ViolationsNeg

to fix any EF1 violations.

We will use the algorithms for obtaining EF1 allocations for

Boolean {0, 1} and {0,−1} valuations as subroutines. The next two
propositions state some properties of the allocations returned by

these algorithms. For Boolean {0, 1}-valuations, we use Algorithm
2 from Bèrczi et al. 2024, which we will call Algorithm BooleanEF1.

For Boolean {0,−1}-valuations, we use Algorithm NegBooleanEF1.

Proposition 6. For identical {0,−1}-valuations, the allocation re-
turned by the Algorithm NegBooleanEF1 satisfies one or both of the
following conditions.

(1) Each agent is in Res− or Zero.
(2) The first 𝑛 − 1 agents are in Res− .

Proposition 7. For identical {0, 1}-valuations, the allocation re-
turned by Algorithm BooleanEF1 satisfies one or both of the following
conditions:

(1) Each agent is in Res+ or Zero.
(2) The first 𝑛 − 1 agents are in Res+.

Algorithm TernaryNegEF1 terminates in one of five places —

Lines 13, 15, 17, 20, and 23. The next claim shows that if the algo-

rithm terminates in Line 13 or Line 15, the allocation returned is

EF1.

Claim 8. If Algorithm TernaryNegEF1 terminates in Line 13 or
Line 15, the allocation returned is EF1.

Proof. Note that prior to Lines 13 and 15, any agents with non-

empty bundles were assigned either favourable sets or flexible sets

in the preceding while loops. In the execution of Lines 13 or 15,

every remaining agent is either unassigned or assigned a zero-

valued bundle. From Lemma 5, there is no EF1 violation between

favourable, flexible, and zero-valued agents. Hence the resulting

allocation is EF1. □
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Algorithm 2 TernaryNegEF1

Input: Fair division instance (𝑁,𝑀,V) with identical negative

trilean valuations.

Output: An EF1 allocation 𝐴.

1: Initialize 𝐴 = (∅, . . . , ∅),𝑀 ′ =𝑀 , and 𝑖 = 1.

2: while (∃𝑆 ⊆ 𝑀 ′ such that 𝑆 is favourable) AND (𝑖 < 𝑛) do
3: 𝐴𝑖 = 𝑆 ,𝑀 ′ =𝑀 ′ \ 𝑆 , 𝑖 = 𝑖 + 1 {Assign favourable sets.}

4: while (𝑀 ′ ≠ ∅) AND (𝑖 < 𝑛) AND (𝑀 ′ is trilean) AND (𝑣 (𝑀 ′) ≠
0) do {Assign flexible sets.}

5: if 𝑣 (𝑀 ′) = 1 then
6: Let 𝑆 be an inclusion-wisemaximal subset such that 𝑣 (𝑆) =

−1.

7: Pick any 𝑥 ∉ 𝑆 . 𝐴𝑖 = 𝑆 ∪ {𝑥},𝑀 ′ =𝑀 ′ \𝐴𝑖 . {𝑣 (𝐴𝑖 ) = 0→
−1.}

8: else
9: Let 𝑆 be a inclusion-wise maximal subset such that 𝑣 (𝑆) =

1.

10: Pick any 𝑥 ∉ 𝑆 .𝐴𝑖 = 𝑆∪{𝑥},𝑀 ′ =𝑀 ′\𝐴𝑖 . {𝑣 (𝐴𝑖 ) = 0→ 1.}

11: 𝑖 = 𝑖 + 1

12: if (𝑀 ′ = ∅) then
13: return allocation 𝐴.

14: if (𝑣 (𝑀 ′) = 0) then
15: 𝐴𝑖 =𝑀 ′, return allocation 𝐴.

16: if (𝑖 = 𝑛) then
17: 𝐴𝑖 =𝑀 ′,𝐴 = FixEF1ViolationsNeg(𝐴), return allocation𝐴.

18: if (𝑀 ′ is Boolean {0, 1}-valued) then {Assign resolved sets.}

19: 𝐴 =Algorithm BooleanEF1(𝑀 ′, 𝑁 \ [𝑖 − 1],V).
20: 𝐴 = FixEF1ViolationsNeg(𝐴), return allocation 𝐴.

21: else
22: 𝐴 =Algorithm NegBooleanEF1(𝑀 ′, 𝑁 \ [𝑖 − 1],V).
23: 𝐴 = FixEF1ViolationsNeg(𝐴), return allocation 𝐴.

If Line 17 executes, then before FixEF1ViolationsNeg(𝐴) is called,
agents 1, . . . , 𝑛 − 1 are assigned either favourable or flexible sets,

and hence by Lemma 5, any EF1 violation must involve agent 𝑛.

Claim 10 then details the possible EF1 violations before Algorithm

FixEF1ViolationsNeg is called.

For the remaining Lines 20 and 23, the following proposition

states what the allocation looks like before FixEF1ViolationsNeg(𝐴)
is called.

Claim 9. Let 𝑘 be the last agent to be allocated in the while loop
in Algorithm TernaryNegEF1. Then clearly agents 1, . . . , 𝑘 are either
favourable or flexible. Further,

(1) If FixEF1ViolationsNeg(𝐴) is called in Line 20, then either:
(a) agents 𝑘 + 1, . . . , 𝑛 are in Res+ ∪ Zero, or
(b) agents 𝑘 + 1, . . . , 𝑛− 1 are in Res+, and𝐴𝑛 is Boolean {0, 1}-

valued.
(2) If FixEF1ViolationsNeg(𝐴) is called in Line 23, then either:
(a) agents 𝑘 + 1, . . . , 𝑛 are in Res− ∪ Zero, or
(b) agents 𝑘+1, . . . , 𝑛−1 are in Res− , and𝐴𝑛 is Boolean {0,−1}-

valued.

Proof. Prior to calling FixEF1ViolationsNeg(𝐴) in Line 20, the

algorithm calls Algorithm BooleanEF1 with agents 𝑁 \ [𝑘] and

items𝑀 ′ that are Boolean {0, 1}-valued. From Proposition 7, either

each agent 𝑖 > 𝑘 is in Res+ ∪ Zero, or agents 𝑘 + 1, . . . , 𝑛 − 1 are

in Res+, and 𝐴𝑛 is Boolean {0, 1}-valued. This proves the claim for

Line 20. A similar proof (using Proposition 6) shows the claim for

Line 23. □

We then have the following claim, regarding possible EF1 viola-

tions in the allocation passed to Algorithm FixEF1ViolationsNeg.

Claim 10. Let 𝐴 be the allocation given as input to Algorithm
FixEF1ViolationsNeg. Then any EF1 violation must be of one of the
following types:
• Type 1: Agent 𝑖 ∈ [𝑛 − 1] is in Flex− and agent 𝑛 is in Bad+.
Other agents are favourable, flexible, or in Res+.
• Type 2: Agent 𝑖 ∈ [𝑛 − 1] is in Flex+ and agent 𝑛 is in Bad− .
Other agents are favourable, flexible, or in Res− .

Finally, in Algorithm FixEF1ViolationsNeg, we resolve any vi-

olations with agent 𝑛. Claim 10 tells us that any EF1 violations

must be between agent 𝑛 and an agent 𝑖 assigned a flexible set.

Further, in this case, 𝑛 must be a bad agent (𝑣 (𝐴𝑛) = 1 ⇒ 1 or

𝑣 (𝐴𝑛) = −1 ⇒ −1), and 𝑖 must be a flexible agent of the opposite

sign (𝑣 (𝐴𝑖 ) = 0 → −1 or 𝑣 (𝐴𝑖 ) = 0 → 1, respectively). Assume

𝑛 ∈ Bad+. Then Algorithm FixEF1ViolationsNeg proceeds by pick-

ing an agent 𝑖 in Flex− and transferring items (arbitrarily picked)

from 𝐴𝑛 to 𝐴𝑖 , until at least one of them is in Res+ (has value

1→ 0). If 𝑛 ∈ Res+, we have reached an EF1 allocation. Else, the set

of agents in Flex− is reduced. We then pick the next agent 𝑖 from

Flex− and continue transferring items from 𝐴𝑛 to 𝐴𝑖 .

We call the repeat...until loops in the algorithm the inner
loops, and the while loops the outer loops. Note that if the initial
allocation is not EF1, then from Claim 10 either 𝑛 ∈ Bad+ or 𝑛 ∈
Bad− , and hence exactly one of the two if conditions holds true.

We claim that when an inner loop terminates, either agent 𝑛 is

resolved and the algorithm terminates with an EF1 allocation, or

the chosen agent 𝑖 is in resolved and 𝑛 is in Bad. We first show

that each inner repeat...until loop runs for at most |𝐴𝑛 | − 1

iterations over all iterations of the outer while loop.

Claim 11. Let 𝑡 = |𝐴𝑛 | be the initial size of 𝐴𝑛 . Each inner loop
terminates in at most 𝑡 − 1 iterations over all invocations.

Claim 12. After every iteration of the first while loop (Line 8), either
agent 𝑛 moves from Bad+ to Res+ and the algorithm returns an EF1
allocation, or agent 𝑖 moves from Flex− to Res+ and agent 𝑛 remains
in Bad+.

Similarly, after every iteration of the second while loop (Line 15),
either agent 𝑛 moves from Bad− to Res− and the algorithm returns
an EF1 allocation, or agent 𝑖 moves from Flex+ to Res− and agent 𝑛
remains in Bad− .

We now complete the proof of our main theorem, showing exis-

tence of EF1.

Proof of Theorem 4. We show that Algorithm TernaryNegEF1

returns an EF1 allocation. By Claim 8, if Algorithm TernaryNegEF1

terminates in Line 13 or Line 15, the allocation returned is EF1.

Otherwise, the algorithm calls Algorithm FixEF1ViolationsNeg to

fix the allocation. Claim 10 then shows that for the allocation passed

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

303



Algorithm 3 FixEF1ViolationsNeg

Input: An allocation 𝐴 with possible EF1 violations.

Output: An EF1 allocation 𝐴.

1: if (Allocation 𝐴 is EF1) then
2: return allocation 𝐴.

3: if (𝑛 ∈ Bad+) AND (Flex− ≠ ∅) then {𝑣 (𝐴𝑛) = 1 ⇒ 1 and

∃𝑖 : 𝑣 (𝐴𝑖 ) = 0→ −1}

4: while (𝑛 ∈ Bad+) AND (Flex− ≠ ∅) do
5: Let 𝑖 ∈ Flex− .
6: repeat
7: Choose an item 𝑥 ∈ 𝐴𝑛 , 𝐴𝑛 = 𝐴𝑛 \ {𝑥}, 𝐴𝑖 = 𝐴𝑖 ∪ {𝑥}.
8: until (𝑖 ∈ Res+) OR (𝑛 ∈ Res+) {Either (𝑣 (𝐴𝑖 ) = 1→ 0) or

(𝑣 (𝐴𝑛) = 1→ 0).}

9: return allocation 𝐴.

10: if (𝑛 ∈ Bad−) AND (Flex+ ≠ ∅) then {𝑣 (𝐴𝑛) = −1 ⇒ −1 and

∃𝑖 : 𝑣 (𝐴𝑖 ) = 0→ 1}

11: while (𝑛 ∈ Bad−) AND (Flex+ ≠ ∅) do
12: Let 𝑖 ∈ Flex+.
13: repeat
14: Choose an item 𝑥 ∈ 𝐴𝑛 , 𝐴𝑛 = 𝐴𝑛 \ {𝑥}, 𝐴𝑖 = 𝐴𝑖 ∪ {𝑥}.
15: until (𝑖 ∈ Res−) OR (𝑛 ∈ Res−) {Either (𝑣 (𝐴𝑖 ) = −1→ 0)

or (𝑣 (𝐴𝑛) = −1→ 0).}

16: return allocation 𝐴.

to Algorithm FixEF1ViolationsNeg, any EF1 violation must be of

either Type 1 or Type 2.

Suppose the EF1 violation is of Type 1. The case when the viola-

tion is of Type 2 is handled similarly. For a Type 1 violation, there

must be agents in Flex− , agent 𝑛 is in Bad+, and the other agents

are in Fav, Res+, or Flex+. Since there is an EF1 violation, and agent

𝑛 is in Bad+, the first while loop in Algorithm FixEF1ViolationsNeg

will execute, selecting an agent 𝑖 from Flex− . From Claim 12, each

time the inner loop terminates, either agent 𝑛 moves from Bad+ to
Res+ and the algorithm returns an EF1 allocation, or agent 𝑖 moves

from Flex− to Res+ and agent 𝑛 remains in Bad+ (and note that by

Claim 11, the inner loop terminates in at most𝑚 iterations). Thus,

eventually, the algorithm either moves agent 𝑛 from Bad+ to Res+

and returns an EF1 allocation, or moves all the agents in Flex− to
Res+. At this point, all agents are Fav, Flex+, Res+, or Bad+. By
Lemma 5, this is an EF1 allocation. □

We note that our algorithm may need to make an exponential

number of queries, e.g., in the very first step to find favourable sets.

Given the lack of structure in the problem, we do not know if there

is a way of avoiding this.

5.3 Positive Trilean Valuations
We now turn our attention to the case where agents are identical

and their valuations are positive trilean, i.e., 𝑣𝑖 (𝑆) ∈ {0, 1, 2} for
all agents 𝑖 ∈ 𝑁 and subsets 𝑆 ⊆ 𝑀 . Similar to before, we show

the existence of EF1 valuations. The algorithm is similar to the

case of negative ternary valuations, with some simplifications and

modifications due to the positive valuations.

Theorem 13. Given an instance with identical positive trilean
valuations, Algorithm TernaryPosEF1 returns an EF1 allocation.

6 SEPARABLE SINGLE-PEAKED VALUATIONS
We now turn to EF1 allocations for separable, single-peaked (SSP)

valuations. As before, 𝑁 and𝑀 denote the set of agents and items

respectively. The set 𝑀 is partitioned into 𝑡 types (𝑀1, . . . , 𝑀𝑡 ),
with𝑚 𝑗 = |𝑀 𝑗 | for 𝑗 ∈ [𝑡]. For an allocation 𝐴, we denote agent

𝑖’s bundle 𝐴𝑖 as a 𝑡-tuple (𝑎𝑖1, 𝑎𝑖2, ..., 𝑎𝑖𝑡 ), where 𝑎𝑖 𝑗 denotes the

number of items of type 𝑗 allocated to agent 𝑖 .

To define the valuation functions for the agents, we first define

𝜃𝑖 𝑗 for 𝑖 ∈ 𝑁 and 𝑗 ∈ [𝑡] as the threshold of agent 𝑖 for items of

type 𝑗 . Then agent 𝑖’s valuation 𝑣𝑖 (𝐴𝑖 ) =
∑𝑡

𝑗=1
𝑣𝑖 𝑗 (𝑎𝑖 𝑗 ), where the

valuations 𝑣𝑖 𝑗 are single-peaked: for all 𝑥 ≤ 𝑦 ≤ 𝜃𝑖 𝑗 , 𝑣𝑖 𝑗 (𝑥) ≤ 𝑣𝑖 𝑗 (𝑦),
while for 𝜃𝑖 𝑗 ≤ 𝑥 ≤ 𝑦, 𝑣𝑖 𝑗 (𝑥) ≥ 𝑣𝑖 𝑗 (𝑦).

We point out one basic problem that occurs with SSP valuations,

that must be overcome by an algorithm returning EF1 allocations.

Consider a simple instance with just two agents and a partial EF1

allocation𝐴, where agent 1 envies agent 2. Suppose there is an item

𝑥 that remains to be assigned. Item 𝑥 is a chore for agent 1 given𝐴1

and is a good for agent 1 given 𝐴2. That is, 𝑣1 (𝐴1 ∪ {𝑥}) < 𝑣1 (𝐴1),
and 𝑣1 (𝐴2 ∪ {𝑥}) > 𝑣2 (𝐴2). There is no obvious way to assign item

𝑥 while maintaining the EF1 property. This situation does not arise

with doubly-monotone valuations.

For SSP valuations, we show two results. Firstly, we show exis-

tence of EF1 allocations when for each type 𝑗 , all agents have the

same threshold 𝜃 𝑗 . In this case, our proof shows that the two-phase

algorithm for doubly monotone valuations [14] works in this case

as well. We reproduce the algorithm and provide the complete proof

in the full version of the paper.

Theorem 14. For SSP valuations where for each type, there is a
common threshold for all agents, there always exists an EF1 allocation.

Secondly, for the general case where agents may have different

thresholds for a type, we show the existence of EF1 allocations

for three agents. Here, the algorithm considerably differs from the

algorithm for doubly-monotone valuations. While it is still a two-

phase algorithm, the two phases are very carefully crafted for the

special case of three agents. We present the algorithm here, and the

proof is provided in the full version of the paper.

Theorem 15. For SSP valuations with 3 agents, there always exists
an EF1 allocation.

For the algorithm, given a partial allocation 𝐴, as in prior work,

we let𝐺𝐴 = (𝑉 , 𝐸) denote the envy graph, where𝑉 = 𝑁 and (𝑖, 𝑘) ∈
𝐸 if agent 𝑖 envies agent 𝑘 . 𝑇𝐴 is the top-trading envy graph, a sub-

graph of 𝐺𝐴 with a directed edge (𝑖, 𝑘) if 𝑣𝑖 (𝐴𝑘 ) =max𝑖′∈𝑁 𝑣𝑖 (𝐴𝑖′ )
> 𝑣𝑖 (𝐴𝑖 ). Given a directed cycle 𝐶 in 𝐺𝐴 or 𝑇𝐴 , 𝐴𝐶 is the allocation

obtained by giving each agent in 𝐶 the bundle of the agent they

envy in 𝐶 .

7 NON-EXISTENCE OF EFX ALLOCATIONS
Given the existence of EF1 allocations, a natural question is whether

EFX allocations exist for the valuations studied. Bérczi et al. refine

the definition of EFX for nonmonotone valuations [16]. They define

an EFX
+
− allocation 𝐴 as one where if agent 𝑖 envies agent 𝑗 , then

this should be resolved by removing any item with a strictly posi-

tive marginal value from 𝐴 𝑗 , and any item with a strictly negative

marginal value from 𝐴𝑖 . Further at least one such item must exist.
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Algorithm 4 An EF1 algorithm for separable single-peaked valua-

tions with 3 agents

1: Initialise 𝐴𝑖 to (0, 0, ..., 0) ∀ 𝑖 = 1, 2, 3

2: Initialise �̄� 𝑗 ← ⌊𝑚 𝑗/3⌋, �̂� 𝑗 ← 𝑚 𝑗 mod 3, 𝑁 𝑗 ← {𝑖 : 𝜃𝑖 𝑗 >

�̄� 𝑗 } ∀ 𝑗 ∈ [𝑡]
3: for all 𝑗 ∈ [𝑡] s.t. |𝑁 𝑗 | ≥ �̂� 𝑗 do {Phase 1}

4: while 𝐺𝐴 has a cycle 𝐶 do
5: 𝐴← 𝐴𝐶 {Swap bundles along 𝐶}

6: Let 1, 2, 3 be the topological order of the agents in 𝐺𝐴

7: 𝑎𝑖 𝑗 ← �̄� 𝑗 for each agent 𝑖

8: for 𝑖 = 1 to 3 do
9: if 𝑖 ∈ 𝑁 𝑗 and �̂� 𝑗 > 0 then
10: 𝑎𝑖 𝑗 ← 𝑎𝑖 𝑗 + 1

11: �̂� 𝑗 ← �̂� 𝑗 − 1

12: for all 𝑗 ∈ [𝑡] s.t. �̂� 𝑗 > |𝑁 𝑗 | do {Phase 2}

13: 𝐶 ← any cycle in 𝑇𝐴 , 𝐴← 𝐴𝐶 {Swap bundles along 𝐶}

14: 𝑎𝑖 𝑗 → �̄� 𝑗 for each agent 𝑖

15: if |𝑁 𝑗 | = 0 then
16: while �̂� 𝑗 > 0 do
17: Choose a sink 𝑘 in the graph 𝐺𝐴

18: 𝑎𝑘 𝑗 ← 𝑎𝑘 𝑗 + 1, �̂� 𝑗 ← �̂� 𝑗 − 1

19: 𝐶 ← any cycle in 𝑇𝐴 , 𝐴← 𝐴𝐶 {Swap bundles along 𝐶}

20: else if |𝑁 𝑗 | = 1 then
21: Let 𝑁 𝑗 = {𝑘}, and let ℓ be a sink in 𝐺𝐴 .

22: 𝑎𝑘 𝑗 ← 𝑎𝑘 𝑗 + 1

23: 𝑎ℓ 𝑗 ← 𝑎ℓ 𝑗 + 1

24: Return 𝐴

They show that for identical negative Boolean valuations, as well as

for positive Boolean valuations, an EFX
+
− allocation always exists.

To complete the picture, we now show that EFX
+
− allocations do

not exist for identical negative trilean valuations, or for separable

single-peaked valutions, even with two identical agents and three

items of a single type. In fact the same example shows nonexistence

for both valuation classes.

Theorem 16. EFX+− allocations may not exist even for two agents
with identical negative trilean valuations, or two agents with identical
SSP valuations.

Proof. Consider an instance with three items and two identical

agents. For 𝑆 ⊆ 𝑀 , 𝑣 (𝑆) = 0 if 𝑆 = ∅, 1 if |𝑆 | = 1, and −1 if

|𝑆 | ≥ 2. This valuation is clearly both negative trilean and separable

single-peaked with a single type.

To show non-existence of EFX
+
− there are two cases to consider:

(i) agent 1 gets nothing, and (ii) agent 1 gets one item. In case (i),

since 𝑣 (𝐴1) = 0 and 𝑣 (𝐴2) = −1, agent 2 envies agent 1. However

𝑀+
2
(𝐴1) ∪𝑀−2 (𝐴2) = ∅, and hence this allocation is not EFX

+
− . In

case (ii), 𝑣 (𝐴1) = 1 and 𝑣 (𝐴2) = −1 and again agent 2 envies agent

1. However removing the single item from 𝐴1 does not remove the

envy, and hence this allocation is also not EFX
+
− . □

8 CONCLUSION
Our paper extends work on the existence of relaxations of envy-

free allocations in multiple directions. Firstly, for EFX allocations,

we show that for arbitrary valuations, a partial EFX
0

0
allocation

where no agent envies any subset of unallocated items exists. We

also show that complete EFX
+
− do not exist, even for two identical

agents and three items.

We then define two classes of nonmonotone valuations — trilean

valuations, and separable single-peaked valuations, and study com-

plete EF1 allocations in these classes. We view separable single-

peaked valuations as a natural class of valuations to study the

existence of EF1 allocations. As mentioned, these generalize the

well-known class of SPLC valuations.

Of the two, it appears likely that our algorithm and the structures

introduced for trilean valuations may be useful in further extending

results on the existence of EF1 to general identical valuations. For

example, if max and min are the maximum and minimum possible

values for any set, then a set 𝑆 with value 𝑣 (𝑆) = max → min or

𝑣 (𝑆) = min→ max should be assigned immediately, similar to how

we treat favourable sets. More directly, just as our algorithm uses

algorithms for Boolean {0, 1} and {0,−1} valuations as subroutines,
it is possible that algorithms for 𝑘-ary valuations use algorithms

for (𝑘 − 1)-ary valuations as subroutines.

The big open question that remains open is the existence of EF1

allocations, even for three agents with identical valuations. More

immediately, EF1 existence is left open for agents with nonidentical

trilean valuations, and for more than three agents with separable

single-peaked valuations. It is also an open question if one can

obtain a partial EFX allocation where at most (𝑛 − 2) items are do-

nated to charity, and no agent envies the items donated, replicating

previous bounds for monotone valuations.
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