
LUNAR: A Runtime Verification Tool
for Anomaly Detection in Gas Networks

Demonstration Track

Julius Gasson
Imperial College

London, United Kingdom
julius.gasson2023@alumni.imperial.ac.uk

Francesco Belardinelli
Imperial College

London, United Kingdom
francesco.belardinelli@imperial.ac.uk

ABSTRACT
We introduce LUNAR, a framework to detect and classify network
anomalies. The tool is designed to (1) synthesize safety constraints
expressed in Signal Temporal Logic (STL) based on network data; (2)
detect anomalies in new samples wrt the STL constraints; (3) learn
to classify anomaly types based on user labels of prior anomalies.

KEYWORDS
Anomaly Detection; Runtime Verification; Utility Networks.

ACM Reference Format:
Julius Gasson and Francesco Belardinelli. 2025. LUNAR: A Runtime Verifi-
cation Tool for Anomaly Detection in Gas Networks: Demonstration Track.
In Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 3 pages.

1 INTRODUCTION
Utility networks are often modeled as distributed multi-agent sys-
tems [8, 15, 16], where individual sensors measure key variables in
their respective sections of the network [14]. To ensure the correct
behavior of the overall network, it is crucial to perform anomaly
detection (AD) and anomaly classification (AC) to identify any un-
expected sensor reading. For this purpose, we introduce LUNAR
(Logic-based Utility Network Anomaly Recognition). The tool was de-
veloped in collaboration with Terranova1, a software house, which
required a solution for monitoring gas networks, but it is applicable
to any utility network that outputs regular time series data. The
code is publicly available on GitHub2, as is a video demonstration3.

2 TOOL DESIGN
Overview. The tool architecture is shown in Figure 1. This is

grouped into 4 main components: data collection (1-3), sensor predic-
tion (4-5), anomaly detection (6-7) and anomaly classification (8-10).

From its initialization to its full execution, the tool has 4 phases,
during which these components are incorporated into the execution
process one by one, as the remainder of this section will explain.

1https://www.terranovasoftware.eu/en
2https://github.com/lunar-rv/lunar-rv
3https://github.com/lunar-rv/lunar-rv/raw/refs/heads/main/lunar_demo_video.mp4

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

Figure 1: The LUNAR monitoring process.

Warm-up Phase𝑤1. To detect anomalies, the tool must collect
data from the system which it can use to generate rules that model
normal behavior. Therefore, in this initial phase, only the data
collection component is used. Before initialization, the user must
write a specification file (1), which specifies the length of𝑤1 and
𝑤2 and other key monitor attributes. Once this has been parsed,
the sensor data can be read. The tool processes data one batch at
a time, where each batch consists of a certain number of readings
(e.g. a day’s worth) from each sensor in the network. When a new
batch of readings is written into the log file (2), for each sensor 𝑠𝑖 ,
the data is partitioned into two groups, one with readings from 𝑠𝑖
(3a), the other containing the rest (3b). These sets of data are used
in the next phase to train the prediction models for each sensor.

Warm-up Phase 𝑤2. In this phase, the sensor prediction com-
ponent is incorporated. For each new batch collected during 𝑤2,
the tool carries out the same data collection steps from 𝑤1, but
also makes predictions for the value of each sensor’s readings at
each time step using the values of other sensors. Here, the batches

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3009

https://www.terranovasoftware.eu/en
https://github.com/lunar-rv/lunar-rv
https://github.com/lunar-rv/lunar-rv/raw/refs/heads/main/lunar_demo_video.mp4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

(a) Detection Accuracy Comparison

Component Variant AD Accuracy 𝜎

LUNAR 0.9091 0.000278
Ordinary Linear Regression 0.8694 0.000371
Binary Classifier 0.8556 0.000631

(b) Classification Accuracy Comparison

Component Variant AC Accuracy 𝜎

LUNAR 0.9223 0.00452
Alternative algorithm from [5] 0.9186 0.00420

collected in 𝑤1 are used as training data, along with any batches
seen so far in𝑤2. This step uses linear regression, a common tech-
nique for AD in time series data [1–3, 9]. We use non-negative least
squares [13] and feature selection [18] in order to avoid overfitting;
we also use rolling window regression [19] to improve speed. From
the predictions, the monitor can obtain an array for each sensor
that contains the absolute residuals (prediction error sizes) for the
predictions at each time step (5).

Execution Period. At the end of 𝑤2, the expected data patterns
in these absolute residuals are represented for each sensor 𝑠𝑖 by an
STL formula. We refer to [7, 11] for a presentation of STL syntax,
robustness semantics and notation conventions. Assuming that
sensor readings are recorded regularly, the batch of residuals ac-
quired for each sensor from the prediction phase is modeled as a
discrete signal, where the interval between each reading is treated
as 1 time step. The process of learning an STL formula requires a
set of templates with parameters that can be adjusted to make the
formula more or less strict [4]. Here, this set is chosen by the user
from the following options (displayed in simplified form), where 𝑁
is the batch size, 𝑟 [𝑡] is the value of residuals in the batch at time 𝑡 ,
and 𝑏𝑘 , 𝜇𝑘 are formula parameters:

𝐺 [0,𝑁)𝐹 [0, 𝑏1) (𝑟 [𝑡] ≤ 𝜇1): in every possible period of 𝑏1 consec-
utive time steps within the batch, 𝑟 [𝑡] is below 𝜇1 at least once.

𝐺 [0,𝑁) (𝐺 [0, 𝑏2)𝑟 [𝑡] ≤ 𝜇2): in every possible period of 𝑏2 consec-
utive time steps within the batch, 𝑟 [𝑡] is on average below 𝜇2.

𝐺 [0,𝑁) (𝑟 [𝑡] ≤ 𝜇3): 𝑟 [𝑡] is always below 𝜇3.
To learn the parameters𝑏 and 𝜇, we use simulated annealing [12],

using the batches processed during the warm-up phases as train-
ing data. The objective function is the tightness of each resulting
formula, explained as follows. If a new batch of residuals contains
values larger than the absolute residuals in the training batches
by more than a small amount, the new batch should be flagged
as anomalous. Therefore, 𝜇𝑘 and 𝑏𝑘 are chosen for each template
so that the robustness value of the resulting formula is small and
positive in relation to each trace. This approach is comparable to
a one-class Support Vector Machine (SVM) [17], where the model
learns a decision boundary that tightly encloses the majority of the
training data, typically representing the normal class. The three
templates are combined using the conjunction ∧ to form 𝜑𝑖 , the
actual AD formula for sensor 𝑠𝑖 . Now, when a new batch arrives, all
the data collection and sensor prediction steps are carried out as in
𝑤2, creating a batch of absolute residuals 𝑟𝑖 for each sensor. Then,
the anomaly detection component of the tool becomes part of the
process. The monitor applies 𝜑𝑖 to 𝑟𝑖 (6), and classifies 𝑟𝑖 as safe if
𝜑𝑖 is satisfied (7a), and anomalous if it is violated (7b).

Anomaly Classification. If 𝑟𝑖 is classified as anomalous, the tool
aims to predict what type of anomaly might have occurred (9).
This is done using an STL decision tree [5, 6] (8), in which the
splitting rule at each node is an STL formula whose parameters are

learned to maximize the information gain. Each sensor has its own
AC tree. To build this tree, the tool relies on previously detected
anomalies that have been labeled by the user. Each time an anomaly
is detected, the user is prompted to supply an anomaly type (10),
based on information about the batch displayed by the tool. This
input is used to create and update the decision tree. Alternatively,
if the user enters the word ‘safe’, the AC tree is not updated, and
the AD formula is relearned to accommodate this new batch.

The AC algorithm is similar to the online algorithm for STL
decision trees laid out in [5]. In our algorithm, however, the tree
is only rebuilt downwards from its leaves, and a new leaf node is
only created if a set of criteria is met. Here, since few anomalies
are expected for any sensor, it is useful to be able to update the tree
using a sample of limited size. Hence, LUNAR has no such restric-
tions for growing the tree: whenever a new anomaly is classified,
all relevant nodes are updated to ensure that the tree’s splitting
rules are always optimal for all seen data.

Implementation. The framework is implemented in Python. The
specification uses a custom language; from this, a parser builds a
Python data structure, which is then passed as an argument into the
monitor function. This function contains a main loop, which runs
until no more data remains in the source file, or until it is ended
by the user. The LinearRegression model from scikit-learn is used
in the linear regression wrapper, and STL robustness is calculated
using numpy ufuncs for fast vectorized operations.

3 EXPERIMENTAL EVALUATION
We assessed the performance of LUNAR’s individual components
using a dataset provided by Terranova, which contained someminor
synthetic anomalies [10]. For this, we built 3 copies of the tool; in
each of these, a different component of the tool was replaced by an
alternative algorithm for the same task. These alternatives were: an
ordinary linear regression model for sensor prediction in place of
stage (4) from Figure 1, a binary classifier for AD instead of (6) and
the STL decision tree algorithm from [5] instead of (8). The results
are not indicative of LUNAR’s ability to detect real-life anomalies,
but rather show how it performs compared to these alternatives.
Tables 1a and 1b present the results, showing the average of 3
experiments; the standard deviation 𝜎 is also recorded.

The results show that each of LUNAR’s components performs
better than their alternatives. Despite the inferior accuracy, the
algorithm from [5] was noticeably faster for AC. However, this is
no great concern as few anomalies are expected for each sensor.

4 ACKNOWLEDGEMENTS
The research described in this paper is supported by the EPSRC
grant number EP/X015823/1. The authors acknowledge the contri-
bution of L. Machetti, A. Mella, and G. Lorenzini at Terranova.

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3010

REFERENCES
[1] Hermine N. Akouemo and Richard J. Povinelli. 2016. Probabilistic anomaly

detection in natural gas time series data. International Journal of Forecasting 32,
3 (2016), 948–956. https://doi.org/10.1016/j.ijforecast.2015.06.001

[2] Mustafa Akpinar and Nejat Yumuşak. 2017. Naive forecasting of household
natural gas consumption with sliding window approach. Turkish Journal of
Electrical Engineering and Computer Sciences 25, 1 (2017), 30–45. https://doi.org/
10.3906/elk-1404-378

[3] Lorenzo Baldacci, Matteo Golfarelli, Davide Lombardi, and Franco Sami. 2016.
Natural gas consumption forecasting for anomaly detection. Expert Systems with
Applications 62 (2016), 190–201. https://doi.org/10.1016/j.eswa.2016.06.013

[4] Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini, and Dejan Nickovic. 2022. Sur-
vey on mining signal temporal logic specifications. Information and Computation
289 (2022), 104957. https://doi.org/10.1016/j.ic.2022.104957

[5] Giuseppe Bombara and Calin Belta. 2021. Offline and Online Learning of Signal
Temporal Logic Formulae Using Decision Trees. ACM Trans. Cyber-Phys. Syst. 5,
3, Article 22 (3 2021), 23 pages. https://doi.org/10.1145/3433994

[6] Giuseppe Bombara, Cristian-Ioan Vasile, Francisco Penedo, Hirotoshi Yasuoka,
and Calin Belta. 2016. A Decision Tree Approach to Data Classification us-
ing Signal Temporal Logic. In Proceedings of the 19th International Confer-
ence on Hybrid Systems: Computation and Control (Vienna, Austria) (HSCC
’16). Association for Computing Machinery, New York, NY, USA, 1–10. https:
//doi.org/10.1145/2883817.2883843

[7] JyotirmoyV. Deshmukh, Alexandre Donzé, ShromonaGhosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A. Seshia. 2017. Robust online monitoring of signal temporal
logic. Formal Methods in System Design 51, 1 (8 2017), 5–30. https://doi.org/10.
1007/s10703-017-0286-7

[8] Manuel Herrera, Ajith Kumar Parlikad, Joaquín Izquierdo, and Marco Perez Her-
nandez. 2020. Multi-Agent Systems and Complex Networks: Review and Appli-
cations in Systems Engineering. Processes 3, 8 (03 2020). https://doi.org/10.3390/
pr8030312

[9] Tao Hong, Jason Wilson, and Jingrui Xie. 2014. Long Term Probabilistic Load
Forecasting and Normalization With Hourly Information. IEEE Transactions on

Smart Grid 5, 1 (2014), 456–462. https://doi.org/10.1109/TSG.2013.2274373
[10] Jie Hu, Yawen Huang, Yilin Lu, Guoyang Xie, Guannan Jiang, Yefeng Zheng,

and Zhichao Lu. 2024. AnomalyXFusion: Multi-modal Anomaly Synthesis with
Diffusion. arXiv:2404.19444 [cs.CV] https://arxiv.org/abs/2404.19444

[11] Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Tuhin Sahai, and Natarajan Shankar.
2017. TeLEx: Passive STL Learning Using Only Positive Examples. In Runtime
Verification, Shuvendu Lahiri and Giles Reger (Eds.). Springer International Pub-
lishing, Cham, 208–224.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by Simulated
Annealing. Science 220, 4598 (1983), 671–680. https://doi.org/10.1126/science.220.
4598.671 arXiv:https://www.science.org/doi/pdf/10.1126/science.220.4598.671

[13] C. Lawson and R. Hanson. 1995. 23. Linear Least Squares with Linear Inequality
Constraints. , 158-173 pages. https://doi.org/10.1137/1.9781611971217.ch23

[14] OmMahela, Mahdi Khosravy, Neeraj Gupta, Baseem Khan, Hassan Haes Alhelou,
RajendraMahla, Nilesh Patel, and Pierluigi Siano. 2020. Comprehensive Overview
of Multi-Agent Systems for Controlling Smart Grids. https://doi.org/10.17775/
CSEEJPES.2020.03390

[15] R.R. Negenborn, B. De Schutter, and J. Hellendoorn. 2008. Multi-agent model
predictive control for transportation networks: Serial versus parallel schemes.
Engineering Applications of Artificial Intelligence 21, 3 (2008), 353–366. https:
//doi.org/10.1016/j.engappai.2007.08.005

[16] Gaurav Singh Negi, Anupama Mishra, Mukul Kumar Gupta, Nitin Kumar Saxena,
DilipKumar Jang Bahadur Saini, and Kapil Joshi. 2024. Microgrid digital twins:
concepts and their controlling through multi-agent systems. Int. J. High Perform.
Syst. Archit. 11, 4 (7 2024), 225–236. https://doi.org/10.1504/ijhpsa.2023.139898

[17] Zineb Noumir, Paul Honeine, and Cédue Richard. 2012. On simple one-class
classification methods. In 2012 IEEE International Symposium on Information
Theory Proceedings. IEEE, Cambridge, MA, 2022–2026. https://doi.org/10.1109/
ISIT.2012.6283685

[18] Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, and María Tombilla-
Sanromán. 2007. Filter methods for feature selection–a comparative study. ,
178–187 pages.

[19] Eric Zidot and Jiahui Wang. 2006. Rolling Analysis of Time Series. Springer New
York, New York, NY, 313–360. https://doi.org/10.1007/978-0-387-32348-0_9

Demo Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

3011

https://doi.org/10.1016/j.ijforecast.2015.06.001
https://doi.org/10.3906/elk-1404-378
https://doi.org/10.3906/elk-1404-378
https://doi.org/10.1016/j.eswa.2016.06.013
https://doi.org/10.1016/j.ic.2022.104957
https://doi.org/10.1145/3433994
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.3390/pr8030312
https://doi.org/10.3390/pr8030312
https://doi.org/10.1109/TSG.2013.2274373
https://arxiv.org/abs/2404.19444
https://arxiv.org/abs/2404.19444
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.220.4598.671
https://doi.org/10.1137/1.9781611971217.ch23
https://doi.org/10.17775/CSEEJPES.2020.03390
https://doi.org/10.17775/CSEEJPES.2020.03390
https://doi.org/10.1016/j.engappai.2007.08.005
https://doi.org/10.1016/j.engappai.2007.08.005
https://doi.org/10.1504/ijhpsa.2023.139898
https://doi.org/10.1109/ISIT.2012.6283685
https://doi.org/10.1109/ISIT.2012.6283685
https://doi.org/10.1007/978-0-387-32348-0_9

	Abstract
	1 Introduction
	2 Tool Design
	3 Experimental Evaluation
	4 Acknowledgements
	References

