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ABSTRACT
Lane keeping in autonomous driving systems requires scenario-
specific weight tuning for different objectives. We formulate lane-
keeping as a constrained reinforcement learning problem, where
weight coefficients are automatically learned along with the policy,
eliminating the need for scenario-specific tuning. Empirically, our
approach outperforms traditional RL in efficiency and reliability.
Additionally, real-world demonstrations validate its practical value
for real-world autonomous driving.
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1 INTRODUCTION
The problem of lane keeping (LK) is an instance of a challenging
real-time sequential decision-making problem in the domain of self-
driving cars or autonomous driving systems [5, 15, 16]. Traditional
model-free reinforcement learning (RL) based approaches to the LK
problem face the challenge of defining a reward function that man-
ages trade-offs betweenmultiple objectives [6]. Prior RL approaches
use fixed-weighted combinations for objectives such as driving dis-
tance [1], minimizing yaw angle [8, 11], crash avoidance [2, 23],
and lateral/longitudinal control [7, 14]. Traditional multi-objective
reinforcement learning (MORL) approaches [9, 21] tackle such prob-
lems by learning a set of optimal policies or applying scalarized
reward schemes that rely on static weighting. However, a funda-
mental limitation of such approaches is that the weight coefficients
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are typically obtained using scenario-specific tuning and extensive
grid searches, which is both time-consuming and computationally
expensive for high-fidelity physical simulators.

In response to this challenge, this work introduces a constrained
reinforcement learning based formulation and learning approach
for the LK problem, which dynamically adjusts the weight coeffi-
cients of different objectives. By leveraging this constrained formu-
lation, our system significantly outperforms traditional approaches
in terms of efficiency (travel distance) and reliability (lane devia-
tions and avoidance of collisions). We present the weight coefficient
learning process and validate our framework in both simulation
and real-world settings.12

2 CONSTRAINED RL FOR LANE KEEPING
2.1 Problem Formulation
Lane keeping is considered as a multi-objective problem with re-
ward and cost functions defined at each time step. The travel dis-
tance reward is 𝑟 (𝑠𝑡 , 𝑎𝑡 ) = dtrv, where dtrv denotes the forward
distance. The lane deviation cost, 𝑐lane (𝑠𝑡 , 𝑎𝑡 ) = dlane, penalizes
horizontal deviation from the lane center, with the average perfor-
mance given by 𝐽

𝜋𝜃
𝑐lane = E

[ 1
𝐻

∑𝐻−1
𝑡=0 𝑐lane (𝑠𝑡 , 𝑎𝑡 )

]
. The collision cost,

𝑐coll (𝑠𝑡 , 𝑎𝑡 ) = 1col, takes the value 1 if the agent collides with obsta-
cles or boundaries, with performance 𝐽𝜋𝜃𝑐coll = E

[ ∑𝐻−1
𝑡=0 𝑐coll (𝑠𝑡 , 𝑎𝑡 )

]
across multiple episodes. To ensure safe and efficient driving, we
formulate lane-keeping as a constrained optimization problem:

max
𝜋𝜃 ∈Π

𝐽
𝜋𝜃
𝑅

, s.t. 𝐽
𝜋𝜃
𝑐lane ≤ 𝛼1, 𝐽

𝜋𝜃
𝑐coll ≤ 𝛼2, (1)

where 𝛼1 and 𝛼2 are non-negative thresholds for costs. 𝛼1 corre-
sponds to a real-world distance in decimeters (10−1𝑚).

We apply Lagrangian relaxation (LR) technique [4] to convert
the constrained optimization in Equation (1) into an equivalent
unconstrained optimization problem as follows:

min
𝜆𝑖≥0

max
𝜃

𝐿(𝜆1, 𝜆2, 𝜃 ) = min
𝜆𝑖≥0

max
𝜃

[
𝐽
𝜋𝜃
𝑅

−
2∑︁

𝑖=1
𝜆𝑖

(
𝐽
𝜋𝜃
𝐶𝑖

− 𝛼𝑖

) ]
, (2)

where 𝑖 ∈ {1, 2}, 𝐿 is Lagrangian, 𝜆𝑖 are Lagrangian multipliers for
lane and collision costs. 𝜆𝑖 and 𝜃 are updated following the gradient

1Demonstration video: youtu.be/1BlwJOIUaGM
2Source code: github.com/CPS-research-group/CPS-NTU-Public/tree/AAMAS2025
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(a) Langrangian multiplier 𝜆1
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(d) Action distribution in evaluation.

Figure 1: (a-c) Learning curves for different constraint threshold values (𝛼1). (d) Action distribution for one test episode.

descent and ascent approach as follows:

𝜆new𝑖 = max
(
0, 𝜆old𝑖 − 𝜂𝑖

(
𝐽
𝜋𝜃
𝐶𝑖

− 𝛼𝑖

))
, 𝑖 ∈ {1, 2}, (3)

𝜃new = 𝜃old + 𝜂3∇𝜃E
[
log𝜋𝜃 (𝑎 |𝑠)

(
𝐽
𝜋𝜃
𝑅

− 𝜆1 𝐽
𝜋𝜃
𝐶lane

− 𝜆2 𝐽
𝜋𝜃
𝐶coll

)]
, (4)

where 𝜂1, 𝜂2 and 𝜂3 are learning rates. Equations (3) updates 𝜆𝑖
to satisfy the original cost constraints. The policy parameters 𝜃 is
updated with the discounted cost version of 𝐽𝜋𝜃𝑐lane and 𝐽

𝜋𝜃
𝑐coll to track

the recursive property of Bellman equation [3], where 𝐽
𝜋𝜃
𝑐lane·𝛾 ≜

E
[∑𝐻−1

𝑡=0 𝛾𝑡𝑐lane (𝑠𝑡 , 𝑎𝑡 )
]
and 𝐽

𝜋𝜃
𝑐coll·𝛾 ≜ E

[∑𝐻−1
𝑡=0 𝛾𝑡𝑐coll (𝑠𝑡 , 𝑎𝑡 )

]
. Us-

ing the discounted cost constraints above, we define a modified
reward function that applied in our approach:

𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜆1, 𝜆2) ≜ 𝑟 (𝑠𝑡 , 𝑎𝑡 ) − 𝜆1𝑐lane (𝑠𝑡 , 𝑎𝑡 ) − 𝜆2𝑐coll (𝑠𝑡 , 𝑎𝑡 ) . (5)

In the reward function 𝑟 (·), parameters 𝜆1 and 𝜆2 act as the adaptive
weight coefficients of objectives.

2.2 Implementation
Existing constraint RL solutions like RCPO [20] update policy with
truncated samples, failing to track collision cost constraints across
multiple episodes, while two-timescale frameworks are impractica-
ble for high-fidelity physical simulators due to computational costs.
We adopt a one-timescale framework, updating both 𝜃 and (𝜆1, 𝜆2)
simultaneously, akin to the simplifications of Actor-Critic [10] made
by A3C [13] and DDPG [18]. We implement this approach on the
Duckietown platform with PPO [17] algorithm. The system ob-
serves the vehicle’s state through camera and computes actions
while minimizing lane deviation and avoiding obstacles.

3 EXPERIMENT AND DEMONSTRATION
3.1 Simulation Evaluation
The simulation evaluation results on a small loop scenario are listed
in Table 1. CRLLK-D, CRLLK-C are implementations of our ap-
proach on discrete and continuous setting, while PPO-D, PPO-C are
the traditional approach with a fixed reward in [17]. Each method
is evaluated on 100 test episodes and averaged over two different
seeds. Further evaluation results for baselines and scenarios are
listed in the video. This evaluation result shows significant perfor-
mance improvement by adapting our constrained RL framework
in terms of efficiency (higher 𝐽𝑅 for travel distance), and reliability
(lower 𝐽𝑐lane for lane deviations and lower 𝐽𝑐coll for collision).

We performed a demonstration on the training convergence and
testing behavior for CRLLK-D on a small loop map in Figure 1,
with two different constraint levels: tight constraint (𝛼1 = 0.5) and
loosened constraint (𝛼1 = 0.75). For tight constraint, the agent
policy has a higher probability to choose turn-left and turn-right

Table 1: Performance comparison on the small loop scenario
with 𝛼1 = 0.5 and 𝛼2 = 0.02.

CRLLK-D PPO-D CRLLK-C PPO-C

𝐽𝑐lane 0.66±0.02 0.99±0.07 0.31±0.00 1.04±0.25
𝐽𝑐coll 0.17±0.00 0.38±0.04 0.05±0.01 0.34±0.20
𝐽𝑅 69.0±0.6 46.6±3.2 62.4±22.2 51.3±14.8

(a) Small loop (b) Zig-zag (c) Obstacle loop
Figure 2: Real-world evaluation in scenarios.

actions than in the loose constraint, showing fewer lane deviations
but covering a shorter total distance. Through this study, we gain
insight into how weight coefficients are dynamically learned and
how different constraint thresholds affect the lane-keeping trade-off
between the lane deviation and travel distance.

3.2 Real-World Demonstration
We evaluate the constrained RL-based policy for lane-keeping tasks
using a Duckiebot in real-world scenarios after training in simu-
lation. Testing covered three scenarios: low-difficulty (small loop),
high-difficulty (zig-zag), and complex (obstacle loop). The Duckiebot,
equippedwith JetsonNano [19] hardware and ROS2 [12], uses an au-
tonomous driving architecture [22] for perception, decision-making,
and control. Despite differences between simulation and real-world
conditions (e.g. lighting, obstacles), the Duckiebot adapts and navi-
gates smoothly. Figures 2 showcase snapshots of the experiments,
with results detailed in the demonstration video.

4 CONCLUSION
We formulate lane keeping as a constrained optimization problem
and propose a constrained RL-based solution. The weight coeffi-
cients are adaptively learned, eliminating the need for scenario-
specific tuning. Empirically, our approach outperforms traditional
RL. We analyze the impact of constraint thresholds on policy be-
havior and convergence, while validating our method through real-
world demonstrations across various scenarios.
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