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ABSTRACT
In the dynamic landscape of Industry 4.0, achieving efficiency, pre-
cision, and adaptability is essential for optimizing manufacturing
operations. SmartPilot is a neurosymbolic and agent-based CoPilot
designed to enhance real-time decision-making capabilities in man-
ufacturing. The system addresses three key challenges: anomaly
prediction, production forecasting, and domain-specific question
answering through an agent-based framework. SmartPilot lever-
ages multimodal data and a compact architecture optimized for
edge devices. This paper highlights its innovative combination of
agent-based design and neurosymbolic reasoning to enable contex-
tual decision-making in complex environments. The demonstra-
tion video1, datasets, and supplementary materials are available at
https://github.com/ChathurangiShyalika/SmartPilot.
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1 INTRODUCTION
Manufacturing processes in the Industry 4.0 era rely heavily on
data-driven technologies for decision making. However, challenges
such as predictive analytics, supply chain disruptions, and inven-
tory discrepancies hinder operational efficiency [3, 6]. Although
foundational models (FMs) such as large language models (LLMs)
have demonstrated success in the text and image domains, their
generalization to sensor data is restricted by challenges such as
1Video URL: https://tinyurl.com/2hurd6nd
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heterogeneous datasets, data leakage, and the scarcity of labeled
data. Hence, FMs focused on time series such as Time-MOE [4] and
MOIRAI [7] often fail to generalize in manufacturing-specific tasks,
preventing their practical utility [5]. The rise of smaller and more
efficient models [2] offers an opportunity for a CoPilot system tai-
lored for manufacturing, but such systems are currently unavailable
in the industry. SmartPilot is designed to address industry-specific
challenges by serving as a neurosymbolic and agent-based CoPilot
specifically tailored for manufacturing. It focuses on three critical
tasks: anomaly prediction, production forecasting, and domain-
specific question answering. The system incorporates three special-
ized agents, each dedicated to one of these key functions. PredictX
agent is responsible for anomaly prediction and focuses on identi-
fying irregularities in operational data to prevent disruptions. Fore-
sight agent forecasts next-hour production and anticipates future
production requirements to optimize resources. InfoGuide agent
facilitates real-time information retrieval tailored to manufacturing-
specific questions. All three agents within SmartPilot are designed
with lightweight models optimized for deployment on edge devices.
This design ensures that individual agents can perform real-time
operations effectively in resource-constrained environments. The
system incorporates neurosymbolic techniques, blending statistical
methods with symbolic reasoning. Multimodal data serves as input
for the statistical methods, while manufacturing ontologies provide
the basis for symbolic reasoning. This gives SmartPilot the ability
to provide precise and contextually aware decision-making capa-
bilities. SmartPilot is currently deployed in a rocket assembly use
case, where it predicts anomalies caused by the absence of specific
rocket components, forecasts the rockets produced, and assists with
answering domain-specific questions. Further details are provided
in the video demo.
2 DESIGN AND IMPLEMENTATION
2.0.1 Core Architecture: Figure 1 illustrates the core system frame-
work, highlighting the key technical components of SmartPilot. Key
attributes of the system encompass the agent-based system and
multimodal data integration.
2.0.2 Agent-Based Implementation: The agent-based component in
Figure 1 highlights the agents and the interactions between them.
In PredictX , we introduce a decision-level fusion approach for
multimodal anomaly prediction in assembly pipelines, currently
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Figure 1: Core system framework that includes the technical
components of SmartPilot

trained on multimodal data in a rocket assembly process [1]. It inte-
grates time-series data, processed via an autoencoder, with image
data analyzed using a fine-tuned EfficientNet and combines the
outputs of these models through a fully connected network. We
also use manufacturing-based process ontologies2 to infuse domain-
specific knowledge (about sensor ranges, cycle states, robots, and
machinery status) in the model training process and to provide
user-level explanations for the predictions. ForeSight utilizes a
Long Short-Term Memory (LSTM)-based model for production
forecasting, using 30-timestep historical data from target variables
as inputs. The architecture includes two LSTM layers (100 units
each) to capture temporal dependencies, with additional features on
sensor ranges and robots rotating angles infused at the final dense
layer. It outputs predictions for the target variables, trained with
the Adam optimizer and mean squared error. This approach ensures
accurate, context-aware forecasting tailored to complex produc-
tion processes. InfoGuide leverages meaningful texts derived from
manufacturing manuals to provide answers to contextually rich
manufacturing-specific questions. When a user submits a query,
the system uses retrieval-augmented generation (RAG) to find the
top k relevant contexts based on similarity measures: Neural con-
text retrieval (using cosine similarity with BERT embeddings) and
Symbolic context retrieval (using Jaccard similarity with tokenized
keywords). If the similarity score exceeds a set threshold, the user
query, agent-specific template and retrieved context are sent to
the Mixtral language model to generate a coherent response. If the
score falls below the threshold, the system refrains from providing
an answer, effectively mitigating the risk of generating hallucinated
responses.
2.0.3 Inter-Agent Connectivity: PredictX feeds anomaly-related in-
sights into ForeSight, allowing the forecasting model to adjust with
the evolving production system. This interconnected approach en-
ables real-time, dynamic responses to user queries, ensuring both
anomaly prediction and production forecasting are aligned with
changing operational conditions. The model is further integrated
with InfoGuide for effective information retrieval, enhancing the
system’s ability to provide actionable insights. To handle the inter-
connection between the InfoGuide and the other two agents, we
fine-tune the DistilBERT language model on the outputs of Pre-
dictX and Foresight, employing Low-Rank Adaptation (LoRA). The
fine-tuned model is integrated with InfoGuide, enabling effective
responses to user queries about anomaly prediction and production
forecasting through real-time information retrieval.

2https://github.com/revathyramanan/Dynamic-Process-Ontology

3 DEMONSTRATION

Figure 2: Real-time anomaly prediction and user-level ex-
planations given by PredictX agent, with a similar design
applied to ForeSight agent

Figure 3: User interface of InfoGuide: Providing real-time
responses to user queries
3.0.1 User Interfaces and Interactivity: Upon accessing SmartPi-
lot, the main interface provides three buttons to access the three
agents. PredictX offers two options: the prediction dashboard for
real-time anomaly prediction and the explanation dashboard for
detailed insights into the predictions, as shown in Figure 2. Fore-
castX interface features the forecasting dashboard, enabling users to
monitor and forecast future production. InfoGuide interface serves
as a real-time question-and-answer chatbot, allowing users to in-
put domain-specific questions and receive immediate responses as
shown in Figure 3.
3.0.2 Real-time Integration with Backend Systems: The prediction
and forecasting dashboards in PredictX and ForecastX enable them
to connect with an OPC UA server, allowing them to visualize real-
time sensor data for anomaly prediction and production forecasting,
respectively. InfoGuide is similarly connected to the OPC UA server,
utilizing real-time data to provide accurate responses to queries
related to anomaly prediction and production forecasting.
3.0.3 User-level Explanation of Predictions: Once anomalies are
predicted, the second window of PredictX provides user-level ex-
planations, including details on (i) which variables are responsible
for the anomaly, (ii) the functions performed by the robots during
that state and (iii) the expected values of those variables.
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