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ABSTRACT
A tournament is a method to decide the winner in a competition,

and describes the overall sequence in which matches between the

players are held. While deciding a worthy winner is the primary

goal of a tournament, a close second is to maximize the value

generated for the matches played, with value for a match measured

either in terms of tickets sold, television viewership, advertising

revenue, or other means. Tournament organizers often seed the

players — i.e., decide which matches are played — to increase this

value.

We study the value maximization objective in a particular tour-

nament format called Challenge the Champ. This is a simple tour-

nament format where an ordering of the players is decided. The

first player in this order is the initial champion. The remaining

players in order challenge the current champion; if a challenger

wins, she replaces the current champion. We model the outcome

of a match between two players using a complete directed graph,

called a strength graph, with each player represented as a vertex,

and the direction of an edge indicating the winner in a match. The

value-maximization objective has been recently explored for knock-

out tournaments when the strength graph is a directed acyclic

graph (DAG). We extend the investigation to Challenge the Champ

tournaments and general strength graphs. We study different repre-

sentations of the value of each match, and completely characterize

the computational complexity of the problem.
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1 INTRODUCTION
Tournaments are a fundamental mechanism for determining win-

ners in diverse competitive settings by systematically comparing

participants through a series of pairwise matches.
1
The most illus-

trative examples of tournaments are sports competitions, ranging

from prestigious international events like the Olympics and World

1
In this paper, a tournament will denote a competition format, and not a complete

directed graph.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

Cups to local school sports and college contests. Different tour-

nament formats, such as knockout tournament [7, 22, 25], round-

robin tournament [18, 21], double-elimination tournament [2, 20],

Swiss-Sytem [19, 23] are commonly employed and have been widely

studied by researchers over the years, where each format offers a

distinct approach with its own advantages and disadvantages for

ranking and elimination.

Challenge the Champ — also known as stepladder — is one such

tournament format, which, despite its simplicity, is relatively under-

explored in the literature compared to other tournament variants.

Given 𝑛 players, a Challenge the Champ tournament proceeds in

𝑛 − 1 rounds. A player is initially chosen as the champ, and in each

successive round, a new player challenges the current champ. If

a player defeats the current champ, she becomes the new champ.

The champ at the end of the final round is the tournament winner.

See Figure 1 for an illustration. Challenge the Champ is a single-

elimination tournament, where a player is eliminated once she loses

a match. Thus, in a single-elimination tournament with 𝑛 players,

there are exactly 𝑛 − 1 matches, though there are of course many

ways to decide the players in each match.
2

Note that the order in which the players challenge the current

champ — called the seeding — significantly influences the outcome

of the tournament. E.g., a fixed player 𝑖 has a better likelihood of

winning the tournament if she challenges the champ late in the

tournament, after the stronger players have been eliminated, rather

than very early.

Owing to their simplicity and often dramatic nature — allowing

a new entrant to beat the current champion and take over the ti-

tle — Challenge the Champ tournaments and its variants are used

in multiple sports, including ten-pin bowling, squash, badminton,

and basketball [1, 24]. Beyond the world of sports, a continuous

variant of stepladder tournaments is also used for ranking workers

in organisations [14], making it a compelling tournament format

for theoretical studies. In fact, some of our results obtained from

studying Challenge the Champ tournaments are applicable to all

single-elimination tournaments, further reinforcing their impor-

tance.

Challenge the Champ tournaments have previously attracted

some attention from researchers, though this has been focused

on the complexity of manipulation to ensure a given player wins

the tournament [6, 13]. We are, however, interested in the objec-

tive of value maximization in sports tournaments. Arguably, many

competitions are organized to maximize some measure of value —

whether advertising revenue, viewership, or attendance. Given a

tournament format — such as knockout, or Swiss-system — often

this value-maximization objective influences the matches that are

2
A knockout tournament, which takes the form of a binary tree, is also sometimes

referred to as a single-elimination tournament. However, we use the more general

definition of single-elimination tournaments in this paper.
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Table 1: Our results for value maximization in Challenge the Champ tournaments.

Problem Pair-Based Win-Count-Based Player-Popularity-Based

CTC-VM-Dag

NP-complete for binary values

(Theorem 11)

P (Theorem 7) P (Theorem 2)

CTC-VM

NP-complete (Follows from

Theorem 11)

NP-complete for binary values

(Theorem 8) and

linear-after-threshold

(Theorem 10)

P for binary values (Theorem 3)

NP-complete for ternary values

(Theorem 5)

e1

e2 e3 en

Initial

Round 1 Round n− 1

Champ

Winner

Figure 1: A Challenge the Champ tournament, with players
seeded (𝑒1, 𝑒2, . . . , 𝑒𝑛). In each round 𝑖, player 𝑒𝑖+1 challenges
the current champ — the winner of the previous round.

played as well, e.g., through the choice of groups, or seeding of the

players. This objective is measured by assigning a non-negative

integer value to each potential match between the players. Such

an approach reflects the practical scenario where matches hold

varying levels of importance, influenced by factors like geopolitics,

historical rivalries, intrinsic fan following, or the relative strength

of the teams. Prioritizing high-value matches becomes essential,

especially when only a subset of potential matches can be played,

as it helps attract viewers and advertisers. The tournament value is

then defined as the total sum of the values of all matches that are

actually played. This metric is crucial for evaluating and optimizing

the overall appeal and financial success of the tournament.We study

the problem of value maximization in Challenge the Champ tour-

naments. Given the expanding body of research on tournaments,

we believe that studying value maximization in the simple but in-

teresting Challenge the Champ tournament format is an important

research problem.

To complete the picture, we need a way of determining the

outcome when two players compete. For this, we use a strength

graph, which is a complete directed graph with a vertex for each

player. A directed edge (𝑖, 𝑗) indicates that player 𝑖 beats player 𝑗 in a
match. Although value maximization has been previously examined

in knockout tournaments [5, 10], the investigation is restricted

to the case where the strength graph is a directed acyclic graph

(DAG). Our study extends this inquiry to Challenge the Champ

tournaments. We investigate scenarios where the strength graph is

either a DAG or a complete directed graph, and provide a thorough

analysis of the computational complexity of value maximization in

Challenge the Champ tournaments.

Related Work
Challenge the Champ tournaments are also sometimes called steplad-

der tournaments in previous work. These have been studied from

the perspective of satisfying axiomatic notions of fairness [1], as

well as the characterizing strength graphs where a favorite player

can win the tournament [4, 26]. Arlegi and Dimitrov [1] highlight

instances of stepladder tournaments being utilized in sports com-

petitions, such as ten-pin bowling and squash. Stepladder tourna-

ments are also useful in firms. Pongou et al. [14] present examples,

and discuss the relation of the ranking of workers obtained from

stepladder tournaments with their importance in the firm.

For Challenge the Champ tournamentswith probabilistic strength

graphs (rather than deterministic, as in our case), Mattei et al. [13]

investigated a setting where players can be bribed to lower their

winning probability against the initial champ. The goal was to maxi-

mize the probability of the initial champwinning the tournament by

bribing the other players while not exceeding a given budget for the

bribes. Building on this, Chaudhary et al. [6] extended the research

by examining the problem with respect to various parameters.

For tournament value maximization, Chaudhary et al. [5] initi-

ated this study for knockout tournaments under the name Tour-

nament Value Maximization in a deterministic setting, where

players have a strict strength ordering (the strength graph forms

a DAG). Their work explored various constraints on tournament

value functions to optimize the overall tournament value. In a re-

lated study, Gupta et al. [10] examined a similar problem but with-

out assuming a strict linear order of player strengths. Their focus

was on determining whether a specific seeding could guarantee

that a designated set of games, known as demand matches, would

occur. This problem can be viewed as a special case of Tourna-

ment Value Maximization, where demand matches are assigned

a value of 1, and other matches a value of 0, with the objective of

ensuring the total value meets or exceeds the number of demand

matches. Additionally, Dagaev and Suzdaltsev [8] investigated a

restricted variant of tournament value maximization, where each

player has a unique strength value, and the value of a game is de-

fined by a linear combination of its “quality" (the sum of the players’

strengths) and its “intensity" (the absolute difference between the

players’ strengths). They characterized scenarios in which either a

“close” seeding, a “distant” seeding, or any seeding could be optimal,

demonstrating that their restricted cases can be solved efficiently

in linear time.

2 PROBLEM STATEMENT AND
PRELIMINARIES

For a positive integer 𝑛, define [𝑛] := {1, 2, . . . , 𝑛}. An instance of

Challenge the Champ Value Maximization is given by a set of

players 𝑁 = [𝑛], a strength graph, which is a complete directed

graph T = (𝑁, 𝐸) with a directed edge (𝑖, 𝑗) indicating that player
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𝑖 beats player 𝑗 in a match, and a value function 𝑣 for each possible

match in the tournament. We present results for both the case when

T is a DAG and when T contains directed cycles. If T is a DAG,

we will assume all edges are oriented from larger indices to smaller

indices. Hence 𝑛 beats every other player, while 1 is beaten by every

other player. If a player 𝑖 defeats a player 𝑗 , we say that 𝑖 is stronger

than 𝑗 , or equivalently, 𝑗 is weaker than 𝑖 .

Given a Challenge the Champ Value Maximization instance

with 𝑛 players, a seeding 𝜎 ∈ S𝑛 (where S𝑛 is the symmetric group

on 𝑛 elements) is a permutation of the set of players that completely

determines the order of the matches. The player 𝜎 (1) is the initial
champ. In each round 𝑟 = 1, . . . , 𝑛 − 1, the champ is challenged by

player 𝜎 (𝑟 + 1). The winner of the match (as determined by the

strength graph T ) is the champ for the next time step. The winner

in the last round is the winner of the tournament. Thus, given 𝑁

and T , each seeding 𝜎 completely determines the set of matches

that take place. Given a seeding 𝜎 , we define 𝑀𝑖 (𝜎) as the set of
players that play a match with player 𝑖 and lose to it, and define

𝑤𝑖 (𝜎) = |𝑀𝑖 (𝜎) |. Note that player 𝑖 wins exactly𝑤𝑖 (𝜎) matches.

We consider a number of different possible settings for the tour-

nament value 𝑉 (𝜎) of a seeding 𝜎 for a Challenge the Champ

tournament.

Player-popularity-based: We first consider a natural restriction

when each player has an associated popularity 𝑝𝑖 ∈ Z+, and the

value of each match is determined by the popularity of the winning

player. Thus, each match player 𝑖 wins contributes value 𝑝𝑖 . Thus

the value for the seeding 𝜎 is 𝑉 (𝜎) =
∑
𝑖∈𝑁 𝑝𝑖𝑤𝑖 (𝜎), and such

a value function is called player-popularity-based. This restriction

captures the intrinsic popularity of certain teams and players among

their fans, irrespective of the opponent or venue. This variant has

also been explored by Chaudhary et al. [5].

Mathematically, when the strength graph is a DAG, the player-

popularity-based value function is equivalent to the tournament

value function where the value of every match is defined as the

sum of the popularity values of the two players participating in that

match. This equivalence holds for any single elimination tourna-

ment (not necessarily Challenge the Champ), if the strength graph

is a DAG. The equivalence can be seen easily: Let𝑉 ′ (𝜎) denote the
tournament value when the value of the match between players

𝑖 and 𝑗 is 𝑣 ′ (𝑖, 𝑗) = 𝑝𝑖 + 𝑝 𝑗 , and let 𝑉 (𝜎) denote the tournament

value when the value of the match is 𝑣 (𝑖, 𝑗) = 𝑝𝑖 , where 𝑖 > 𝑗 .

Then𝑉 ′ (𝜎) = 𝑉 (𝜎) +∑𝑖∈[𝑛−1] 𝑝𝑖 , since every player except player
𝑛 loses exactly one match in any single elimination tournament.

Thus, when the match values are modified, all players except the

winner additionally contribute their popularity value exactly once,

for the match where they lose. Thus, since the two tournament

value functions are equivalent for DAGs, we will present results for

the player-popularity-based value function.

Win-count-based: We next consider tournament value functions

where the value of each match depends not only on the winning

player, but also by her track record of victories. Specifically, the

value of a match increases with the number of wins the winning

player has accumulated. We refer to such value functions as win-

count-based value functions. Formally, each player has a win-value

𝑓𝑖 : [𝑛 − 1] → Z+ that gives the value of each match won by

player 𝑖 . I.e., the 𝑘th match won by player 𝑖 has value 𝑓𝑖 (𝑘). Then

the value for the seeding 𝜎 for win-count-based value function is

𝑉 (𝜎) = ∑
𝑖∈𝑁

∑𝑤𝑖 (𝜎 )
𝑘=1

𝑓𝑖 (𝑘). Note that if each player has a constant

win-value function , i.e., if 𝑓𝑖 (𝑘) = 𝑝𝑖 for every 𝑘 ∈ [𝑤𝑖 (𝜎)], this is
the same as player-popularity-based value functions.

Within win-count-based values, we consider two further re-

strictions. We say a win-count-based tournament value function

is binary-valued if every player 𝑖 has a threshold 𝜆𝑖 , and the win-

value function 𝑓𝑖 (𝑥) = 1 if 𝑥 = 𝜆𝑖 , and is zero otherwise. Thus,

player 𝑖 gets a value of 1 if she wins at least 𝜆𝑖 games, and gets

value 0 otherwise. The tournament value function is thus 𝑉 (𝜎) =
|{𝑖 : 𝑤𝑖 (𝜎) ⩾ 𝜆𝑖 }|. These value functions support the egalitarian
objective of ensuring that more players/teams achieve their indi-

vidual thresholds. Maximizing the tournament value, in this case,

is the same as obtaining a seeding that enables as many players

as possible to meet their thresholds, rather than allowing a single

player to dominate by participating in the majority of matches.

We say a win-count-based tournament value function is linear-

after-threshold if every player 𝑖 has a threshold 𝜆𝑖 , and the win-value

function 𝑓𝑖 (𝑥) = 1 if 𝑥 ⩾ 𝜆𝑖 , and is zero otherwise. Thus, player

𝑖 gets a value of 1 for every game she wins after 𝜆𝑖 − 1, and the

tournament value function is𝑉 (𝜎) = ∑
𝑖∈𝑁 max{0,𝑤𝑖 (𝜎) − 𝜆𝑖 + 1}.

Pair-based: Finally, we consider pair-based value function, where

the value of each match depends on both the players in the match.

Thus, such value functions account for matches where the players

have a historic rivalry or are particularly competitive. Here, each

pair of players 𝑖 , 𝑗 has a pair value 𝑓𝑖 𝑗 ∈ Z+, which is the value

contributed by a match between 𝑖 and 𝑗 . The value of a seeding 𝜎

is 𝑉 (𝜎) = ∑
𝑖∈𝑁

∑
𝑗∈𝑀𝑖 (𝜎 ) 𝑓𝑖 𝑗 .

Again, pair-based value functions generalize player-popularity-

based value functions. To see this, if each player 𝑖 has popularity

𝑝𝑖 , consider the pair-based value function where the pair {𝑖, 𝑗} has
value 𝑝𝑖 if 𝑖 beats 𝑗 , and 𝑝 𝑗 otherwise. Clearly, each match then has

the same value in either case.

These value functions have been studied before for value maxi-

mization in knockout tournaments [5]. Pair-based value functions

are also called round-oblivious value functions. We will further con-

sider restrictions on the value of each match to be binary or ternary

(i.e., the value of each match is in {0, 1} or in {0, 1, 2}).
More formally, the definition of Challenge the Champ Value

Maximization is given below.

Challenge the Champ Value Maximization (CTC-VM)

Input:

Given a set 𝑁 of players, a strength graph T on 𝑁

which is a complete directed graph, a tournament

value function 𝑉 , and a target value 𝑡 .

Question:

Is there a tournament seeding 𝜎 for the players in 𝑁

such that the tournament value 𝑉 (𝜎) ⩾ 𝑡?

The problem Challenge the Champ Value Maximization-

Dag (CTC-VM-Dag) is defined in a similar manner, except that the

input strength graph, in this case, is a DAG.

Seedings and Caterpillars. For undirected graphs, a caterpillar

graph is a tree in which the removal of all pendant vertices (leaves)

yields a path, which we refer to as the backbone. We extend this to

directed graphs: a caterpillar arborescence is an arborescence where

removing all leaves (vertices with out-degree zero) yields a directed
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path. We call this path the backbone of the caterpillar. A spanning

caterpillar arborescence of a directed graph is a subgraph that is a

caterpillar arborescence on all the vertices. For brevity, since we will

only consider spanning caterpillar arborescences on the directed

graph T , we omit the term arborescence from the description.

Any seeding 𝜎 in a Challenge the Champ tournament induces a

spanning caterpillar in the strength graph, and vice versa. To see

this, given a seeding 𝜎 , let the backbone of the caterpillar be the

players that win at least one match, in the order given by 𝜎 . All

remaining players lose their first match to a player in the backbone.

Attach the remaining players to the player they lose to in the back-

bone. This gives a spanning caterpillar. For the converse, given a

spanning caterpillar, the seeding is obtained by the sequence of

players in the backbone, interspersed by the leaves attached to

each player in the backbone in any order. Figure 2 gives an exam-

ple showing this correspondence. Thus, instead of a seeding, we

can equivalently specify the sequence of players in the backbone

of a caterpillar, and the attachment of the remaining players (i.e.,

the leaves) to the players in the backbone. We will frequently use

this correspondence in our proofs. Corollary 12 also establishes

a connection between pair-based value functions and spanning

caterpillars. We note that there is prior work linking spanning cater-

pillars and tournaments (see, e.g., [16, 17]). Our work significantly

strengthens this connection by demonstrating that caterpillars pro-

vide a natural framework for understanding Challenge the Champ

tournaments and establishing hardness results for caterpillars.

3 4 4 5 7 7 7

4 2 5 7 1 6

7

1 6

5

4

2 3

Figure 2: The first figure gives an example with 7 players
showing the seeding (3, 4, 2, 5, 7, 1, 6). In the strength graph
(not shown), each player 𝑗 defeats all players 𝑖 < 𝑗 . Hence
player 7 is the strongest and player 1 the weakest. The second
figure shows the resulting spanning caterpillar arborescence.

We will also use the following result in our proofs.

Proposition 1 ([15]). Given a complete directed graph 𝐺 , a Hamil-

tonian path in 𝐺 can be found in polynomial time.

Our Contribution
We present a comprehensive analysis of the complexity of tourna-

ment value maximization for Challenge the Champ tournaments.

Our work encompasses both CTC-VM and CTC-VM-Dag across

various tournament value functions, including player-popularity-

based, win-count-based, and pair-based tournament value func-

tions, and restrictions to binary and ternary-valued functions. For

a tabular view of the main results, see Table 1.

We start by delving into player-popularity-based tournament

value functions in Section 3.We first establish thatwhen the strength

graph is a DAG, the tournament value can be maximized in poly-

nomial time. Further, in this setting, Challenge the Champ tour-

naments are optimal among all single-elimination tournaments.

Specifically, we show:

• For every strength graph with player-popularity-based tour-

nament value functions, there exists a Challenge the Champ

tournament that maximizes the total value over all single-

elimination tournaments. Moreover, this maximum value

and the seeding can be computed in polynomial time.

We note that in knockout tournaments, this problem is unre-

solved [5]. Our proof, however, shows that the optimal value ob-

tained for Challenge the Champ tournaments is an upper bound

for all single-elimination tournaments, including knockout tourna-

ments.

When the strength graph is no longer a DAG, the complexity

of the problem varies with the number of distinct player popu-

larity values. For binary values for the popularity of players, we

give a polynomial-time algorithm, and observe that in this setting

again, Challenge the Champ tournaments are optimal among all

single-elimination tournaments. However, when the popularity of

the players can take three values {0, 1, 2}, the problem becomes

NP-hard, even when there is a single player with popularity 2, which

implies that the problem is para-NP-hard when parameterized by

the number of players with popularity value 2.

• CTC-VM is polynomial-time solvable for player-popularity-

based tournament value functions when each player’s popu-

larity is in {0, 1}.
• CTC-VM is NP-complete for player-popularity-based tour-

nament value functions when each player’s popularity is in

{0, 1, 2}.
We also present a simple greedy approximation algorithm for

CTC-VM, where each player’s popularity is drawn from a set of

𝑘 distinct values by leveraging the result of CTC-VM for player-

popularity-based tournament value functions where each player’s

popularity is restricted to {0, 1}.
In Section 4, we explore the more general case of win-count-

based tournament value functions. We provide a polynomial-time

dynamic programming algorithm for the case where the input is a

DAG. However, for general strength graphs, the problem becomes

hard even if the win-value function 𝑓𝑖 for each player is binary. This

highlights that the presence of directed cycles is a crucial factor in

the complexity of the problem.

• CTC-VM-Dag is polynomial-time solvable for win-count-

based tournament value functions.

• CTC-VM is NP-complete even for binary-valued and linear-

after-thresholdwin-count-based tournament value functions.

The last result also highlights a difference fromplayer-popularity-

based functions: while the latter becomes complex with ternary

values, the former is challenging even with binary values.

In Section 5, we investigate pair-based tournament value func-

tions and prove that the problem is NP-complete even for the sim-

plest setting when the strength graph is a DAG, and each pair value

is binary. Specifically, we prove:

• CTC-VM-Dag is NP-complete for pair-based tournament

value functions when all pair values are binary.
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We find this surprising, given the relative simplicity of Challenge

the Champ tournaments compared to other tournament formats.

Finally, we show that this last result also implies hardness for a

problem of value maximization for spanning caterpillars.

3 PLAYER-POPULARITY-BASED
TOURNAMENT VALUE FUNCTIONS

We first demonstrate that for player-popularity-based tournament

value functions with acyclic strength graphs, the optimal tourna-

ment value can be obtained in polynomial time.

Theorem 2. There is a polynomial-time algorithm for CTC-VM-

Dag for player-popularity-based tournament value functions.

Proof. As stated, since T is a DAG, we assume player 𝑖 ∈ 𝑁

beats all players 𝑗 < 𝑖 , and player 𝑖 has popularity 𝑝𝑖 . We now

describe a greedy algorithm that constructs an optimal spanning

caterpillar. We assume 𝑝𝑖 ≠ 𝑝 𝑗 for any two players 𝑖 , 𝑗 , else we

can slightly perturb the popularity values. Now let player 𝑖1 be the

most popular player. Let𝑊1 := [𝑖1 − 1] be all the players weaker
than 𝑖1. Let player 𝑖2 be the most popular player in 𝑁 \ [𝑖1], and
let𝑊2 := [𝑖2 − 1] \ [𝑖1]. Thus recursively, we define 𝑖 𝑗 to be the

most popular player in 𝑁 \ [𝑖 𝑗−1], and𝑊𝑗 := [𝑖 𝑗 − 1] \ [𝑖 𝑗−1]. We

continue until we pick player 𝑛, i.e., for some 𝑘 , 𝑖𝑘 = 𝑛. Note that

each player in𝑊𝑗 is less popular and weaker than player 𝑖 𝑗 , and

player 𝑖 𝑗 is stronger than player 𝑖 𝑗−1.
The spanning caterpillar has players 𝑖𝑘 , 𝑖𝑘−1, . . ., 𝑖1 (in this order)

on the backbone, and each 𝑖 𝑗 additionally has edges to all the players

in𝑊𝑗 . Each player 𝑖 𝑗 in the backbone (other than 𝑖1) thus wins

|𝑊𝑗 | +1matches, while player 𝑖1 wins |𝑊1 | matches. The total value

is thus

(𝑖1 − 1) · 𝑝𝑖1 + (𝑖2 − 𝑖1) · 𝑝𝑖2 + . . . + (𝑛 − 𝑖𝑘−1) · 𝑝𝑛 .

We now show that this is, in fact, the maximum value obtainable

in any seeding. To see this, consider any other seeding 𝜎 . Then

there are 𝑛 − 1 matches played, and there are 𝑛 − 1 values obtained

from these matches. Consider the 𝑡th largest value obtained, say

𝑣∗, for any 𝑡 ∈ [𝑛 − 1]. We will show that this value is at most the

𝑡 th largest value obtained by our algorithm, completing the proof.

Let 𝑗 ∈ [𝑘] be the largest index so that 𝑡 ⩾ 𝑖 𝑗 . Note that 𝑖 𝑗+1 is
the most popular player in 𝑁 \ [𝑖 𝑗 ]. Then it can be checked that the

𝑡th largest value obtained by our algorithm is 𝑝𝑖 𝑗+1 . Now assume

for a contradiction that 𝑣∗ > 𝑝𝑖 𝑗+1 . Since 𝑣
∗
is the 𝑡 th largest value

in the seeding 𝜎 , players with popularity at least 𝑣∗ must have won

at least 𝑡 matches in total. But all players with popularity greater

than 𝑖 𝑗+1 lie in [𝑖 𝑗 ]. Hence these players can win at most 𝑖 𝑗 − 1,

which is strictly less than 𝑡 . This gives a contradiction. □

As noted, the proof of Theorem 2 shows something stronger. Any

single-elimination tournament consists of at most 𝑛 − 1 matches,

since in every match, one player is eliminated. Our proof shows

that if the strength graph is a DAG, and the value of every match

is the popularity of the stronger player, then the Challenge the

Champ tournament, obtainsmaximum value over all possible single-

elimination tournaments, and this value (and the seeding that ob-

tains it) can be computed in polynomial time. To see this, it is

enough to consider in the proof the 𝑡 th largest value obtained from

any single-elimination tournament; the proof shows that this is at

most the value obtained by the seeding given for the Challenge the

Champ tournament.

However, this is not the case when the strength graph is not

necessarily a DAG. Even for player-popularity-based tournament

value functions, there are instances where different tournament

trees can be optimal. Figure 3 gives such an example. For binary

player-popularity values, however, Challenge the Champ tourna-

ments can again be shown to be optimal for arbitrary strength

graphs among all single-elimination tournaments.

𝑟

𝑎1

𝑏1

𝑎2

𝑏2

𝑎3

𝑏3

Figure 3: An example of a (partial) strength graph with cycles
where a Challenge the Champ tournament is not optimal.
Each leaf 𝑏𝑖 beats all the non-leaf nodes except 𝑎𝑖 , creating
cycles. The root has popularity 2, intermediate 𝑎𝑖 vertices
have popularity 1, and the leaves have popularity 0. Here,
the maximum value achievable by a single elimination tour-
nament is 9 whereas the maximum value achievable in a
Challenge the Champ tournament is 7.

Next, we show that CTC-VM can be solved in polynomial time

for player-popularity-based tournament value functions when each

player’s popularity is either 0 or 1. This result is significant because

here, as for DAGs, not only do we get a polynomial time algorithm,

but the value obtained is the largest among all single-elimination

tournaments. Further, for general strength graphs, this is the largest

class of valuations for which we obtain positive complexity results.

For ternary popularity values, the problem becomes NP-hard, as
we show later.

Theorem 3. There is a polynomial-time algorithm for CTC-VM

for player-popularity-based tournament value functions when each

player’s popularity is either 0 or 1. The value obtained is the maximum

among all single-elimination tournaments.

Proof. Let (𝑁,T ,𝑉 , 𝑡) be a given instance of CTC-VM. Since

the popularity value of every player maps only to {0, 1}, we catego-
rize players with a popularity value of 1 as popular and those with

a popularity value of 0 as unpopular. Next, we partition the players

in 𝑁 into three sets as follows:

• Popular players, denoted by P.

• Unpopular players who defeat all popular players, denoted

byW.

• Unpopular players who are defeated by at least one popular

player, denoted by U.

First, we show that the maximum achievable tournament value

is |P | + |U| − 1, and this in fact holds for all single-elimination

tournaments. Second, we provide a seeding strategy that achieves

this maximum value.
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G[P ] G[U ] G[W ]

p∗

w∗

Figure 4: The red paths illustrate the Hamiltonian paths. A
directed edge between two boxes represents all directed edges
connecting the vertices from one box to those in the other.

For the first part, note that in any single-elimination tourna-

ment, matches involving players in W do not contribute to the

tournament value, no matter who wins or loses. Matches where

both players are in U similarly contribute nothing. A match be-

tween a player inU and a player in P contributes 1 if the player

inU loses, hence these matches contribute at most |U|. Matches

between players in P can contribute a maximum of |P | − 1 to

the total tournament value. Consequently, the tournament value is

bounded by |P | + |U| − 1.

For the second part, note that by Proposition 1, there exists a

Hamiltonian path in both 𝐺 [P]3 and 𝐺 [W]. Let 𝑃 denote such

a Hamiltonian path in 𝐺 [P], and let 𝑝∗ be the starting node of

𝑃 . Let𝑊 denote a Hamiltonian path in 𝐺 [W], and let 𝑤∗
be the

ending node of𝑊 . See Figure 4 for an illustration. Now, consider the

Hamiltonian paths𝑊 and 𝑃 as forming the backbone of a spanning

caterpillar. This arrangement is valid since𝑤∗
beats 𝑝∗ by definition

of W. Next, incorporate the vertices in U by attaching them as

leaves to the vertex in P that beats them in the backbone. The

resulting graph forms a spanning caterpillar with a tournament

value of |P | + |U| − 1. □

Next, we prove that CTC-VM is NP-hard when each player’s

popularity lies in {0, 1, 2}. Surprisingly, our hardness result holds
even if there is a single player with popularity value 2. This gives a

very precise threshold, as we have seen that for binary popularity

values, the tournament value can be maximized in polynomial time.

We give a reduction from 3-D-Matching. The input of 3-D-

Matching consists of a finite setU = 𝑋 ∪𝑌 ∪𝑍 where |𝑋 | = |𝑌 | =
|𝑍 | = 𝑛, and a collection S = {𝑆1, . . . , 𝑆𝑚} of triples, where each
𝑆𝑖 ⊆ 𝑋 ×𝑌 ×𝑍 . The problem is to determine if there exists a subset

S′ ⊆ S consisting of 𝑛 triples such that each element inU appears

in exactly one triple in S′
[9].

We will use the following proposition for 3-D-Matching.

Proposition 4. For an instance of 3-D-Matching, if a family of

subsets S′ ⊆ S covers elements U′ ⊆ U, then |U′ | − |S′ | ⩽ 2𝑛,

with equality iff |U′ | = 3𝑛 and |S′ | = 𝑛. Hence if the given instance

is a NO instance, then the inequality is always strict.

Proof. Let 𝑘 = |S′ | and ℓ = |U′ |. If 𝑘 < 𝑛, then ℓ ⩽ 3𝑘 since

each set contains 3 elements, and ℓ − 𝑘 ⩽ 2𝑘 < 2𝑛. If 𝑘 > 𝑛, then

3
For a vertex subset 𝑆 ⊆ V in a graph G = (V, E) , we use 𝐺 [𝑆 ] to denote the

subgraph of𝐺 induced by 𝑆 .

ℓ ⩽ 3𝑛, and again ℓ − 𝑘 ⩽ 3𝑛 − 𝑘 < 2𝑛. Thus if ℓ − 𝑘 = 2𝑛, then

𝑘 = 𝑛 and ℓ = 3𝑛. □

Theorem 5. CTC-VM is NP-complete for player-popularity-based

tournament value functions when each player’s popularity is either 0,

1, or 2.

Proof. The reduction from 3-D-Matching is as follows. We

create a strength graph T with vertex set 𝑁 . Let𝐻,𝑀, and 𝐿 denote

a partition of𝑁 that corresponds to players with popularity 2, 1, and

0, respectively. Corresponding to every element 𝑎 ∈ U, introduce

a player 𝑣𝑎 in 𝐿. For each set 𝑆 ∈ S, introduce a player 𝑣𝑆 in𝑀 . If

𝑎 ∈ 𝑆 for some 𝑎 ∈ U and 𝑆 ∈ S, then the edge between 𝑣𝑆 and 𝑣𝑎 is

directed from 𝑣𝑆 to 𝑣𝑎 , else it is directed from 𝑣𝑎 to 𝑣𝑆 . We introduce

a new player ℎ in 𝐻 that beats every player in𝑀 and loses to every

player in 𝐿. The remaining edges in T are directed arbitrarily. We

set the target value 𝑡 as 2( |S| −𝑛) + 3𝑛 + 2 + (𝑛 − 1) = 2|S| + 2𝑛 + 1.

The intuition behind the target value is that since each player in

𝑀 must choose between contributing to the tournament value

by losing to ℎ (and thereby adding 2 points to the tournament

value) or by defeating three players in 𝐿. Note that the factor 𝑛 − 1

arises because the players in𝑀 who are part of the backbone can

contribute additional points by playing among themselves. Also,

the extra 2 is due to the fact that, at most, one player in the backbone

that comes from𝑀 can contribute to the tournament value by both

beating some players and losing to ℎ.

We need to show that (U,S) is a YES-instance of 3-D-Matching

iff (𝑁,T ,𝑉 , 𝑡) is a YES-instance of CTC-VM.

For the forward direction, let S′
denote the subset of S of size 𝑛

such that each element inU appears in exactly one triple inS′
. Now

we will construct a spanning caterpillar whose tournament value is

at least 2|S| + 2𝑛 + 1 as follows. Let ℎ belong to the backbone. For

the sets in S′
, let𝑀′ ⊆ 𝑀 denote the corresponding players. These

players will be part of the backbone of the spanning caterpillar.

Using Proposition 1, we can find aHamiltonian path in the subgraph

𝐺 [𝑀′]. We attach this Hamiltonian path after the player ℎ in the

backbone of the spanning caterpillar. This step is valid because

player ℎ beats every player in𝑀 . Players in 𝐿 are attached to the

player in𝑀′
in the backbone that beats them (recall that 𝑣𝑆 beats 𝑣𝑎

iff 𝑎 ∈ 𝑆). Players in𝑀 corresponding to sets not in S′
are attached

to player ℎ as leaves. Note that the value of the tournament is

2|S| + 2𝑛 + 1.

For the reverse direction, assume the tournament value is at least

2|S| + 2𝑛 + 1. Suppose, for the sake of contradiction, that (U,S)
is a NO-instance of 3-D-Matching. Consider a solution where

𝑘 players in 𝑀 beat exactly ℓ players in 𝐿. This implies that the

maximum contribution to the tournament value from the players

in 𝐿 is only ℓ . Additionally, these 𝑘 players can contribute at most

𝑘 − 1 points to the tournament value by playing among themselves.

An additional 2 points can be achieved if one of these players loses

to ℎ, but only one player can benefit from this. For the remaining

|S| − 𝑘 players in𝑀 , the maximum contribution can be 2( |S| − 𝑘)
points if they all lose to ℎ.

Therefore, the total value that can be achieved is 2|S| −𝑘 + 1 + ℓ .
For this to be at least 2|S| + 2𝑛 + 1, we need ℓ − 𝑘 ⩾ 2𝑛. Since we

assume that the given instance is NO instance, from Proposition 4,

ℓ − 𝑘 < 2𝑛, giving a contradiction. □
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Next, we present an approximation algorithm for player-popularity-

based CTC-VM, with an approximation factor that depends on the

number of distinct popularity values.

Theorem 6. There is a
1

𝑘−1 -approximation algorithm for player-

popularity-based CTC-VM where the range of the popularity values

is a set of cardinality 𝑘 .

Proof. Let the range of the popularity values be {𝑣𝑖 : 𝑖 ∈ [𝑘]}
where we have 𝑣1 > 𝑣2 > · · · > 𝑣𝑘 . Let 𝑃𝑖 be the set of players

whose popularity is 𝑣𝑖 for 𝑖 ∈ [𝑘]. Without loss of generality, we

can assume that 𝑣𝑘 = 0. Our algorithm is as follows.

(1) For every 𝑖 ∈ [𝑘 − 1], run CTC-VM, by setting the value of

every player except those in 𝑃𝑖 to be 0, using the algorithm

described in Theorem 3.

(2) Among these 𝑘 − 1 tournaments, select the one with the

highest value as the output.

Our algorithm runs in polynomial time since the algorithm in

Theorem 3 runs in polynomial time. We next prove its approxima-

tion guarantee.

Let us consider a challenge the champ tournament 𝑇 of the

highest value for the input instance. Let its value be OPT. Let 𝑉𝑖 be

the sum of the values of the matches in 𝑇 where a player from 𝑃𝑖
has won for 𝑖 ∈ [𝑘 − 1]. Then we have

𝑂𝑃𝑇 =

𝑘−1∑︁
𝑖=1

𝑉𝑖 .

We now have the following if ALG is the value of the tournament

output by the algorithm.

𝐴𝐿𝐺 ⩾
𝑘−1
max

𝑖=1
𝑉𝑖 ⩾

1

𝑘 − 1

𝑘−1∑︁
𝑖=1

𝑉𝑖 =
𝑂𝑃𝑇

𝑘 − 1

.

□

4 WIN-COUNT-BASED TOURNAMENT VALUE
FUNCTIONS

We now consider win-count-based value functions, modeling sit-

uations where a player’s popularity changes through the course

of the tournament. For these value functions, the value a player

brings to a match depends on how many matches the player has

won. We first prove that CTC-VM-Dag is polynomial-time solv-

able for win-count-based tournament value functions by giving

a dynamic programming algorithm. We note that, in fact, Theo-

rem 7 is a more general result than Theorem 2. However, it does

not give an explicit value for the optimal seeding. Theorem 2 gives

an explicit seeding and value, as well as a simpler greedy algorithm.

Further, as discussed earlier, it allows us to show that for DAGs

and player-popularity-based value functions, Challenge the Champ

tournaments are optimal among all single-elimination tournaments.

Due to lack of space, the proof of the following theorem is omitted

and can be found in the full version of the paper [3].

Theorem 7. There is a polynomial-time algorithm for CTC-VM-

Dag for win-count-based tournament value functions.

Next, we show that CTC-VM is NP-hard for binary-valued win-

count-based games. Recall that here, every player has a threshold 𝜆𝑖 ,

and the tournament value for a seeding 𝜎 is |{𝑖 : 𝑤𝑖 (𝜎) ⩾ 𝜆𝑖 }|. For

this, we give a polynomial-time reduction from Independent Set.

The input of Independent Set consists of an undirected graph G =

(V, E) and a positive integer 𝑘 ∈ N. The problem is to determine

if there exists a subset W ⊆ V of size 𝑘 so that every edge in E is

incident on at most one vertex in W.

Theorem 8. CTC-VM is NP-hard for binary-valued win-count-

based tournament value functions.

Proof. Let (G = (V, E), 𝑘) be a given instance of Independent
Set. Let 𝑛 = |V|, and 𝑑 (𝑣) be the degree of vertex 𝑣 ∈ V . We

construct an instance (𝑁,T , 𝑓 , 𝑡) of CTC-VM as

𝑁 = {𝑝𝑣 : 𝑣 ∈ V} ∪ {𝑝ℓ𝑒 : 𝑒 ∈ E, ℓ ∈ [𝑛2]} .
Thus there is a player 𝑝𝑣 for every vertex in G whom we call a

vertex player, and 𝑛2 players (𝑝ℓ𝑒 )ℓ∈[𝑛2 ] for every edge 𝑒 in E whom

we call edge players. We now describe the strength graph T between

the players. If 𝑣 ∈ 𝑒 in G, then the player 𝑝𝑣 beats 𝑝
ℓ
𝑒 , otherwise 𝑝

ℓ
𝑒

beats 𝑝𝑣 . Thus a vertex player beats all edge players for incident

edges, and is beaten by all other edge players. The directions of the

remaining edges of the strength graph are arbitrary. An illustration

of the construction of a strength graph from a given instance of

Independent Set is shown in Figure 5. The value of a vertex player

𝑝𝑣 is 1 if she wins at least 𝑑 (𝑣) × 𝑛2 matches; otherwise, her value

is zero. Thus the threshold 𝜆𝑝𝑣 = 𝑑 (𝑣) × 𝑛2. The value of all edge

players is zero, irrespective of the number of matches she wins. The

target value 𝑡 = 𝑘 . We claim that there is a seeding that achieves

the target value if and only if the graph G has an independent set

of size 𝑘 .

In one direction, let W ⊆ V form an independent set of size

𝑘 , and assume W = {𝑣1, . . . , 𝑣𝑘 }. Let 𝑁W be the corresponding

set of players {𝑝𝑣 : 𝑣 ∈ W}, and let HW be a Hamiltonian path

on the players in 𝑁W . By reindexing the vertices, assumeHW =

(𝑝𝑣𝑘 , 𝑝𝑣𝑘−1 , . . . , 𝑝1). Note that this implies that player 𝑝𝑣𝑖+1 beats

player 𝑝𝑣𝑖 in the strength graph, and by construction and since W
is an independent set, each edge player 𝑝ℓ𝑒 is beaten by at most one

player in𝑁W . Consider the seeding that starts with player 𝑝𝑣1 , then

consists of all𝑑 (𝑣1)×𝑛2 edges players beaten by 𝑝𝑣1 , then has player
𝑝𝑣2 followed by all edge players beaten by 𝑝𝑣2 . We continue in this

manner until 𝑝𝑣𝑘 and all edge players are beaten by this player. The

remaining players are then added in this sequence arbitrarily. Since

each player 𝑝𝑣 for 𝑣 ∈ W beats 𝑑 (𝑣) ×𝑛2 edge players, it is easy to

see that this seeding has the desired tournament value.

In the other direction, suppose there is a seeding with tour-

nament value 𝑘 . Clearly, there must be 𝑘 vertex players that have

positive value, since only vertex players can have positive value. Let

𝑁W = {𝑝𝑣1 , . . . , 𝑝𝑣𝑘 } be these vertex players, andW = {𝑣1, . . . , 𝑣𝑘 }
are vertices corresponding to these players in the graphG. We claim

that the set W must be an independent set in G. If not, suppose
𝑣𝑖 , 𝑣 𝑗 ∈ W are adjacent, with edge 𝑒 = {𝑣𝑖 , 𝑣 𝑗 } ∈ E. Then both

𝑝𝑣𝑖 and 𝑝𝑣𝑗 have outgoing edges to the 𝑛2 edge players 𝑝ℓ
𝑒
in the

strength graph. Consequently, at most 𝑛+𝑛2 (𝑑 (𝑣𝑖 ) +𝑑 (𝑣 𝑗 ) −1) play-
ers have incoming edges from either 𝑣𝑖 or 𝑣 𝑗 ,

4
and hence for large

enough 𝑛, 𝑣𝑖 and 𝑣 𝑗 cannot each beat 𝑑 (𝑣𝑖 ) ×𝑛2 and 𝑑 (𝑣 𝑗 ) ×𝑛2 play-
ers respectively. It follows immediately that G has an independent

set of size 𝑘 , completing the proof. □

4
The additional 𝑛 players are due to vertex players possibly beaten by 𝑝𝑣𝑖 and 𝑝𝑣𝑗 .
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Figure 5: An edge from a vertex to a box denotes all directed
edges between that vertex and vertices within the box in the
same direction. Edges not depicted are arbitrarily directed.
The dotted edges are directed from the vertices in the box to
the outside vertex.

In the proof of Theorem 8, the maximum value of any Challenge

the Champ tournament obtained in the reduction is the same as

the maximum size of an independent set in the Independent Set

instance. Hence, we obtain the following from the known inapprox-

imability of Independent Set [11, 12, 27].

Corollary 9. For every real number 𝜀 > 0, no polynomial-time

algorithm approximates the value of CTC-VM for binary-valued win-

count-based tournament value functions within a factor of𝑛1−𝜀 unless
P = NP.

We next consider linear-after-threshold value functions. Recall

that now each player 𝑖 has a threshold 𝜆𝑖 , and for a seeding 𝜎 , the

value obtained is

∑
𝑖∈𝑁 max{0,𝑤𝑖 (𝜎) − 𝜆𝑖 + 1}. By a modification

of the previous reduction, we show next that CTC-VM is NP-hard
even for linear-after-threshold valuation functions. However, unlike

Theorem 8, the reduction is not approximation-preserving, hence

we do not obtain the same approximation hardness result. Due to

lack of space, the proof of the following theorem is omitted and

can be found in the full version of the paper [3].

Theorem 10. CTC-VM is NP-hard for linear-after-threshold val-
uation functions.

5 PAIR-BASED TOURNAMENT VALUE
FUNCTIONS

For pair-based tournament value functions, we show that CTC-

VM-Dag is NP-hard, even for binary valuations. Our proof gives

a reduction from 3-D-Matching. The reduction is similar to the

proof of Theorem 5, but the added flexibility of pair-based value

functions allows us to slightly simplify the proof. Due to lack of

space, the proof of the following theorem is omitted and can be

found in the full version of the paper [3].

Theorem 11. CTC-VM-Dag is NP-complete for pair-based tour-

nament value functions when the tournament value function maps to

{0, 1}.

Consider the following problem. Given a complete directed

acyclic graph G with binary weights𝑤𝑒 ∈ {0, 1} on each directed

edge, the problem is to find a maximum weight caterpillar arbores-

cence — i.e., an arborescence of maximum weight such that the

removal of all vertices with out-degree zero in the arborescence

gives a directed path. We can show this problem is also NP-hard,
since there is a direct reduction from CTC-VM-Dag with binary

pair-based tournament value functions. We simply let G be the

strength graph T , and set the weight𝑤𝑒 of an edge 𝑒 = (𝑖, 𝑗) to be

the corresponding value for the pair of players 𝑖, 𝑗 . It follows from

Theorem 11 that this problem is also NP-hard.

Corollary 12. Computing a maximum weight caterpillar arbores-

cence in a DAG is NP-hard.

6 CONCLUSION AND OPEN PROBLEMS
In this paper, we initiate the study of tournament value maximiza-

tion for Challenge the Champ tournaments and contribute to the

growing body of research on tournament fixing and design prob-

lems. Our results provide a complete and comprehensive picture of

the computational complexity of value maximization, including for

binary and ternary value functions. Theorems 2 and 3, in fact, pro-

vide upper bounds on value maximization for all single-elimination

tournaments. En route, we show interesting connections to Hamil-

tonian paths in complete directed graphs and spanning caterpillar

arborescences.

An obvious question for future research in value maximization is

approximation. All of our hardness results are for binary or ternary

valuations. These results hence show strong NP-hardness, and rule

out fully polynomial time approximation schemes (FPTAS), unless

P = NP. However, weaker approximations may be possible. We

believe that given that value maximization is a practical concern,

this is an interesting and important direction for research.

A second question is with regard to parameterized complexity.

There are many relevant and natural parameters worthy of inves-

tigation. Our paper shows that for win-count-based tournament

value functions, value-maximization is easy if the strength graph is

a DAG but is NP-hard otherwise, even for binary values. An obvious

parameter to try is then the size of the feedback vertex set or the

feedback arc set of the strength graph. Also, for player-popularity-

based games with ternary values, the problem isNP-hard even with
a single player with value 2. It is possible that using the number of

0 or 1 value players as a parameter would be helpful.

Lastly, value maximization in other tournament formats, includ-

ing knockout tournaments and extended stepladder tournaments,

has only received limited attention and presents a rich and impor-

tant avenue for further research.
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