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ABSTRACT
Reducing carbon emissions remains a formidable challenge in sup-
ply chain management. However, conventional numerical simu-
lations based on heuristics often struggle to address the complex
coupling of ordering decisions and carbon emissions—complicated
further by high-dimensional observation, multiple constraints, and
carbon quota requirements. Constrained DRL leverages the high-
dimensional representation capabilities and robust decision-making
under constraints, making it particularly suitable for supply chain
management involving carbon trading. To address these challenges,
this paper proposes a simulation framework grounded in Con-
strained Markov Decision Processes (CMDP), incorporating con-
strained deep reinforcement learning (DRL). Specifically, we de-
velop aDouble Order algorithm based on PPO-Lagrangian (DOPPOL)
to simultaneously optimize business and carbon costs. Experimen-
tal results demonstrate that DOPPOL outperforms traditional (𝑠 ,
𝑆) methods under fluctuating demand, effectively balancing cost
optimization and emission reductions. Furthermore, integrating
carbon trading into supply chain operations allows companies to
adapt both ordering decisions and emissions, thereby enhancing
operational efficiency. Then we highlight the pivotal role of carbon
pricing in business contracts: rational pricing not only helps regu-
late carbon emissions but also reduces overall costs. Our findings
contribute to the broader endeavor of mitigating climate change
and promoting sustainable supply chain practices.
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1 INTRODUCTION
Climate change has received substantial global attention [12], prompt-
ing numerous strategies aimed at reducing carbon emissions [6, 15].
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In this context, reconciling economic progress with environmen-
tal stewardship has become an increasingly prominent concern,
elevating complex supply chain management to the forefront of sus-
tainability challenges [7, 11]. Although considerable research has
addressed multifaceted supply chain problems—ranging from joint
replenishment [5] and transportation with shelf space management
[3] to the bullwhip effect [16]—current work offers limited insight
into how companies can jointly optimize ordering decisions and
carbon trading. Such joint decision-making is essential for aligning
corporate profitability with environmental objectives.

Deep reinforcement learning (DRL) has emerged as a powerful
decision-making framework that can handle high-dimensional and
dynamic environments [2, 4, 9]. Recent studies showcase the ca-
pability of DRL to solve a variety of supply chain issues involving
lost sales [14], dual-sourcing [1], and multi-echelon configurations
[8]. However, research applying DRL to supply chain operations
constrained by carbon quotas and incorporating carbon trading re-
mains scarce. Integrating carbon trading into supply chain decision-
making holds significant potential for navigating trade-offs between
economic outcomes and environmental requirements.

To bridge this gap, we formulate a comprehensive simulation
framework considering both economic returns and sustainability.
We develop a constrained DRL method called DOPPOL to address
the combined ordering and carbon trading problem under carbon
quota constraints, which demonstrates superior performance over
conventional approaches. Moreover, we examine the effects of car-
bon trading policies and carbon price variations, thereby providing
new insights for companies seeking to balance business profitability
with ecological imperatives.

2 PROBLEM FORMULATION
We integrate carbon emissions and trading considerations into sup-
ply chain management, incorporating carbon trading along with
carbon quota constraints. The problem is formulated as a Con-
strained Markov Decision Process (CMDP) over a period. A CMDP
is defined by the tuple (S,A,P,R, 𝛾), where S is the state space,
A represents actions, P denotes transition probabilities, R is the
expected reward, and 𝛾 is the discount factor [13]. The objective is
to find a policy 𝜋 (𝑎 |𝑠) that maximizes the expected reward while ad-
hering to the constraints[10]: 𝐽𝐶 (𝜋) � E

𝜏∼𝜋𝜃

[∑∞
𝑡=0 𝛾

𝑡𝑐 (s𝑡 , a𝑡 )
]
≤ 𝑑 ,

where 𝑐 (s𝑡 , a𝑡 ):S×A → R. Companies determine order quantities
and engage in carbon trading based on demand, aiming to minimize
total costs. The goal is to find a balance between maximizing the
expected reward and satisfying the constraints and the training
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Figure 1: Supply chain management architecture.

objective is to maximize the return 𝐽𝑟 (𝜋𝜃 ). max𝜋𝜃 ∈Π𝑓
𝐽𝑟 (𝜋𝜃 ) is

calculated, where Π𝑓 � {𝜋𝜃 ∈ Π : 𝐽𝑐 (𝜋𝜃 ) ≤ 𝑑} is the feasible set.
We take into account the business costs (𝐶1) and environmental

costs (𝐶2). At time step 𝑡 , the order quantity for company 𝑖 is denoted
as 𝑞𝑖𝑡 . 𝑑𝑖𝑡 presents the demand. The unit order cost is denoted as 𝑝𝑖 .
The inventory is denoted as 𝐼𝑖𝑡 and the holding cost is ℎ𝑖𝑡 . 𝑏𝑖𝑡 is the
stockout cost. Company 𝑖 is allocated a certain amount of carbon
quotas, denoted as 𝐼𝑖0, and it can buy extra allowances, denoted
as 𝑞𝑐

𝑖𝑡
(𝑞𝑐

𝑖𝑡
> 0). An indicator function is used to represent the

purchase of carbon emission allowances I(𝑞𝑐
𝑖𝑡

≥ 0) and the sale
I(𝑞𝑐

𝑖𝑡
< 0). A penalty of 𝐵(𝐵 > 0) is imposed. The environmental

profit is: Profit𝑐𝑖 = 𝑐 · I(𝑞𝑐
𝑖𝑡

< 0) |𝑞𝑐
𝑖𝑡
| − 𝐶2𝑡 , where 𝑐 represents

the price of one unit of carbon quota. The constraint is 𝐼𝑐
𝑖,𝑡+1 =

𝐼𝑐
𝑖,𝑡

+ 𝑞𝑐
𝑖𝑡
− 𝑘 ·𝐶1𝑡 ≥ 0, Let 𝑘 (𝑘 > 0) represent the share of carbon

emissions costs in business expenses. Firms enter contracts with a
fixed unit price for all transactions. The overall profit (reward) is
𝑌𝑖 = 𝑝𝑖+1𝑑𝑖𝑡 −𝑝𝑖𝑞𝑖𝑡 −ℎ𝑖𝑡 𝐼𝑖𝑡 −𝑏𝑖 [𝑑𝑖𝑡 −𝑞𝑖,𝑡−1−𝐼𝑖𝑡 ]++𝑐 ·I(𝑞𝑐𝑖𝑡 < 0)𝑞𝑐

𝑖𝑡
−

𝐵 · I(𝑑𝑐
𝑖𝑡
−𝑞𝑐

𝑖,𝑡−1 − 𝐼𝑐
𝑖𝑡
> 0) −𝑐 · I(𝑞𝑐

𝑖𝑡
≥ 0) |𝑞𝑐

𝑖𝑡
|. The interactive mode

and profit calculation framework among supply chains considering
carbon trading are illustrated in Fig. 1.

3 METHOD
In our decision-making framework, we formulate a CMDP wherein
the state 𝑠 encompasses a company’s product inventory, historical
order quantities, downstream demand, remaining carbon emission
quotas, carbon emissions, and records of past carbon quota trans-
actions. The action 𝑎 is defined as (𝑞, 𝑞𝑐 ).

To solve this CMDP, we propose the DOPPOL algorithm (Algo-
rithm 1) based on PPO-Lagrangian. DOPPOL dynamically updates
a Lagrange multiplier 𝜆 to flexibly address the evolving carbon
emission constraints. Specifically, changes in a company’s carbon
emissions adjust its carbon quota, influencing subsequent trading
decisions. Consequently, 𝜆 is recalculated at each step to reflect
these variations, as shown in 𝜆𝑡+1 = max(0, 𝜆𝑡 + 𝛼𝜆 (𝐽𝑐 (𝜋) − 𝐼𝑐

𝑖𝑡
)).

4 RESULTS
In our study, the results indicate that DOPPOL outperforms tradi-
tional method (𝑠 , 𝑆) (Fig. 2), and companies achieve optimized order-
ing with varying distributions by utilizing DOPPOL. As shown in
Fig. 3, our method effectively controls carbon trading due to carbon
emission quota limitations. Fig. 4 illustrates the impact of carbon
pricing on a company’s overall returns, showing that as carbon
pricing increases in contracts, companies incur higher carbon costs.

Algorithm 1 DOPPOL: double order based on PPO-Lagrangian
1: Initialize environment, policy and value network
2: Set hyperparameters: clipping parameter 𝜖 , value coefficient 𝛽 ,

entropy coefficient 𝜂, learning rate for Lagrange multiplier 𝛼𝜆
3: for epochs do
4: Estimate 𝐽𝑐 (𝜋𝜃 )
5: Sample action [𝑞, 𝑞𝑐 ]
6: Calculate cumulative reward
7: for each optimization step do
8: Update Lagrange multiplier 𝜆
9: Update value function:
10: Minimize 𝐿𝑉 (𝜃𝑣) = E

[
(𝑉𝜃𝑣 (𝑠) −𝑉target)2

]
11: Update policy:
12: Compute 𝐽 𝑟 (𝜋𝜃 ) − 𝜆𝐽𝑐 (𝜋𝜃 )
13: Minimize 𝐿(𝜃 ) = 𝐿𝑟 (𝜃 ) + 𝜆𝐿𝑐 (𝜃 )
14: Update policy parameters
15: end for
16: end for

a) b)

Figure 2: Comparison between (𝑠, 𝑆) and DOPPOL.

Figure 3: A comparison of the PPO and DOPPOL.

a) b)

Figure 4: In accordance with the terms of the contract for
carbon trading.

5 CONCLUSION
In conclusion, we propose DOPPL, a novel supply chain manage-
ment approach grounded in constrained DRL that strategically
integrates carbon trading and ordering decisions. By incorporating
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carbon prices into operational considerations, our framework sig-
nificantly enhances cost efficiency, maximizes profitability, and im-
proves overall supply chain performance. We further examine how
contract-based carbon pricing significantly influences profitability.
This paper offers critical insights into advancing sustainable supply
chain management and facilitating transformational change.
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