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ABSTRACT
We consider the fundamental problem of fairly allocating a set of

indivisible items among agents having valuations that are repre-

sented by a multi-graph – here, agents appear as the vertices and

items as the edges between them and each vertex (agent) only val-

ues the set of its incident edges (items). The goal is to find a fair, i.e.,

envy-free up to any item (EFX) allocation. This model has recently

been introduced by Christodoulou et al. [19] where they show that

EFX allocations always exist on simple graphs for monotone valua-
tions, i.e., where any two agents can share at most one edge (item).

A natural question arises as to what happens when we go beyond

simple graphs and study various classes of multi-graphs?

We answer the above question affirmatively for the valuation

class of bipartite multi-graphs and multi-cycles. Our main positive

result is that EFX allocations always exist on bipartite multi-graphs

for agents with additive valuations and can be computed in polyno-

mial time, thereby joining in the few sets of scenarios where EFX
allocations are known to exist for an arbitrary number of agents.

Next, we study EFX orientations (i.e., allocations where every
item is allocated to one of its two endpoint agents) and give a

complete picture of when they exist for bipartite multi-graphs

dependent on two parameters—the number of edges shared between

any two agents and the diameter of the graph. Finally, we prove

that it is NP-complete to determine whether a given fair division

instance on a bipartite multi-graph admits an EFX orientation.
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1 INTRODUCTION
The theory of Fair Division formalizes the classic problem of divid-

ing a collection of resources to a set of participating players (referred

to as agents) in a fair manner. This problem forms a key concern in

the design of many social institutions and arises naturally in many

real-world scenarios such as dividing business assets, assigning

computational resources in a cloud computing environment, air

traffic management, course assignments, divorce settlements, and

so on [12, 22, 29, 31, 37]. The fundamental problem of fair division

lies at the crossroads of economics, social science, mathematics, and

computer science, with its formal exploration beginning in 1948

[34]. In recent years, this field has experienced a flourishing flow

of research; see [5, 9, 10, 33] for excellent expositions.

In this work, we consider the setting where we wish to divide a

set of𝑚 indivisible items to a set {1, 2, . . . , 𝑛} of 𝑛 agents with each

item being allocated wholly to some agent. The standard notion of

fairness is envy-freeness, which entails a division (allocation) as fair

if every agent values her bundle as much as any other bundle in

the allocation [24]. Since envy-free allocations do not always exist

for the case of indivisible items,
1
several variants of envy-freeness

have been explored in the literature. Among all, envy-freeness up
to any item (EFX) is considered to be the flag-bearer of fairness

for the setting of indivisible items (introduced by [15]). We say an

allocation𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) where bundle𝑋𝑖 is for agent 𝑖 ∈ [𝑛]
is EFX if for every pair 𝑖, 𝑗 ∈ [𝑛] of agents, agent 𝑖 prefers her bundle
𝑋𝑖 over 𝑋 𝑗 \ {𝑔} for every item 𝑔 ∈ 𝑋 𝑗 . EFX is considered to be the

“closest analogue of envy-freeness” for the discrete setting [14].

It remains a major open problem to understand whether there

always exists an EFX allocation [32]. Despite significant efforts, it

is not known whether EFX allocations exist for four or more agents,

even for additive valuations [17]. This naturally points towards the

complexity of this problem and motivates the study of various kinds

of relaxation. That is, one may begin to understand the concept

of EFX either by providing approximate EFX allocations, or by

studying special valuation classes, or by relaxing the notion of EFX
via charity or its epistemic form. We refer the readers to Section 1.2

for further discussion.

1
Consider an instance with two agents valuing a single item positively. Here, the agent

who does not receive the item will envy the other. In contrast, envy-free allocations

always exist when the resource to be allocated is divisible (see [35, 36]).
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A question of interest is understanding for what scenarios or

valuation classes EFX allocations are guaranteed to exist. To this

effect, in this work, we consider a recently introduced model by

Christodoulou et al. [19] where agent valuations are represented

via a graph (or a multi-graph). Here, every item can have a positive

value for at most two agents and that item appears as an edge

between these two agents, i.e., an item (edge) is valued at zero for

all agents that are not its endpoints. In other words, the vertices of a

given multi-graph represent agents while the multi-edges between

two agents 𝑖 and 𝑗 correspond to the items that are valued only by

agents 𝑖 and 𝑗 . We assume additive valuations 𝑣𝑖 for agent 𝑖 ∈ [𝑛]
such that an edge 𝑔 has a positive value (𝑣𝑖 (𝑔) > 0) if and only 𝑔

is incident to 𝑖 . We call this a fair division problem on multi-graphs
with the goal of finding complete EFX allocations.

This model addresses situations where the number of agents

interested in a particular item is restricted, in particular when an

item is relevant to at most two agents. The graph-based approach

is inspired by geographic contexts, where agents only care about

resources nearby and show no interest in those located further

away. For example, constructing a trade corridor or establishing

a natural gas line between neighboring countries where the other

(distant) countries may extract no value from these projects. An-

other example is when football matches in the New Champions

League Format must be played on the home grounds of either of

the participating teams, and other teams do not care for it.

Christodoulou et al. [19] proved that EFX allocations exist for all

simple graphs, i.e., where any two agent vertices share at most one
edge item. A natural question, therefore, arises as to what happens

when we consider classes of multi-graphs, i.e., where two agents

can have multiple relevant items in common?

1.1 Our Contribution and Techniques
In this work, we answer the above question raised by [19] and

study fair division instances where agent valuations are represented

via bipartite multi-graphs and provide a complete picture of EFX
allocations for additive valuations. Note that bipartite multi-graphs

are a huge class consisting of multi-trees, multi-cycles with even

length, and planer multi-graphs with faces of even length, to name

a few.

We also study special types of (non-wasteful) allocations—EFX
orientations—where every item is allocated to one of the agent

endpoints. Note that EFX orientations are desirable since every item

is allocated to an agent who values it, and hence, is non-wasteful.
Our main results are as follows.

Parameters EFX Orientation

acyclic, 𝑞 = 2, 𝑑 (𝐺) ≤ 4 exists (Theorem 3.3)

acyclic, 𝑞 = 2, 𝑑 (𝐺) > 4 may not exist (Theorem 3.5)

acyclic, 𝑞 > 2, 𝑑 (𝐺) ≤ 2 exists (Proposition 4.3)

acyclic, 𝑞 > 2, 𝑑 (𝐺) > 2 may not exist (Theorem 3.4)

cyclic, 𝑞 ≥ 2, 𝑑 (𝐺) ≥ 2 may not exist (Theorem 3.2)

Table 1: A complete picture for EFX orientations on bipartite
multi-graphs based on 𝑞 and 𝑑 (𝐺).

• EFX allocations are guaranteed to always exist for fair divi-

sion instances on bipartite multi-graphs with additive val-
uations. Moreover, we can compute an EFX allocation in

polynomial time for these instances (Theorem 4.9).

We answer the open problem listed in [19] and push the

frontiers of the scenarios where EFX allocations are known

to exist for an arbitrary number of agents, thereby enhancing

our understanding of the notion of EFX.
• While extending our techniques beyond bipartitemulti-graphs,

we also prove that EFX allocations exist and can be computed

in polynomial time on multi-cycle graphs with additive val-

uations (Theorem 5.1).

• EFX orientations may not always exist for fair division in-

stances on bipartite multi-graphs; in particular, they may not

exist even in very simple settings of multi-trees. Nonetheless,

we provide an exhaustive list of scenarios where EFX orien-

tations exist depending on two parameters: 𝑞 (the maximum

number of edges shared between any two agents) and 𝑑 (𝐺)
(diameter of the graph 𝐺); see Table 1.

The fact that orientations do not always exist can be seen as

a proof that such inefficiency is inherent or that approxima-

tions are necessary. We show that there exist orientations

on bipartite multi-graphs where at least ⌈𝑛
2
⌉ agents are EFX

and the remaining agents are 1/2-EFX (Theorem 4.10).

• We also show that we can compute EFX orientations in poly-

nomial time when the diameter of the acyclic bipartite multi-

graph is at most four and any two adjacent vertices share at

most two edge items (Theorem 3.3).

• It is NP-complete to decide whether a given fair division

instance on bipartite multi-graphs admits an EFX orientation,

even with a constant number of agents (Theorem 3.6).

Technical Overview: We will give a description of the main tech-

niques we develop in this work in order to prove the existence

(and polynomial-time computation) of EFX allocations on bipartite

multi-graphs with additive valuations. For a given bipartite multi-

graph 𝐺 = (𝑆 ⊔ 𝑇, 𝐸), let us consider two adjacent vertices 𝑖 ∈ 𝑆
and 𝑗 ∈ 𝑇 . The starting point of our technique is inspired by the

cut-and-choose protocol that is used to prove the existence of EFX

allocations for two agents.
2
Based on this protocol, we will define

one specific configuration for the set of items, 𝐸 (𝑖, 𝑗), between 𝑖

and 𝑗 . In our configuration, agent 𝑗 in set 𝑇 will cut the set 𝐸 (𝑖, 𝑗)
into two bundles 𝐶1 and 𝐶2 such that she is EFX-happy with both

bundles. We call this as 𝑗-cut configuration. Note that, this can be

computed in polynomial time for additive valuations.

The idea is to find a partial EFX orientation 𝑋 that satisfies a

set of five useful properties. These properties pave a simple way

for us to extend 𝑋 to a complete allocation while maintaining EFX
guarantees. One of them ensures that for any 𝑖 ∈ 𝑆 , 𝑗 ∈ 𝑇 , either
(i) no item from 𝐸 (𝑖, 𝑗) is allocated, (ii) exactly one of 𝐶1 or 𝐶2 is

allocated to either 𝑖 or 𝑗 , or (iii) both 𝐶1 and 𝐶2 are allocated to 𝑖

and 𝑗 , such that one receives 𝐶1 and other 𝐶2 in 𝑋 .

To create such a partial orientation, we start with a greedy al-

gorithm that allocates a set of items to each agent such that every

agent in 𝑇 is non-envied. This initial step ensures that the set of

2
For two agents, the first agent divides the set of items into two EFX-feasible bundles
(for her), and the second agent chooses her favorite bundle of the two.
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items, 𝑋𝑖 , allocated to an agent 𝑖 ∈ [𝑛] is such that 𝑋𝑖 ⊆ 𝐸 (𝑖, 𝑗) for
some 𝑗 ∈ [𝑛]. Moreover, this partial orientation is EFX where if a

vertex is envied, the vertex that envies her is certainly non-envied.

We then try to orient unallocated items incident to a non-envied ver-

tex to her while maintaining partial EFX until the only unallocated

edges are between a non-envied and an envied vertex.

Once we find a partial EFX orientation with certain useful prop-

erties, we can go two ways (of our choice) to have a complete

allocation. We can either compute, in polynomial time, (i) an EFX
orientation where at least 𝑛/2 agents are EFX, and the remaining

agents are 1/2-EFX, or (ii) an exact EFX allocation. For the latter,

we know that since EFX orientations do not necessarily exist for

bipartite multi-graphs, we have to allocate the remaining edges to

a vertex other than their endpoints, which will create a wasteful

(albeit an EFX) allocation.
Before finding a complete allocation, we have ensured, by one

of our properties, that both non-envied and envied vertices are

satisfied enough with what is allocated to them that they will not

envy if we give all the unallocated edges adjacent to them to a

specific third vertex. We, therefore, safely allocate the remaining

items from the set 𝐸 (𝑖, 𝑗) to a specific agent 𝑘 ≠ 𝑖, 𝑗 , and finally

compute an EFX allocation.

1.2 Further Related Work
For the notion of EFX, [30] proved its existence for two agents with
monotone valuations. For three agents, a series of works proved

the existence of EFX allocations when agents have additive valu-

ations [17], nice-cancelable valuations [8], and finally when two

agents have monotone valuations and one has an MMS-feasible
valuation [2]. EFX allocations exist when agents have identical [30],

binary [25], or bi-valued [4] valuations. The study of several ap-

proximations [6, 16, 18, 23] and relaxations [3, 4, 7, 8, 13, 14, 26, 28]

of EFX have become an important line of research in discrete fair

division.

Another relaxation of envy-freeness proposed in discrete fair

division literature is that of envy-freeness up to some item (EF1),
introduced by [11]. It requires that each agent prefers her own

bundle to the bundle of any other agent after removing some item

from the latter. EF1 allocations always exist and can be computed

efficiently [27]. Epistemic EFX is another relaxation of EFX that was

recently introduced by [13], where they showed its existence and

polynomial-time tractability for additive agents.

Following the work of [19], recent works have started to focus

on EFX and EF1 orientations and allocations on graph setting. [39]

studies the mixed manna setting with both goods and chores and

proves that determining the existence of EFX orientations on simple

graphs for agents with additive valuations is NP-complete and

provides certain special cases like trees, stars, and paths where

it is tractable. [38] relates the existence of EFX orientations and

the chromatic number of the graph. Recently, [20] showed that

EF1 orientations always exist for monotone valuations and can be

computed in pseudo-polynomial time.

Proportionality [21, 34] andmaximin fair share [11] are two other
important fairness notions; we refer the readers to an excellent

recent survey by [5] (and references within) for further details.

2 NOTATION AND DEFINITIONS
For any positive integer 𝑘 , we use [𝑘] to denote the set {1, 2, . . . , 𝑘}.
We consider a set [𝑚] of𝑚 goods (items) that needs to be allocated

among a set [𝑛] = {1, 2, . . . , 𝑛} of 𝑛 agents in a fair manner. For

ease of notation, we will use 𝑔 instead of {𝑔} for an item 𝑔 ∈ [𝑚].
We begin by defining allocations and various fairness notions.

Definition 2.1. (Allocations). A partial allocation𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)
is an ordered tuple of disjoint subsets of [𝑚], i.e, for every pair of dis-
tinct agents 𝑖 and 𝑗 we have 𝑋𝑖 , 𝑋 𝑗 ⊆ [𝑚] and 𝑋𝑖 ∩ 𝑋 𝑗 = ∅. Here,
𝑋𝑖 denotes the bundle allocated to agent 𝑖 ∈ [𝑛] in 𝑋 . We say an
allocation 𝑋 is complete if

⋃
𝑖∈[𝑛]

𝑋𝑖 = [𝑚].

Valuation Functions and Fairness Notions: Each agent 𝑖 ∈ [𝑛]
specifies her preferences using a valuation function 𝑣𝑖 : 2

[𝑚] → 𝑅+,
that assigns a non-negative value to every subset of items. This

work focuses on additive valuations that can be represented via

multi-graphs, defined below.

Definition 2.2. (Additive Valuations). A valuation function 𝑣 :

2
[𝑚] → R+ is said to be additive, if for every subset 𝑆 ⊆ 𝑀 of

items, we have 𝑣 (𝑆) = ∑
𝑔∈𝑆

𝑣 (𝑔), where 𝑣 (𝑔) is the value for the item

𝑔 according to 𝑣 .

We denote a fair division instance as I = ( [𝑛], [𝑚], {𝑣𝑖 }𝑖∈[𝑛] )
where 𝑣𝑖 ’s are additive. Recently, [19] proposed a valuation class

that can be represented by graphs. Here, vertices correspond to

agents, and edges correspond to items such that an item (edge) is

valued positively only by the two agents at its endpoints. [19] stud-

ied simple graphs, i.e., there is at most one edge between every pair

of adjacent vertices. In this work, we focus on a natural extension

of these instances to multi-graphs where we allow multiple edges

between agents.

Definition 2.3. (Multi-graph Instances). A fair division instance
I = ( [𝑛], [𝑚], {𝑣𝑖 }𝑖∈[𝑛] ) on a multi-graph3 is represented via a
multi-graph 𝐺 = (𝑉 , 𝐸) where the 𝑛 agents appear as vertices in 𝑉
and the𝑚 items form the edges in 𝐸 with the following structure: for
every agent 𝑖 ∈ [𝑛] and every item 𝑔 ∈ [𝑚], 𝑣𝑖 (𝑔) > 0 if and only if
𝑔 is incident to 𝑖 .

For every multi-graph instance, we define 𝑞 as the maximum

number of edges between any two adjacent vertices. Also, we de-

note the set of edges between agents 𝑖 and 𝑗 by 𝐸 (𝑖, 𝑗). Note that
𝐸 (𝑖, 𝑗) = 𝐸 ( 𝑗, 𝑖). In this paper, we use the words “agent" and “vertex"
interchangeably, similarly for “item" and “edge".

Definition 2.4. (Symmetric Instances) We say a multi-graph in-
stance is symmetric if, for any edge 𝑒 ∈ 𝐸 (𝑖, 𝑗), it is identically valued
by both 𝑖 and 𝑗 , i.e., 𝑣𝑖 (𝑔) = 𝑣 𝑗 (𝑔).

Let us now define the concept of orientations that are a kind of

non-wasteful allocations in the context of graph-settings, where an

item must be allocated to an agent who values it. More formally,

Definition 2.5. ((Partial) Orientation). A partial orientation is a
partial allocation where an item 𝑔 (if allocated) is given to an agent
𝑖 such that 𝑔 is incident to 𝑖 in the given multi-graph. This can be

3
A multi-graph can have multiple edges between two vertices.
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represented by directing the edges of the graph towards the vertex
receiving the edge.

We use the popular notion of envy-freeness up to any good (EFX)
as a standard fairness notion in our work. Let us first define the

concept of strong envy and some useful constructs related to envy.

Definition 2.6. (Envy and Strong Envy). Given an allocation 𝑋 =

(𝑋1, 𝑋2, . . . , 𝑋𝑛), we say 𝑖 envies 𝑗 if 𝑣𝑖 (𝑋 𝑗 ) > 𝑣𝑖 (𝑋𝑖 ), and we say 𝑖
strongly envies 𝑗 if there exists an item 𝑔 ∈ 𝑋 𝑗 such that 𝑣𝑖 (𝑋𝑖 ) <
𝑣𝑖 (𝑋 𝑗 \ 𝑔).

Definition 2.7. (Envy-Freeness Up to Any Good (EFX)). We say
an allocation is EFX if there is no strong envy between any pair of
agents. Moreover, we say an allocation 𝑋 is 𝛼-EFX for an 𝛼 ∈ (0, 1] if
𝑣𝑖 (𝑋𝑖 ) ≥ 𝛼 · 𝑣𝑖 (𝑋 𝑗 \ 𝑔) for every 𝑖, 𝑗 ∈ [𝑛] and 𝑔 ∈ 𝑋 𝑗 .

Definition 2.8. (EFX-Feasibility). Given a partition𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛)
of items into 𝑛 bundles, we say bundle 𝐴𝑘 is EFX-feasible for agent 𝑖
if we have 𝑣𝑖 (𝐴𝑘 ) ≥ max

𝑗∈[𝑛]
max

𝑔∈𝐴 𝑗

𝑣𝑖 (𝐴 𝑗 \ 𝑔).

We say a bundle containing one item is a “singleton". Note that

no agent strongly envies an agent owning a singleton.

Also, note that in an orientation on a given multi-graph 𝐺 , a

vertex 𝑖 ∈ [𝑛] receives edges that are incident to her. Thus, it is

only the set of 𝑖’s neighbors in 𝐺 that can possibly strongly envy

her. This leads to the following observation, which we will use

frequently in future sections.

Observation 2.9. A partial orientation is EFX on a multi-graph if
and only if no agent strongly envies her neighbor.

Next, we demonstrate a useful property of EFX orientations on

multi-graphs in Lemma 2.10. Its proof is omitted and can be found

in the full version of the paper [1].

Lemma 2.10. For a multi-graph instance, consider a partial EFX
orientation 𝑋 where a vertex 𝑖 is envied by one of her neighbors 𝑗 .
Then, we must have 𝑋𝑖 ⊆ 𝐸 (𝑖, 𝑗). In particular, any vertex is envied
by at most one neighbor in any EFX orientation.

2.1 Graph Theory Definitions
Our work characterizes the existence of EFX orientations based on

the parameter 𝑞 (the number of edges between any of agents in 𝐺)

and the diameter of the multi-graph. We begin by defining some

useful notions related to a multi-graph.

Definition 2.11. (Skeleton of a Multi-graph). For a multi-graph
𝐺 = (𝑉 , 𝐸), we define its skeleton as a graph 𝐺 ′ = (𝑉 , 𝐸′) where 𝐺 ′
has the same set of vertices, and there is a single edge between two
vertices if they share at least one edge in 𝐺 , i.e., 𝑖 is connected to 𝑗 in
𝐺 ′ if 𝐸 (𝑖, 𝑗) ≠ ∅ in 𝐺 .

Definition 2.12. (𝑑 (𝐺) and 𝑞 of a Multi-graph 𝐺). We define 𝑑 (𝐺)
as the diameter of 𝐺 , which is the length of the longest shortest path
in the skeleton of 𝐺 . And, we denote 𝑞 to be the maximum number of
edges between any two agents in 𝐺 .

Definition 2.13. (Center of a Multi-graph). For a multi-graph 𝐺 ,
center 𝑐 ∈ 𝑉 is as member of argmin𝑥∈𝑉 max𝑣∈𝑉 𝑑 (𝑥, 𝑣), where
𝑑 (𝑥, 𝑣) is the distance between 𝑥 and 𝑣 in 𝐺 . In this paper, we choose
one arbitrarily if we have multiple centers.

In this work, we focus on bipartite multi-graphs, that we define

next.

Definition 2.14. (Bipartite Multi-graph). A bipartite multi-graph
𝐺 = (𝑉 , 𝐸) has a skeleton that is a bipartite graph. We denote 𝑉 =

𝑆 ⊔𝑇 with two partitions 𝑆 and 𝑇 having no edge between them.

Definition 2.15. (Multi-star, Multi-𝑃𝑛 , Multi-cycle, and Multi-tree).
A multi-H has a skeleton that is an 𝐻 graph, where 𝐻 can be a star, a
path 𝑃𝑛 of length 𝑛 − 1, a cycle, or a tree.

Note that bipartite multi-graphs are a huge class consisting of

multi-trees, multi-cycles of even length, and planer multi-graphs

with faces of even length, to name a few.

3 EFX ORIENTATIONS ON BIPARTITE
MULTI-GRAPHS

Christodoulou et al. [19] shows that EFX orientations may not

always exist, even on simple graphs. Therefore, it is not surprising

when we show the same on bipartite multi-graphs. In particular, we

examine multi-cycles (a special kind of bipartite multi-graphs) and

show that even for 𝑞 = 2, EFX orientations may not always exist for

four agents; see Theorem 3.2. Nonetheless, we identify the correct

parameters to characterize the scenarios where EFX orientations

are guaranteed to exist; see Table 1.

To do so, we proceed step by step, carefully considering all pos-

sible cases. Initially, we focus on bipartite multi-graphs with di-

ameters, 𝑑 (𝐺), of small numbers. For 𝑑 (𝐺) = 1, bipartite multi-

graphs become multi-𝑃2, for which an EFX orientation can easily

be achieved using the cut-and-choose protocol. As a warm-up,

we show the existence of EFX orientations for multi-trees with

𝑑 (𝐺) = 2, i.e., for multi-stars. Here, we do so for 𝑞 = 2, but the same

approach can be generalized to any 𝑞, which we discuss in the next

section (in Proposition 4.3).

In this section, we present counter-examples for various cases

via figures, where we have symmetric instances, and the number

on each edge depicts the value of that edge for both endpoints. A

few proofs are omitted; these may be found in the full version of

the paper [1].

Proposition 3.1. EFX orientations exist on multi-stars for 𝑞 = 2.

However, an EFX orientation might not always exist on bipartite

multi-graphs with 𝑑 (𝐺) ≥ 2. We prove it by providing an example

in the following theorem.

Theorem 3.2. EFX orientations on cyclic bipartite multi-graphs
with 𝑑 (𝐺) ≥ 2 and any 𝑞 ≥ 2 may not exist (even on symmetric
instances).

Since EFX orientations do not exist even on bipartite multi-cyclic

graphs with small diameters, we examine the existence of EFX
orientation on multi-trees as an important subset of bipartite multi-

graphs, and show the following.

Theorem 3.3. EFX orientations exist and can be computed in poly-
nomial time on multi-trees with 𝑑 (𝐺) ≤ 4 and 𝑞 = 2.

Unfortunately, EFX orientations may not exist on multi-trees

with a greater diameter or higher 𝑞, as shown in the following

theorems.
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Figure 1: Instance (a) represents a multi-𝑃3 instance where
every EFX orientation leaves agent 3 envied. We use this as a
building block to give amulti-𝑃6 instance that does not admit
any EFX allocation; see instance (b).

Theorem 3.4. For multi-trees with 𝑑 (𝐺) ≥ 3, EFX orientations
may not exist for 𝑞 ≥ 3 (even on symmetric instances).

Theorem 3.5. For multi-trees with 𝑑 (𝐺) ≥ 5, EFX orientations
may not exist even for 𝑞 = 2 (even on symmetric instances).

Proof. We present a multi-𝑃6 instance with 𝑞 = 2 that does

not admit any EFX orientation. We use Figure 1 to represent our

counter-example.

We first construct a special multi-𝑃3 instance where a specific

node in any of its EFX orientations is envied. Consider the multi-𝑃3
instance in Figure 1(a). One can easily show that it admits exactly

two EFX orientations, and agent 3 is envied in both.

Now we build the multi-𝑃6 instance in Figure 1(b) that is made

by two copies of the above-mentioned special multi-𝑃3 instance. We

connect them with an edge of value 𝛿 ≪ 𝜖 using the two vertices

(vertex 3 and vertex 4) that are always envied in EFX orientations of

the multi-𝑃3 parts. Without loss of generality, let agent 3 receive the

edge (3, 4) with value 𝛿 . Now, since in any EFX orientation of the

special multi-𝑃3 instance, agent 3 was always envied, the addition

of edge with value 𝛿 to agent 3’s bundle will therefore create strong

envy against her.

One can extend the above counter-example by adding nodes to

the graph with edges having value 𝛿 ′ ≈ 0 to achieve a counter-

example for any 𝑛 ≥ 6 and any 𝑑 (𝐺) ≥ 5. □

3.1 Hardness of Deciding the Existence of EFX
Orientations on Bipartite Multi-Graphs

In this section, we consider the computational problem of decid-

ing whether a given instance on a bipartite multi-graph (even a

multi-tree with a constant number of agents) admits an EFX ori-

entation. We reduce from the NP-complete problem of Partition to

our problem.

Partition Problem. Consider a multi-set
4 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑘 } of

𝑘 non-negative integers. The problem is to decide whether 𝑃 can

be partitioned into two multi-sets 𝑃1 and 𝑃2 such that

∑
𝑝∈𝑃1 𝑝 =∑

𝑝∈𝑃2 𝑝 .

4
A multi-set allows multiple instances for each of its elements.

𝜖

10 + 1

2
𝜖

10

𝜖

𝜖

10 + 1

2
𝜖

10

𝜖

𝑝1
𝑝2

𝑝𝑘−1
𝑝𝑘𝛿 𝛿

1 2 3

4 5

6 7 8

. ..

Figure 2: The construction used in proof of Theorem 3.6.
Here, 𝛿 ≪ 𝜖 ≪ 1.

We prove a stronger claim and prove hardness for multi-tree

instances.

Theorem 3.6. The problem of deciding whether a fair division
instance on a multi-tree (with additive valuations) admits an EFX
orientation is NP-complete. It holds true even for symmetric instances
with a constant number of agents.

Proof. Given an orientation, it is easy to verify if it is EFX.
Hence, the problem belongs in NP.

Let us now consider an instance 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑘 } of the
Partition problem. We will construct a fair division instance on a

multi-tree with eight vertices, as depicted in Figure 2. Note that we

have used the multi-𝑃3 instance used in the proof of Theorem 3.5

here as well. Following the similar lines, we can argue that in any

EFX orientation in this instance, agent 2 envies agent 3, and agent 7

envies agent 6. Thus, the two edges (3, 4) and (5, 6) are allocated to
agents 4 and 5 respectively. Now, one can observe that this instance

admits an EFX orientation if and only if the set 𝑃 can be partitioned

into two sets of equal sum. This completes our proof. □

Theorem 3.6 immediately implies the following, which is inde-

pendently proved by [20]:

Corollary 3.7. Deciding whether an EFX orientation exists on a
multi-graph with additive valuations is NP-complete, even for sym-
metric instances with a constant number of agents.

4 EXISTENCE OF EFX ALLOCATIONS ON
BIPARTITE MULTI-GRAPHS

In this section, we prove our main positive result, showing that

any fair division instance on a bipartite multi-graph with additive

valuations always admits an EFX allocation. Furthermore, such

allocations can be computed in polynomial time Note that, as we

have already discussed in Section 3 that EFX orientations may not

exist for these instances, we know that an EFX allocation may

allocate some items to a third party, i.e., not the endpoints of its

corresponding edge.

We will denote a fair division instance on a bipartite multi-graph

by 𝐺 = (𝑆 ⊔𝑇, 𝐸), where 𝑆 and 𝑇 represent the two bi-partitions

parts of its skeleton. We begin by discussing the main idea of our

techniques (in Section 4.1) and then define some concepts and

properties (in Section 4.2) useful for our proof (in Sections 4.3, 4.4,

4.5, and 4.6).

All the omitted proofs of this section can be found in the full

version of the paper [1].
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4.1 Main Idea
We introduce the concept of configuration to decide how to allocate

the edges between any two adjacent vertices (in 𝐺) to their end-

points. It has a flavor that is similar to the cut-and-choose protocol

(used for finding EFX allocations between two agents). In our proof,

we will use this configuration to partially orient the edges between

two agents. We define it as follows:

Definition 4.1. 𝑇 -cutConfigurations: For any pair of agents 𝑖 ∈ 𝑆
and 𝑗 ∈ 𝑇 , we let agent 𝑗 to partition the set 𝐸 (𝑖, 𝑗) into two bundles𝐶1

and𝐶2 such that both are EFX-feasible for 𝑗 (for the items 𝐸 (𝑖, 𝑗)). We
call the partition (𝐶1,𝐶2) as the 𝑗-cut configuration between agents 𝑖
and 𝑗 .

We show that 𝑗-cut configurations can be computed in polyno-

mial time (in Lemma 4.2).

Lemma 4.2. For any additive valuation function 𝑣 over a set of items
𝑆 , there always exist a partition (𝐶1,𝐶2) of 𝑆 such that both 𝐶1 and
𝐶2 are EFX-feasible with respect 𝑣 . Moreover, this partition can be
computed in polynomial time.

As a warm-up, we will use this configuration to prove the exis-

tence of EFX orientations for multi-stars with any 𝑞. Previously, (in

Proposition 3.1), we proved the existence of EFX orientations for

multi-stars with 𝑞 = 2.

Proposition 4.3. EFX orientations exist and can be computed in
polynomial time for multi-stars with any 𝑞.

4.2 Some Useful Notions
For a partial allocation 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛), we define the follow-
ings:

• For any two adjacent agents 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇 , we define

𝐴𝑖, 𝑗 (𝑋 ) as the set of available edges in 𝐸 (𝑖, 𝑗) for 𝑖 and
𝐴 𝑗,𝑖 (𝑋 ) as the set of available edges in 𝐸 (𝑖, 𝑗) for 𝑗 . For-

mally, we define these sets as follows
5
. Let us assume the

𝑗-cut configuration of 𝐸 (𝑖, 𝑗) is (𝐶1,𝐶2).

𝐴𝑖, 𝑗 (𝑋 ) =


argmax

𝐶1,𝐶2

{𝑣𝑖 (𝐶1), 𝑣𝑖 (𝐶2)}, 𝐸 (𝑖, 𝑗 )∩𝑋𝑘=∅ for all 𝑘∈[𝑛]

𝐸 (𝑖, 𝑗) \ 𝑋 𝑗 , 𝑋𝑖∩𝐸 (𝑖, 𝑗 )=∅,𝑋 𝑗∩𝐸 (𝑖, 𝑗 )≠∅

∅, 𝑋𝑖∩𝐸 (𝑖, 𝑗 )≠∅,𝑋 𝑗∩𝐸 (𝑖, 𝑗 )=∅

𝐴 𝑗,𝑖 (𝑋 ) =


argmax

𝐶1,𝐶2

{𝑣 𝑗 (𝐶1), 𝑣 𝑗 (𝐶2)}, 𝐸 (𝑖, 𝑗 )∩𝑋𝑘=∅ for all 𝑘∈[𝑛]

∅, 𝑋𝑖∩𝐸 (𝑖, 𝑗 )=∅,𝑋 𝑗∩𝐸 (𝑖, 𝑗 )≠∅

𝐸 (𝑖, 𝑗) \ 𝑋𝑖 , 𝑋𝑖∩𝐸 (𝑖, 𝑗 )≠∅,𝑋 𝑗∩𝐸 (𝑖, 𝑗 )=∅

• For 𝑖 ∈ [𝑛], we define 𝐴𝑖 (𝑋 ) to be her available set of edges,
i.e., 𝐴𝑖 (𝑋 ) =

⋃
𝑗≠𝑖, 𝑗∈[𝑛]

𝐴𝑖, 𝑗 (𝑋 ).

• For 𝑖 ∈ [𝑛],𝑈𝑖 (𝑋 ) is the set of all unallocated edges incident
to 𝑖 . Note that 𝐴𝑖 (𝑋 ) ⊆ 𝑈𝑖 (𝑋 ).
• For 𝑖 ∈ [𝑛], 𝐵𝑖 (𝑋 ) is the set of all available bundles for 𝑖 , i.e.
𝐵𝑖 (𝑋 ) = {𝐴𝑖, 𝑗 (𝑋 ) : 𝑗 ≠ 𝑖, 𝑗 ∈ [𝑛]}.

5
In other cases,𝐴𝑖,𝑗 (𝑋 ) and𝐴 𝑗,𝑖 (𝑋 ) are not defined.

• For any envied agent 𝑖 ∈ [𝑛], we define 𝑆𝑖 (𝑋 ) ⊆ [𝑛] to be

her safe set, as follows,

𝑆𝑖 (𝑋 ) = {𝑘 ∈ [𝑛] : 𝑘 is non-envied in𝑋 and 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋𝑘∪𝐴𝑖 (𝑋 ))}.
That is, 𝑖 will not envy 𝑘 even if we allocate her whole avail-

able set 𝐴𝑖 (𝑋 ) to 𝑘 .
To achieve a complete EFX allocation, we will use a similar ap-

proach as [19]. We will first find a partial orientation with some

nice properties and then allocate the remaining edges to some agent

who is not incident to them. Identifying these key nice properties

is a non-trivial challenge that we address next.

Key Properties: We search for a partial allocation𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)
with the following properties:

(1) 𝑋 is an EFX orientation.

(2) For any two adjacent agents 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇 , items in 𝐸 (𝑖, 𝑗)
must be allocated based on the 𝑗-cut configuration (𝐶1,𝐶2)
to either one of their endpoints. By this property, we mean

that one of the following cases must happen for𝑋 (following

the Definition 4.1):

• Either 𝐶1 ⊆ 𝑋𝑖 ,𝐶2 ⊆ 𝑋 𝑗 or 𝐶2 ⊆ 𝑋𝑖 ,𝐶1 ⊆ 𝑋 𝑗 .

• One of the bundles
6 𝐶1 or 𝐶2 is allocated to agent 𝑖 , and

the other bundle is unallocated in 𝑋 .

• One of the bundles 𝐶1 or 𝐶2 is allocated to agent 𝑗 , and

the other bundle is unallocated in 𝑋 .

(3) For any agent 𝑖 ∈ [𝑛] and a set 𝐵 ∈ 𝐵𝑖 (𝑋 ), we have 𝑣𝑖 (𝑋𝑖 ) ≥
𝑣𝑖 (𝐵).

(4) For any non-envied agent 𝑖 ∈ [𝑛], we have 𝐴𝑖 (𝑋 ) = ∅.
(5) For any envied agent 𝑖 ∈ [𝑛], let 𝑗 envies 𝑖 . Then, we have

𝑗 ∈ 𝑆𝑖 (𝑋 ).
We are now finally equipped to present our algorithm. We will

give a step-by-step procedure to satisfy each key property in the

above order. These key properties ensure that there is an easy

way to then convert a partial EFX orientation to a complete EFX
allocation (see Section 4.6).

For the sake of a better comprehension, we illustrate the three

main steps of our algorithm via a running example and show the

results after each step in the full version of the paper [1].

4.3 Satisfying Properties (1)-(3)
We present a greedy algorithm that assigns a set of items to each

agent and satisfies the first three properties. It works in the follow-

ing manner.

Let 𝑆 = {𝑖1, 𝑖2, . . . , 𝑖 |𝑆 | } and 𝑇 = { 𝑗1, 𝑗2, . . . , 𝑗 |𝑇 | } be the two bi-

partitions. We fix a picking sequence 𝜎 = [𝑖1, . . . , 𝑖 |𝑆 | , 𝑗1, . . . , 𝑗 |𝑇 | ]
that decides the order in which an agent comes and selects her

most valuable available bundle. Since the definition of 𝐴𝑖, 𝑗 (𝑋 ) is
dynamic, the set of available bundles for some agents may change

after another agent picks her favorite bundle in the picking se-

quence. Algorithm 1 illustrates this procedure. The properties of

this algorithm are further formalized in Lemmas 4.4 and 4.5.

Lemma 4.4. For a fair division instance on bipartite multi-graph, the
output allocation of Algorithm 1 satisfies properties (1)-(3). Moreover,
the algorithm runs in polynomial time.

6𝑋𝑖 can also have other items.
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Algorithm 1: Greedy Orientation: Properties (1)-(3)

Input: The fair division instance on a bipartite multi-graph

𝐺 = (𝑆 ⊔𝑇, 𝐸)
Output: A partial EFX orientation satisfying properties

(1)-(3)
1 for (𝑙 ← 1; 𝑙 ≤ |𝑆 | ; 𝑙 += 1) do
2 𝑘 ← argmax

𝑘∈[𝑛]\{𝑖𝑙 }
𝑣𝑖𝑙 (𝐴𝑖𝑙 ,𝑘 (𝑋 ))

3 𝑋𝑖𝑙 ← 𝐴𝑖𝑙 ,𝑘 (𝑋 )
4 for (𝑙 ← 1; 𝑙 ≤ |𝑇 | ; 𝑙 += 1) do
5 𝑘 ← argmax

𝑘∈[𝑛]\{ 𝑗𝑙 }
𝑣 𝑗𝑙 (𝐴 𝑗𝑙 ,𝑘 (𝑋 ))

6 𝑋 𝑗𝑙 ← 𝐴 𝑗𝑙 ,𝑘 (𝑋 )

Lemma 4.5. In the output allocation 𝑋 of Algorithm 1, every envied
vertex belongs to the set 𝑆 .

Lemma 4.5 will continue to hold while we obtain our desired

orientation. As demonstrated in the following sections, we will not

produce new envied vertices when we modify our allocation 𝑋 to

satisfy properties (1)-(5). And hence, Lemma 4.5 will continue to

hold in the above process.

4.4 Satisfying Property (4)
Let us now focus on satisfying property (4) that requires𝐴𝑖 (𝑋 ) = ∅
for any non-envied agent 𝑖 ∈ [𝑛]. Let us assume that the output

allocation 𝑋 of Algorithm 1 violates property (4). Consider a non-

envied agent 𝑖 ∈ [𝑛] with 𝐴𝑖 (𝑋 ) ≠ ∅. Therefore, an agent 𝑗 ∈ [𝑛]
exists such as 𝐴𝑖, 𝑗 (𝑋 ) ≠ ∅. We will now allocate all of 𝐴𝑖, 𝑗 (𝑋 )
either to 𝑖 or 𝑗 , depending on the following three possible cases.

• Case 1. A set of items in 𝐸 (𝑖, 𝑗) is allocated to 𝑗 : Since
𝐴𝑖, 𝑗 ≠ ∅, by its definition and property (2), no edge in 𝐸 (𝑖, 𝑗)
is allocated to 𝑖 . In this case, we can allocate 𝐴𝑖, 𝑗 (𝑋 ), which
is exactly the set 𝐸 (𝑖, 𝑗) \ 𝑋 𝑗 to 𝑖 . Since 𝑋 𝑗 ∩ 𝐸 (𝑖, 𝑗) ≠ ∅,
𝑗 chose the better bundle from the configuration of 𝐸 (𝑖, 𝑗)
during Algorithm 1. Also, the set 𝐴𝑖, 𝑗 (𝑋 ) has value only to

agents 𝑖 and 𝑗 ; therefore, since agent 𝑖 was non-envied before,

the modified allocation remains EFX. One can observe that

properties (1)-(3) remain satisfied. Observe that, in this case,

𝐸 (𝑖, 𝑗) will be fully allocated.

• Case 2. No item in 𝐸 (𝑖, 𝑗) is allocated, and 𝑗 is non-
envied:Without loss of generality, we can assume 𝑖 ∈ 𝑆 and

𝑗 ∈ 𝑇 . Let the partition (𝐶1,𝐶2) be the 𝑗-cut configuration
of the set 𝐸 (𝑖, 𝑗). Let us assume 𝑣𝑖 (𝐶1) ≥ 𝑣𝑖 (𝐶2) (the other
case is symmetric). Observe that by property (3) 𝑣𝑖 (𝑋𝑖 ) ≥
max{𝑣𝑖 (𝐶1), 𝑣𝑖 (𝐶2)} and 𝑣 𝑗 (𝑋 𝑗 ) ≥ max{𝑣 𝑗 (𝐶1), 𝑣 𝑗 (𝐶2)}. Since
the 𝑋 is an orientation, we have that 𝑣𝑖 (𝑋 𝑗 ) = 𝑣 𝑗 (𝑋𝑖 ) = 0.

We now allocate 𝐶1 to agent 𝑖 and 𝐶2 to agent 𝑗 to obtain,

𝑣𝑖 (𝑋 𝑗 ∪𝐶2) = 𝑣𝑖 (𝐶2) ≤ 𝑣𝑖 (𝑋𝑖 ), and 𝑣 𝑗 (𝑋𝑖 ∪𝐶1) = 𝑣 𝑗 (𝐶1) ≤ 𝑣 𝑗 (𝑋 𝑗 )
Thus, the allocation remains EFX, and all the first three prop-
erties are still satisfied. Notice that 𝐸 (𝑖, 𝑗) will be fully allo-

cated in this case as well.

• Case 3. No item in 𝐸 (𝑖, 𝑗) is allocated and 𝑗 is envied: In
this case, Lemma 4.5 entails that 𝑗 ∈ 𝑆 and 𝑖 ∈ 𝑇 . Let the par-
tition (𝐶1,𝐶2) be the 𝑖-cut configuration of items 𝐸 (𝑖, 𝑗). By

Algorithm 2: Allocating to Non-Envied Vertices: Proper-

ties (1)-(3) + Property (4)

Input: A partial orientation 𝑋 ← Algorithm 1(𝐺)
satisfying properties (1)-(3)

Output: An orientation 𝑋 satisfying properties (1)-(4)
1 while there exists a non-envied agent 𝑖 ∈ [𝑛] such that

𝐴𝑖 (𝑋 ) ≠ ∅ do
2 while there exists an agent 𝑗 ∈ [𝑛] such that 𝐴𝑖, 𝑗 (𝑋 ) ≠ ∅

do
3 if 𝑋 𝑗 ∩ 𝐸 (𝑖, 𝑗) ≠ ∅ then
4 𝑋𝑖 ← 𝑋𝑖 ∪𝐴𝑖, 𝑗 (𝑋 )
5 else if 𝑋 𝑗 ∩ 𝐸 (𝑖, 𝑗) = ∅ and 𝑗 is non-envied then
6 W.l.o.g, let 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 .
7 (𝐶1,𝐶2) ← the 𝑗-cut configuration of 𝐸 (𝑖, 𝑗).
8 𝐶ℓ ← argmax

𝐶1,𝐶2

{𝑣𝑖 (𝐶1), 𝑣𝑖 (𝐶2)}.

9 𝑋𝑖 ← 𝑋𝑖 ∪𝐶ℓ

10 𝑋 𝑗 ← 𝑋 𝑗 ∪𝐶3−ℓ

11 else if 𝑋 𝑗 ∩ 𝐸 (𝑖, 𝑗) = ∅ and 𝑗 is envied then
12 (𝐶1,𝐶2) ← the 𝑖-cut configuration of 𝐸 (𝑖, 𝑗).
13 𝐶ℓ ← argmax

𝐶1,𝐶2

{𝑣𝑖 (𝐶1), 𝑣𝑖 (𝐶2)}.

14 𝑋𝑖 ← 𝑋𝑖 ∪𝐶ℓ

property (3) of 𝑋 , we have 𝑣 𝑗 (𝑋 𝑗 ) ≥ max{𝑣 𝑗 (𝐶1), 𝑣 𝑗 (𝐶2)}.
Assuming 𝑣𝑖 (𝐶1) ≥ 𝑣𝑖 (𝐶2) (symmetric otherwise), we allo-

cate𝐶1 to agent 𝑖 . Agent 𝑗 will not envy 𝑖 and agent 𝑖 remains

non-envied in the modified allocation. Hence, the allocation

remains EFX, and the properties (1)-(3) are still satisfied.

Formalized protocol (Algorithm 2) to satisfy property (4) along
with properties (1)-(3): We repeat the following process as long

as there is a non-envied agent 𝑖 ∈ [𝑛] who violates property (4).

We pick such a violator agent 𝑖 . Then, for every agent 𝑗 ≠ 𝑖 such

that 𝐴𝑖, 𝑗 (𝑋 ) ≠ ∅, we allocate 𝐴𝑖, 𝑗 (𝑋 ) according to the cases above.

Note that we allocate at least one edge incident to 𝑖 at each step.

Therefore, for each agent 𝑖 , this step takes at most 𝑂 (𝑚) iterations.
Then, we repeat. At the end, for any non-envied agent 𝑖 ∈ [𝑛], we
ensure that 𝐴𝑖 (𝑋 ) = ∅, thereby satisfying property (4). Moreover,

as discussed above, properties (1)-(3) remain satisfied as well. We

abuse the notation and call the partial orientation we have built so

far (that satisfies properties (1)-(4)) by 𝑋 .

Claim 4.6. After satisfying properties (1)-(4), if there exists a pair of
agents 𝑘, 𝑖 ∈ [𝑛] such that 𝐴𝑘,𝑖 (𝑋 ) ≠ ∅, then 𝑘 is an envied vertex,
but 𝑖 is non-envied. Furthermore, 𝐸 (𝑘, 𝑖) \𝐴𝑘,𝑖 (𝑋 ) is allocated to 𝑖 .

Claim 4.7. After satisfying properties (1)-(4), we have 𝑣𝑖 (𝑈𝑖 (𝑋 )) ≤
𝑣𝑖 (𝑋𝑖 ) for every non-envied vertex 𝑖 ∈ [𝑛].

4.5 Satisfying Property (5)
We now finally focus on satisfying property (5) where for any

envied agent 𝑖 ∈ [𝑛] who is envied by 𝑗 must be such that 𝑗 ∈ 𝑆𝑖 (𝑋 ).
We present Algorithm 3 to detail the required modifications for

reaching our desired partial orientation.
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Algorithm 3 begins by identifying a pair of agents (𝑖, 𝑗) in 𝑋

where 𝑖 is envied by 𝑗 and 𝑗 ∉ 𝑆𝑖 (𝑋 ) and swaps the bundles they

possess from the 𝑗-cut configuration of the set 𝐸 (𝑖, 𝑗). And then,

we allocate the set 𝐴𝑖 (𝑋 ) to 𝑖 as well. We will show (in Lemma 4.8)

that the above procedure will make agent 𝑖 non-envied. Algorithm

3 presents the pseudo-code.

Algorithm 3: Safe Set: Properties (1)-(4)+Property (5)

Input: Allocation X satisfying properties (1)-(4)
Output: Allocation X satisfying properties (1)-(5)

1 while there exists an 𝑖 ∈ [𝑛] who is envied by 𝑗 ∉ 𝑆𝑖 (𝑋 ) do
2 Let the partition (𝐶1,𝐶2) be the 𝑗-cut configuration of

the set (𝑖, 𝑗).
3 Swap the bundles 𝐶1 and 𝐶2 between agents 𝑖 and 𝑗 .

4 𝑋𝑖 ← 𝑋𝑖 ∪𝐴𝑖 (𝑋 )

Lemma 4.8. Algorithm 3 terminates and outputs a partial alloca-
tion that satisfies properties (1)-(5). Moreover, the algorithm runs in
polynomial time.

Note that Claim 4.6 still holds since properties (1)-(4) are satisfied.

4.6 Allocating the Remaining Items
For a given bipartite multi-graph, we execute Algorithms 1, 2, and

3 (in that order) and reach a desired partial EFX orientation 𝑋 that

satisfies properties (1)-(5). What is remaining is to now make 𝑋

complete by assigning the unallocated items while maintaining EFX
guarantees. We will show that the five properties of 𝑋 make it easy

to do the above.

By Claim 4.6, we know that the only unallocated edges in 𝑋

are between two vertices 𝑖 and 𝑗 where 𝑖 is envied, and 𝑗 is non-

envied. We call the unallocated set of items between 𝑖 and 𝑗 as 𝐶 .

We allocate 𝐶 to an agent 𝑘 that envies 𝑖 . Note the 𝑘 ≠ 𝑗 , since

otherwise, 𝑗 envies 𝑖 , and hence, 𝑖 would have received something

from 𝐸 (𝑖, 𝑗), which is a contradiction.

Using property (5), we know that 𝑘 ∈ 𝑆𝑖 (𝑋 ), i.e., 𝑣𝑖 (𝑋𝑖 ) ≥
𝑣𝑖 (𝑋𝑘 ∪𝐴𝑖 (𝑋 )). Moreover, using Claim 4.7, we know that 𝑣 𝑗 (𝑋 𝑗 ) ≥
𝑣 𝑗 (𝑈 𝑗 (𝑋 )). Note that 𝑣 𝑗 (𝑋𝑘 ) = 0, since 𝑘 and 𝑗 both belong to the

set 𝑇 . Hence, allocating 𝐶 (which is subset of 𝐴𝑖 (𝑋 ) and 𝑈 𝑗 (𝑋 ))
to 𝑘 does not make either 𝑖 or 𝑗 envious of 𝑘 . Therefore, we reach

a complete EFX allocation. Moreover, one can easily observe that

every step in our algorithm can be performed in polynomial time.

That is, we have our following main theorem.

Theorem 4.9. For any fair division instance on bipartite multi-
graph with additive valuations, EFX allocations always exist and can
be computed in polynomial time.

Now, as a corollary, we obtain the following theorem that says

that we can compute EFX orientations that are 1/2-EFX in polyno-

mial time.

Theorem 4.10. There is an EFX orientation for any fair division
instance on bipartite multi-graph where at least ⌈𝑛

2
⌉ of agents are EFX

and the remaining agents are 1

2
-EFX. Furthermore, such an orientation

can be computed in polynomial time.

5 FURTHER IMPROVEMENTS AND
LIMITATIONS

Theorem 4.9 motivates the question of what happens if the graph

skeleton contains cycles of odd length. In this section, we prove,

using our technique, that any multi-cycle instance with additive

valuations admits an EFX allocation (see Theorem 5.1, with its proof

in the full version of the paper [1]). This demonstrates the power

of our technique while providing an insight and strong hope for

potentially proving the existence of EFX on general multi-graphs.

Theorem 5.1. For any fair division instance on multi-cycles with
additive valuations, EFX allocations always exist and can be computed
in polynomial time.

Why do our techniques fail for general multi-graphs? Theorems

4.9 and 5.1 make it hopeful that one can adapt/modify our tech-

niques to prove the existence of EFX allocations in general multi-

graphs. In our proof, we never had to deal with the case (after

Algorithm 1) where there were two envied vertices 𝑖 and 𝑗 in the

graph such that no edge from 𝐸 (𝑖, 𝑗) was allocated. This turns out to
be the most complicated case for the general multi-graph structure.

As a solution concept, one can aim to achieve a partial orienta-

tion with |𝑆𝑖 (𝑋 ) ∩ 𝑆 𝑗 (𝑋 ) | ≥ 2 for any adjacent envied vertices 𝑖, 𝑗 .

If this happens, we can let (𝐶1,𝐶2) be the 𝑖-cut configuration of

items 𝐸 (𝑖, 𝑗) and then allocate 𝐶1 and 𝐶2 to two different vertices

in 𝑆𝑖 (𝑋 ) ∩ 𝑆 𝑗 (𝑋 ). Also, we believe that we have to use both config-

urations 𝑖-choose and 𝑗-choose for every pair of adjacent vertices

𝑖, 𝑗 for extending our result to general multi-graphs.

Conjecture: Any fair division instance on a multi-graph ad-

mits an EFX allocation.

6 CONCLUSION
In this work, we study a model that captures the setting where

every item is relevant to at most two agents and any two agents

can have multiple relevant items in common (represented by multi-

graphs). We prove that EFX allocations exist and can be computed

in polynomial time for fair division instances on bipartite multi-

graphs and multi-cycles. An immediate question for future research

work is to understand EFX allocations on general multi-graphs, as

discussed in Section 5.

The fact that EFX orientations may not exist on bipartite multi-

graphs implies the fact that wastefulness is inherent in EFX alloca-

tions in these instances. In this work, we prove the existence of

orientations that are EFX for half the agents and 1/2-EFX for the

remaining agents. Another immediate question is, therefore, to im-

prove this factor. For understanding the trade-offs with efficiencies,

it would be interesting to see what one can say about approximating

social welfare or Nash social welfare of EFX allocations.

Ultimately, we hope that insights gained from EFX allocations

in the multi-graph setting will contribute to advancements in the

broader challenge of EFX allocations in a general setting.
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