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ABSTRACT
Traditional auction theory assumes symmetric utility functions and

equilibrium bidding strategies based on common and symmetric

prior distributions. Although extensive literature addresses asym-

metries in prior distributions, the assumption of symmetric utility

functions persists. A long history of experimental research on auc-

tions suggests that this assumption is hard to justify and that utility

functions are not symmetric across bidders, probably driven by

different behavioral motives such as risk-aversion, which leads to

asymmetric bidding strategies. This observation is important for

markets with human bidders and agentic markets with autonomous

agents. Unfortunately, equilibrium analysis with asymmetric utility

functions is technically challenging, and we are not aware of equi-

librium predictions. We leverage recent advances in equilibrium

learning to compute equilibrium in asymmetric auction models.

First, we analyze asymmetries in isolated markets. Interestingly,

we can show that in contrast to the canonical symmetric model,

unilateral deviation from the symmetric risk-neutral equilibrium

strategy leads to higher profit for the deviating bidder compared to

the bidder who follows the symmetric equilibrium strategy. Second,

we analyze agentic markets, where firms compete repeatedly and

can parameterize agents to bid more or less aggressively. This leads

to an interesting meta-game in which it is a Nash equilibrium for

both users to select a risk-seeking agent in the first-price auction

and a risk-averse agent in the all-pay auction.
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1 INTRODUCTION
In the standard symmetric independent private values model in

auction theory, bidders are assumed to have a prior belief over
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their opponents’ valuations (or costs), which is modeled with a

symmetric prior distribution that is common knowledge among

the bidders, and their utility functions and strategies are assumed

to be symmetric [17]. These symmetry assumptions lead to unique

equilibrium predictions for the wide-spread first-price sealed-bid

auction with mild assumptions on the prior distributions [8, 19] and

the all-pay auction [18] but are hard to justify from observations

in the field or in the lab [16].

A significant theoretical literature deals with asymmetries in

the prior distributions [22, 27], while the utility functions are still

assumed to be symmetric. A common and symmetric prior is not

an unreasonable assumption in many applications. For example,

in industries with relatively standardized production processes

and inputs, competitors have accurate estimates of cost structures

in the industry [7]. However, decades of experimental research

on auctions have provided overwhelming evidence that strategies

are not symmetric and deviate from their prescribed risk-neutral

equilibrium strategy in the lab where a common and symmetric

prior distribution is given [16]. For example, bidders in first-price

auctions with a smaller number (two or three) of competitors con-

sistently bid higher (or lower) than the risk-neutral Bayes-Nash
Equilibrium (BNE) strategy in the lab. There is also evidence for

overbidding in the field [20]. In the all-pay auction, bidders under-

bid the risk-neutral BNE for low valuations and overbid it for high

valuations. Müller and Schotter [24] refer to this pattern as bifur-
cation. Risk-aversion is among the most widely cited conjectures

[6, 10, 12].
1
However, from years of laboratory experiments, it is

also clear that the level of risk-aversion is not symmetric across

bidders in the lab [16].

To the best of our knowledge, this is the first study that sys-

tematically analyzes the influence of asymmetric utility functions

in auctions. We want to understand competition with asymmetric
utility functions and ask the question of how a firm that faces risk-

averse opponents should behave strategically if this firm wants to

maximize its expected profit. The expected profit of a risk-neutral

and quasi-linear bidder equals their expected utility. When we say

that bidders are risk-averse, we refer to their utility model, which

they use to derive their equilibrium strategy. However, ex-post we

are interested in analyzing their expected profit.

We study two scenarios, in which we assume that the competing

firms have different information levels about the risk-attitude ex-

pressed by the utility function of their opponents: First, we analyze

1
Alternative utility models are based on regret [11], and, depending on the regret

parameter, it leads to qualitatively similar bidding strategies than risk-aversion in

first-price auctions.
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asymmetries in small and isolated markets as they can frequently

be found in practice.
2
People compete in an auction once and they

do not necessarily understand the level of risk-aversion of their

opponent. A widespread phenomenon in such situations is that of

false consensus. This phenomenon describes that humans assume

that their personal decisions are over-represented and correct in

the prevailing circumstances [21], meaning that each firm assumes

that the opponent has the same utility function as themselves. If

such bidders meet and derive an equilibrium strategy under this

assumption, the result is not in equilibrium, but it might be a good

description of what happens in such isolated, high-stakes auctions,

where the level of risk-aversion is most likely not the same among

bidders. We also analyze the equilibrium outcome in case bidders

knew each other’s utility functions. In both of these models, the

risk-neutral firm that aims to maximize its expected payoff achieves

a lower expected profit than the risk-averse opponent. In symmet-

ric games such as rock-paper-scissors, an agent that deviates from

the symmetric equilibrium strategy cannot improve their expected

profit. Therefore, it is interesting that with several bidders who

aim to maximize expected profit, the one who deviates from the

symmetric and risk-neutral BNE achieves higher expected profit

(not utility) than their opponents who stick to this risk-neutral equi-

librium strategy. Note that the expected profit they both make with

a deviating bidder is reduced compared to the auction if all bidders

behaved risk-neutral. Equilibria in auctions with asymmetric utility

functions were unknown so far.

Second, we analyze markets where competitors interact fre-

quently, and interactions are automated using bidding bots. Display

ad auctions are just one example of agentic markets where bidders

interact frequently [9]. We do not aim to model the complex de-

tails of such markets, but abstract to a more stylized model where

bidders can parameterize how aggressively they want their agents

to bid in each auction. This is naturally done via the level of risk-

aversion of the bidders. For example, more risk-averse bidders bid

more aggressively in each auction with a higher likelihood of win-

ning but lower profit in a first-price auction. If bidders compete

frequently, they should aim for expected profit, and risk-aversion

should have less of an impact. However, this does not mean that

both bidders can be expected to use a risk-neutral bidding agent

that just aims to maximize the expected profit in each round. Ac-

tually, the environment leads to a meta-game where each agent

selects a risk parameter. Recent advances in equilibrium learning

allow us to determine the expected payoff for each combination of

utility functions and, with this, a payoff matrix for the meta-game.

We find that it is a Nash equilibrium for all bidders to select a risk-

seeking agent in the first-price auction. In contrast, bidders choose

a risk-averse agent in equilibrium in the all-pay auction. Both equi-

libria lead to bidding strategies of the agents below those of the

BNE in the stage game, i.e. a single auction in this repeated game.

While our model abstracts from the details of real-world display

ad auctions or other high-frequency agentic markets, it shows that

there are incentives for bidders to deviate from the implementation

of a myopic agent that maximizes expected profit in each stage

2
https://balticwind.eu/two-bidders-participating-in-the-lithuanian-offshore-wind-

auction/, https://money.usnews.com/investing/news/articles/2024-03-26/two-

bidders-in-talks-to-buy-german-retail-giant-galeria, https://latinfinance.com/daily-

brief/2024/03/26/three-bidders-vie-for-peru-sewage-plant-contract/

game. In the literature on algorithmic collusion in auctions [3], the

equilibrium of the stage game is used as a baseline to compare the

outcomes of agent interaction against. Our analysis shows that in

the Nash equilibrium of the meta-game, bidding below the BNE of

a single auction is an equilibrium. This provides a rationale for why

bidders in agentic auction markets might bid below the BNE [3].

Overall, our paper explores two new environments and the re-

sulting equilibria in cases where (1) bidders meet once, and the

utility functions are asymmetric, and (2) bidders meet frequently,

and the utility functions of their agents can be parameterized. Such

questions have not been analyzed in the past because finding equi-

librium with asymmetric utility functions analytically usually leads

to an intractable system of non-linear partial differential equations.

The recent advances in equilibrium learning and the availability

of equilibrium solvers [5] allow us to address such questions and

provide answers to these new types of equilibrium problems.

2 THE MODEL
Bayesian Games. Auctions are modeled as Bayesian games, de-

fined by a quintuple 𝐺 = (𝑁,V,A, 𝐹 ,𝑢). 𝑁 players, indexed by

𝑖 = 1, . . . , 𝑁 , participate in the game.V = V1 × · · · × V𝑁 is the set

of possible type profiles describing the private information avail-

able to the agents when choosing their actions. These types are

drawn from some prior probability distribution 𝐹 that is assumed

to be common knowledge among the bidders. Given knowledge

of their types, player 𝑖 must then choose an action 𝑏𝑖 from the set

A𝑖 of available actions. 𝑢 is a vector of individual utility functions

𝑢𝑖 : V𝑖 × A → R describing the outcomes of the game. Crucially,

for each player, these utilities depend only on their own type but

on all players’ chosen actions. Risk-neutral players are modeled via

a quasi-linear ex-post utility function 𝑢𝑟𝑛
𝑖

= 𝑥𝑖𝑣𝑖 − 𝑝 (𝑏𝑖 ), where 𝑥𝑖
is the allocation of the item to bidder 𝑖 and 𝑝 (·) the payment result-

ing from bid 𝑏𝑖 . The item is allocated to the highest bidding agent

in both auction types. While in the all-pay auction, the payment

always corresponds to the submitted bid, only the winning bidder

pays its bid in the first-price auction.

In order to maximize their own utility, every player 𝑖 needs to

decide on a strategy 𝛽𝑖 : V𝑖 → A𝑖 that will prescribe her ac-

tion 𝑏𝑖 for a given valuation input 𝑣𝑖 . A BNE describes a strategy

profile 𝛽★ = (𝛽★
1
, . . . , 𝛽★

𝑁
) in which no agent can improve her ex-

pected utility by unilaterally deviating. We will write �̃�𝑖 (𝛽𝑖 , 𝛽−𝑖 ) =
E𝑣∼𝐹 [𝑢𝑖 (𝑣𝑖 , 𝛽𝑖 (𝑣𝑖 ), 𝛽−𝑖 (𝑣−𝑖 ))] for the (ex-ante) expected utility. Then,
𝛽★ is an (ex-ante) BNE if for all players 𝑖 and all possible strategies

𝛽𝑖 it holds that

�̃�𝑖 (𝛽★𝑖 , 𝛽
★
−𝑖 ) ≥ �̃�𝑖 (𝛽𝑖 , 𝛽★−𝑖 ) ∀𝛽𝑖 , ∀𝑖 ∈ 𝑁 .

Risk-aversion ismodeled via a concave transformation of the risk-

neutral utility function [2, 26] and can be expressed in various ways.

A specific type of Constant Relative Risk Averse (CRRA) is de-
scribed as

𝑢𝑖,𝜂 (𝑢𝑟𝑛𝑖 ) = (𝑢𝑟𝑛𝑖 )𝜂 , (1)

with 𝜂 ∈ [0, 1]. A parameter 𝜂 > 1 describes a risk-seeking

behavior. The unique BNE bid function of a risk-neutral bidder

with a uniform prior distribution on the interval [0, 1] is a simple

linear function 𝛽∗ (𝑣) = 𝑣
2
[28]. Also, the BNE bid function with
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a CRRA utility is linear with a uniform prior as we show in the

following proposition.

Proposition 2.1. The symmetric BNE bid function 𝛽 (𝑣𝑖 ) for a
risk-averse bidder with a CRRA utility function (𝑢𝑟𝑛

𝑖
)𝜂 in a first-price

auction with two bidders, where each bidder’s valuation is uniformly
distributed on [0, 100] is 𝛽 (𝑣𝑖 ) = 𝑣

1+𝜂 .

While it is probable that the Proposition 2.1 has been established

previously, we were unable to find a specific reference. All proofs

can be found in the Appendix A. The proposition will help us in

our initial analysis of bidders with asymmetric utilities.

Equilibrium Learning. In this paper, we leverage SODA [5], an

equilibrium learning technique, to find equilibrium in asymmetric

auction games. Its idea is to discretize the action and valuation

spaces and represent the bid functions of the agents as distributional

strategies, i.e., mixed extensions of pure BNE strategies [23]. This

allows us to compute the Nash equilibrium in the discretized game

using online learning methods. In our experiments, we rely on the

Frank-Wolfe algorithm [13] with a discretization size of 100 points.

If SODA converges to a pure-strategy equilibrium, then it has

to be a BNE. In addition, an equilibrium verifier certifies that a

strategy profile found with SODA is an approximate equilibrium.

Ex-ante guarantees for convergence are much harder to derive.

However, Ahunbay and Bichler [1] showed that the symmetric

Bayesian Coarse Correlated Equilibrium (BCCE) of an all-pay auc-

tion is a singleton. No-regret learners converge to a BCCE, and

SODA satisfies the no-regret property. A similar result with mild

assumptions on the strategies analyzed also holds for the first-price

auction. It does not hold for asymmetric environments as in this

paper, but the ex-post verification can always certify that a strategy

profile is an approximate equilibrium.

3 STRATEGIC ANALYSIS
In our analysis, we discuss three different environments in which

the levels of available information regarding the opponents’ util-

ity vary. In the first environment, we assume an isolated market

where none of the agents has information about the utility of the

competitor, and thus, they both play the symmetric equilibrium

strategy having false consensus. The asymmetric utilities lead to

different strategies. In this disequilibrium, the risk-averse oppo-

nent bids more aggressively than a risk-neutral firm by submitting

higher bids. We study if deviations from the risk-neutral BNE by

the opponent lead to lower expected profit or not. Throughout, we

distinguish between expected profit based on risk-neutral quasi-

linear utility functions and the (expected) utility of risk-averse or

risk-seeking bidders. Of course, ex-post, after the auction, bidders

will always prefer the outcome with the higher profit. In our second

environment, we assume that the risk attitude is known and ana-

lyze an asymmetric equilibrium with asymmetric utility functions.

Again, we ask how the competitors fare regarding expected profit.

Third, if bidders interact very often on agentic markets such

as display ad auctions, they utilize programmable bidding bots to

submit their bids. We analyze an environment where the users

can parameterize their agents to bid more or less aggressively. Al-

though the impact of risk-aversion is much reduced in repeated

games of this sort, the risk parameter can now be seen as the action

of an agent in a meta-game. Our analysis shows that the profit-

maximizing, risk-neutral strategy is not an equilibrium in the re-

peated game, and, depending on the auction format, it is a Nash equi-

librium for the agents to either use a risk-averse or -seeking agent.

3.1 False Consensus
In our first environment, we model an opponent as being risk-

averse and a firm aiming to maximize the expected profit. Under

the false consensus effect, the opponent believes that the firm is

also risk-averse to the same degree, and the firm assumes that the

opponent is risk-neutral. This disequilibrium analysis provides a

useful baseline for the equilibrium analysis provided next, and it is

an interesting analysis for real-world auction markets, as described

in the introduction.

Let us first analyze the first-price auction. With a uniform prior

distribution and two bidders, the symmetric risk-neutral BNE in the

independent private values model is linear, and so is the symmet-

ric BNE of two risk-averse bidders 𝑖 with a CRRA utility function

(Proposition 2.1). It is well-known that if both bidders played a

symmetric risk-neutral BNE strategy, any deviation would neces-

sarily lead to a loss in profit for the deviating party compared to

the equilibrium player [17, Sec. 2.3]. A crucial assumption in this

theoretical analysis is that not only the prior distribution but also

the strategies of the agents are symmetric. However, this is not nec-

essarily the case if bidders’ utilities are asymmetric. Interestingly,

with symmetric priors but asymmetric strategies, the firm stick-

ing to the symmetric risk-neutral BNE might fare worse and have

lower profit than the overbidding one in terms of profit, as we will

show. The following proposition makes the case for asymmetric

and linear strategies in a model with symmetric uniform priors.

The firm plays the risk-neutral BNE, while the opponent bids more

aggressively, possibly driven by risk-aversion.

Proposition 3.1. Suppose opponent 𝑗 bids a linear strategy 𝛽 𝑗 (𝑣) =
( 1

2
+ 𝜁 )𝑣 with 0 < 𝜁 < 0.23 in a first-price auction with two bidders

and a uniformly distributed prior 𝑈 ( [0, 100]). Opponent 𝑗 faces a
firm 𝑖 bidding the symmetric risk-neutral equilibrium bidding strat-
egy 𝛽𝑖 (𝑣) = 𝑣

2
. In this asymmetric strategy profile, the opponent 𝑗

achieves a higher expected profit than the risk-neutral firm.

Thus, the opponent firm 𝑗 achieves a higher expected profit if

it slightly overbids. At first sight, this result is counter-intuitive.

How can one agent gain by deviating unilaterally from the BNE?

However, note that in this disequilibrium, both bidders are worse

off compared to what they get in the risk-neutral BNE.

A 𝜁 = 0.23 is higher than the slopes of the bidding functions that

were observed by Bichler et al. [4] in a dataset from Ockenfels and

Selten [25]. This means a risk-neutral firm competing against such

lab subjects would have a lower expected profit with this level of

risk-aversion. Suppose the risk-neutral firm now understands the

level of risk-aversion of the opponent and aims to best respond to

this opponent. It turns out that the firm cannot do much better with

this knowledge than by playing its risk-neutral BNE in a first-price

auction, as we show in the following proposition.

Proposition 3.2. In a first-price auction, where firm 𝑖 competes
against opponent 𝑗 that uses a fixed, linear strategy 𝛽 𝑗 and both firms
draw their valuations from a uniform distribution 𝑈 ( [0, 100]), the
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best response of 𝑖 is given by 𝛽𝑖 (𝑣𝑖 ) =𝑚𝑖𝑛
( 𝑣𝑖

200
, ¯𝑏 𝑗

)
, where ¯𝑏 𝑗 is the

highest bid of firm 𝑗 .

This observation that the risk-averse bidder actually achieves

more profit (not utility) than the risk-neutral firm carries over to

the two-player all-pay auction, where the risk-neutral BNE strategy

is 𝛽𝑖 (𝑣𝑖 ) = 1

2
𝑣2

𝑖
[17].

Proposition 3.3. Suppose a opponent 𝑗 uses a convex bidding
strategy 𝛽 𝑗 (𝑣) = ( 1

2
+ 𝜁 ) 1

100
𝑣2 for a 0 < 𝜁 < 0.59 in a two-player

all-pay auction with a uniform prior distribution 𝑈 ( [0, 100]). Firm
𝑖 follows the symmetric risk-neutral BNE strategy, 𝛽𝑖 (𝑣) = 𝑣2

200
. In

this asymmetric strategy profile, bidder 𝑗 achieves a higher expected
profit than agent 𝑖 .

3.2 Asymmetric Equilibrium
Next, we analyze the asymmetric equilibrium strategies that arise

in auctions where the two bidders understand the asymmetries

in their utility functions, one is risk-neutral (the firm) and the

other is risk-averse (the opponent). Let’s assume that the prior

distribution is uniform with𝑈 ( [0, 100]). In a real-world example,

the firm might be a professional trader participating in used-car

auctions repeatedly, while the opponent might be a private person

interested in a specific car who can be expected to be risk-averse.We

are not aware of analytical solutions for such equilibrium problems

and draw on equilibrium learning to find the resulting equilibria.

First, we analyze the standard environment with a risk-neutral

firm and a risk-averse opponent that uses a CRRA utility. We ana-

lyze two levels of risk-aversion. Figures 1 and 2 show the resulting

BNE functions for both players in a first-price and an all-pay auction.

While we had simple linear BNE strategies with a uniform prior in

the symmetric model, the asymmetric equilibrium strategies are

not linear anymore.

Again, as in the false consensus case, the risk-averse bidder is

better off in terms of expected profit than the risk-neutral bidder in

equilibrium. The expected profit of the risk-averse bidder (𝜂 = 0.80)

in equilibrium is 16.0 (16.5), while that of the risk-neutral bidder

is only 15.4 (14.6) in the first-price (all-pay) auction. In contrast, if

both played a risk-neutral BNE, their profit is 16.6. So, even in equi-

librium, the risk-averse bidder achieves a higher profit compared to

the risk-neutral. Figure 3 shows how these strategies change if there

are two risk-averse and a risk-neutral bidder in both auction types.

Still, the risk-averse bidder achieves a higher expected profit than

their opponent in equilibrium, and both lose in expected profit by

deviating from the risk-neutral BNE. The same observation holds

for the case with two risk-neutral bidders and one risk-averse bid-

der. The latter achieves a higher expected payoff in equilibrium

than the other two. Furthermore, this insight is robust against small

variations of the risk parameter.

3.3 Meta Game
Finally, consider markets where both bidders are professionals who

compete against each other frequently. The market for display ads,

where the same advertisers compete for the same types of users

thousands of times, provides a motivation. Bidding is automated by

programmable bidding bots and needs to be completed in millisec-

onds. Similarly, professional car traders might compete in online

markets for used cars over years, and even here, the valuation of

cars based on public properties and the bidding can be automated.

Firms can use parameterized agents to bid more or less aggressively.

Our model abstracts from the details of these markets to analyze the

question whether the BNE of the stage game is also an equilibrium

in a repeated game. The folk theorems in repeated game theory

already indicate that this is not necessarily the case, and that an

abundance of Nash equilibrium payoff profiles might emerge in

repeated games [14]. We want to understand the specific equilibria

that emerge in such repeated auction games and whether the equi-

libria of the resulting meta-game yield higher or lower profit for

the bidders.

In the meta-game, a bidder could parameterize their bidding

agents to be risk-averse, which induces overbidding compared to

the risk-neutral strategy or risk-seeking leading to underbidding

the risk-neutral strategy. The choice of utility function becomes

the actions of the players in the meta-game. It is not necessarily

optimal for the agents to use a risk-neutral agent in such games,

even though they want to maximize their expected profit only.

In what follows, we report the expected profit of both bidders

in a first-price and all-pay auction if they select a risk-neutral,

risk-averse, or risk-seeking utility function with a risk parameter

𝜂 in a standard CRRA utility function. The payoff Table 1 of this

meta-game shows that in the first-price auction, an equilibrium

is to not use a risk-neutral utility function but instead commit

to a risk-seeking utility model with a large parameter. In Table

3, we compare different degrees of this utility and show that this

observation is robust against small changes. Thus, choosing a risk-

seeking utility with a large parameter is an equilibrium in the

meta-game. In contrast, in Table 2, we varied the parameter of a

risk-averse utility function and showed that a risk-averse strategy

is never an equilibrium in the meta-game. The observation that

high levels of risk-seeking behavior are an equilibrium in this game

rests on the curvature of the resulting bid functions.

For the all-pay auction, it is always a dominant strategy for both

agents to pick a risk-averse utility function (also compare Tables

4 and 5). They would both pick the highest level of risk-aversion

available. This is due to the fact that a higher degree induces a

highly bifurcated pattern of the bid function in equilibrium, i.e.,

the convex shape of the bid function increases with the degree of

risk-aversion. Consequently, the bidders would bid very low for

low valuations and, thus, increase their payoff. At the same time,

they would overbid for high valuations. A large parameter shifts

the threshold between high and low valuations to the upper bound

of the valuation support, such that the effect becomes larger. Figure

4 illustrates this for exemplary parameters.

For illustrative purposes, we focused on auctions with two bid-

ders only. However, conducted the same experiments for the setting

with three bidders. The analysis confirmed that the findings of the

two-player setting generalize to environments with larger num-

bers of bidders: risk-averse bidders constitute an equilibrium in the

all-pay auction, while the risk-seeking behavior of all agents is an

equilibrium in the meta-game of the first-price auction. A similar

analysis was performed with a Gaussian prior, showing that the

results are robust to changes in the distributional assumptions. Due

to space restrictions, we cannot report the detailed payoff tables in

this paper.
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Auction Type Firm 𝑖 (𝜂)

Firm j

Risk-neutral Risk-aversion Risk-seeking

E𝑣∼𝐹 [𝑢𝑖 ] E𝑣∼𝐹 [𝑢 𝑗 ] E𝑣∼𝐹 [𝑢𝑖 ] E𝑣∼𝐹 [𝑢 𝑗 ] E𝑣∼𝐹 [𝑢𝑖 ] E𝑣∼𝐹 [𝑢 𝑗 ]

First-price

Risk-neutral 16.749 16.749 16.371 16.513 16.928 16.747

Risk-aversion (0.95) 16.513 16.371 16.305 16.305 16.815 16.484

Risk-seeking (1.05) 16.747 16.928 16.484 16.815 16.984 16.984

All-Pay

Risk-neutral 16.509 16.509 16.041 16.647 16.969 16.456

Risk-aversion (0.95) 16.647 16.041 16.134 16.134 17.039 16.019

Risk-seeking (1.05) 16.456 16.969 16.019 17.039 16.912 16.912

Table 1: Expected payoffs of two competing firms in a first-price and all-pay auction where both agents use the same parame-
terizations of the utility models.
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Figure 1: First-price auctions with risk-aversion

4 CONCLUSIONS
For the all-pay and the first-price auction in the symmetric inde-

pendent private values model, there is a unique BNE prediction

for risk-neutral bidders. It is well-known from decades of exper-

imental research that assuming symmetric utility functions and

symmetric equilibrium strategies is a too strong assumption. How-

ever, asymmetries in the utility functions led to intractable equilib-

rium problems, and we do not know of equilibrium predictions for

such environments. Equilibrium learning has led to breakthroughs

recently, allowing us to compute approximate BNEs even in asym-

metric models. This allows us to explore new types of models.

Of course, if we deviate from the strong symmetry assumption,

many environments are possible, differentiated by their risk attitude,

and one could expect as many results as there are models. First,

we explore isolated markets where bidders meet once and have

different degrees of risk-aversion, a phenomenon that was often

observed in the lab for small markets with only a few bidders.

Interestingly, we show that in thismodel, the risk-averse bidder who

deviates achieves higher expected profit compared to the agent who

aims to maximize expected profit with a quasilinear utility function.

This holds for environments with false consensus where bidders

are in disequilibrium and for asymmetric equilibrium models. This

is an interesting insight for high-stakes auctions as it shows how a

risk-averse bidder has a substantial negative effect on a competitor

that aims to maximize profit.

Second, we analyze agentic markets with repeated interaction,

where the parameterization of the bidding agents results in a meta-

game that has interesting and non-obvious equilibria. Across a wide

range of risk parameters, we show that it is an equilibrium in the

meta-game to choose an agent that is maximally risk-seeking in

the first-price auction and one that is maximally risk-averse in the

all-pay auction. Both equilibria of the meta-game lead to bidding

strategies in the individual auctions that are less aggressive than

the BNE of the stage game and thus increase the payoff of the

bidders. The results carry over to auctions with more than two

bidders and are robust to alternative prior distributions. Although

this is a stylized model of an agentic market, the results suggest that

one should expect bidding strategies of automated agents that lead

to bids below the BNE strategy of a first-price or all-pay auction as

soon as they understand the repeated nature of these games. This

is important for agentic markets such as display ad auctions, where

the same bidders compete for similar items very often.

Overall, this paper breaks new ground in analyzing auction mar-

kets with asymmetric utility functions, environments that have

received little attention in multi-agent systems and auction theory.
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Figure 2: All-pay auctions with risk-aversion
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A PROOFS
A.1 Proof of Proposition 2.1

Proof. In a symmetric equilibrium, all bidders bid according to

𝛽 . In a situation with two bidders, we need to show that if bidder

2 follows 𝛽 , then it is also a best response for bidder 1 to follow 𝛽 .

Bidder 1 with true valuation 𝑣 will make a bid𝑏. Since 𝛽 is invertible,

we can find a valuation 𝑧 such that 𝑏 = 𝛽 (𝑧). Bidder 1 wins the

auction when the valuation of the other bidder is smaller than 𝑧.

The probability of this event is 𝐺 (𝑧) = 𝑧. Bidder 1 chooses 𝑧 to

maximize their expected utility:

𝐸𝑈 = 𝐺 (𝑧) · 𝑢 (𝑣 − 𝛽 (𝑧)), (2)
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(a) First-price auction with three bidders
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Figure 3: Three bidders with risk-aversion.
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Figure 4: The symmetric BNE in an all-pay auction where
bidders exhibit risk-aversion with different parameters.

which yields the first-order condition:

(𝑣 − 𝛽 (𝑧))𝜌 1

100

− 𝜌 · 𝑧

100

· (𝑣 − 𝛽 (𝑧))𝜌−1𝛽′ (𝑧) = 0. (3)
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In the symmetric equilibrium, we have 𝑧 = 𝑣 , and can derive an

alternative form

(𝑣 − 𝛽 (𝑣))𝜌−1 · (𝛽 (𝑣) + 𝑣 · (𝜌𝛽′ (𝑣) − 1)) = 0. (4)

For 𝜌 ∈ (0, 1], there are several solutions to this differential equa-

tion. In equilibrium 𝛽 (0) = 0, which yields the unique solution:

𝛽∗ (𝑣) = 𝑣

1 + 𝜌
. (5)

The second derivative is negative, which completes the proof. □

A.2 Proof of Proposition 3.1
Proof. The two agents choose their bids 𝑏𝑖 and 𝑏 𝑗 according to

some fixed strategies 𝛽𝑖 (𝑣) and 𝛽 𝑗 (𝑣), where 𝑣 ∼ 𝐹 = 𝑈 ( [0, 100]).
We assume that these strategies are linear and that 𝑗 bids more

aggressive than 𝑖 , i.e. 𝛽𝑖 (𝑣) = 𝜆𝑣 and 𝛽 𝑗 (𝑣) = 𝜆′𝑣 = (𝜆 + 𝜁 )𝑣
with 𝜆 ∈ (0, 100), 𝜆 + 𝜁 ∈ (0, 100), and 𝜁 ≥ 0. After playing the

auction, the agents observe their payoffs 𝑝𝑖 (𝑣𝑖 , 𝑏𝑖 ) = 𝑣𝑖 − 𝑏𝑖 and

𝑝 𝑗 (𝑣 𝑗 , 𝑏 𝑗 ) = 𝑣 𝑗 − 𝑏 𝑗 if they won, otherwise 𝑝𝑖 = 𝑝 𝑗 = 0. The

expected payoffs for both players are:

E𝑣∼𝐹 (𝑝𝑖 (𝑣𝑖 , 𝑏𝑖 )) =
∫

100

0

𝑃 (𝑤𝑖𝑛)𝑖 · (𝑡𝑖 − 𝛽𝑖 (𝑡𝑖 ))𝑑𝑡𝑖 (6)

E𝑣∼𝐹 (𝑝 𝑗 (𝑣 𝑗 , 𝑏 𝑗 )) =
∫ 𝑣′

0

𝑃 (𝑤𝑖𝑛) 𝑗 · (𝑡 𝑗 − 𝛽 𝑗 (𝑡 𝑗 ))𝑑𝑡 𝑗

+
∫

100

𝑣′
(𝑡 𝑗 − 𝛽 𝑗 (𝑡 𝑗 ))𝑑𝑡 𝑗

Since 𝑗 bids more aggressively than 𝑖 , there exists a valuation 𝑣 ′,
where 𝑗 wins with probability 1. Thus, we need to differentiate be-

tween the two cases in the definition of the corresponding expected

payoff above. Given our assumptions, this valuation corresponds

to 𝑣 ′ = 100𝜆/𝜆′. The probability of winning 𝑃 (𝑤𝑖𝑛) determines how

likely it is that the submitted bid is higher than the bid of the

opponent. It follows for agent 𝑖 (and 𝑗 analogously):

𝑃 (𝑤𝑖𝑛)𝑖 = 𝑃 (𝛽 𝑗 (𝑣 𝑗 ) < 𝛽𝑖 (𝑣𝑖 )) = 𝑃 (𝑣 𝑗 < 𝛽−1

𝑗 (𝛽𝑖 (𝑣𝑖 ))) (7)

= 𝐹 (𝛽−1

𝑗 (𝛽𝑖 (𝑣𝑖 )))
𝐹≡𝑈 (0,100)

= 𝛽−1

𝑗 (𝛽𝑖 (𝑣𝑖 ) )/100 (8)

Consequently, the expected payoff of agent 𝑗 is higher than the

expected payoff of agent 𝑖 if the following inequality holds:

E𝑣∼𝐹 (𝑝 𝑗 (𝑣 𝑗 , 𝑏 𝑗 )) ≥ E𝑣∼𝐹 (𝑝𝑖 (𝑣𝑖 , 𝑏𝑖 )) (9)

The inverse bid functions of the players are given by 𝛽−1

𝑖
(𝑏𝑖 ) = 𝑏𝑖/𝜆

and 𝛽−1

𝑗
(𝑏 𝑗 ) = 𝑏 𝑗/𝜆′. Inserting the (inverse) bid functions, and

winning probabilities leads to:

1

100𝜆

∫ 𝑣′

0

𝜆′ · 𝑡2

𝑗 − 𝜆′2 · 𝑡2

𝑗𝑑𝑡 𝑗 +
∫

100

𝑣′
𝑡 𝑗 − 𝜆′ · 𝑡 𝑗𝑑𝑡 𝑗 ≥ (10)

1

100𝜆′

∫
100

0

𝜆 · 𝑡2

𝑖 − 𝜆2 · 𝑡2

𝑖 𝑑𝑡𝑖 (11)

We can integrate the term and substitute 𝑣 ′, resulting in:

5000𝜆2

𝜆′
− 5000𝜆2

3𝜆′2
− 10000𝜆

3𝜆′
− 5000𝜆′ + 5000 ≥ 0 (12)

The resulting equation can be used to determine for a given 𝜆, at

which 𝜁 , the expected payoff of the more aggressive bidding agent is

higher than for the other agent. Under the assumption that the firm

𝑖 follows the risk-neutral BNE, the left-hand side of this equation

is non-negative if 𝜁 ≤ 0.23. □

A.3 Proof of Proposition 3.2
Proof. Assume that the strategy 𝛽 𝑗 of firm 𝑗 is fixed and linear,

and firm 𝑖 has knowledge about it. Ex-ante, the expected utility of 𝑖

is given by

max

𝑏𝑖
E𝑣𝑗∼𝐹 (𝑣𝑖 − 𝑏𝑖 )𝐺 𝑗 (𝑏𝑖 ), (13)

where 𝐺 𝑗 (·) is the distribution of bids of firm 𝑗 . In this setting,

Guerre et al. [15] showed that𝐺 𝑗 (·) = 𝐹 (·), with supports 𝑠𝑢𝑝𝑝 (𝐺 𝑗 ) =
[0, 𝛽 𝑗 (100)]. We differentiate between two cases:

Case 1, 0 ≤ 𝑏𝑖 ≤ 𝛽 𝑗 (100): The optimization problem is given by

max

𝑏𝑖
E𝑣𝑗∼𝐹 (𝑣𝑖 − 𝑏𝑖 )

𝑏𝑖

𝛽 𝑗 (100) = max

𝑏𝑖
(𝑣𝑖 − 𝑏𝑖 )

𝑏𝑖

𝛽 𝑗 (100) . (14)

Solving for the first-order condition leads to

𝑑

𝑑𝑏𝑖
(𝑣𝑖 − 𝑏𝑖 )

𝑏𝑖

𝛽 𝑗 (1)
= (𝑣𝑖 − 𝑏𝑖 )

1

𝛽 𝑗 (1)
− 𝑏𝑖

𝛽 𝑗 (1)
!

= 0 ⇒ 𝑏𝑖 =
𝑣𝑖

2

,

(15)

which corresponds to the symmetric risk-neutral BNE.

Case 2, 𝛽 𝑗 (100) ≤ 𝑏𝑖 : The optimization problem is given by

max

𝑏𝑖
(𝑣𝑖 − 𝑏𝑖 ) · 1. (16)

Thus, firm 𝑖 does not overbid the highest bid of firm 𝑗 . Taken to-

gether, the best response of 𝑖 is given by

𝑏𝑖 =

{
𝑣𝑖

200
, 0 ≤ 𝑣𝑖

200
≤ 𝛽 𝑗 (100)

𝛽 𝑗 (100), 𝛽 𝑗 (100) ≤ 𝑣𝑖
200

.
(17)

This strategy is also the best response in the ex-ante stage. □

A.4 Proof of Proposition 3.3
Proof. Assume two agents compete in an all-pay auction with

a uniform prior distribution 𝐹 = 𝑈 ( [0, 100]). Both agents 𝑖 and

𝑗 choose their bids 𝑏𝑖 and 𝑏 𝑗 according to some fixed strategies

𝛽𝑖 (𝑣) and 𝛽 𝑗 (𝑣). We assume that both strategies are convex and

agent 𝑗 bids more aggressive than bidder 𝑖 , i.e., 𝛽𝑖 (𝑣) = 𝜆
100

𝑣2
and

𝛽 𝑗 (𝑣) = 𝜆′
100

𝑣2 =
(𝜆+𝜁 )

100
𝑣2
, where 𝜁 > 0 and 𝜆 + 𝜁 < 1. Both agents

pay their bid regardless of whether they won the auction or not,

and the winner obtains a payoff 𝑝𝑘 = 𝑣𝑘 − 𝑏𝑘 , with valuation 𝑣𝑘
and bid 𝑏𝑘 of player k. Analogously to the proof of Proposition

3.1, we substitute the bid functions, the winning probabilities, and

𝑣 ′ =
√︁
𝜆/𝜆′100 into the expected payoffs of the agent:

E𝑣∼𝐹 (𝑝 𝑗 (𝑣 𝑗 , 𝑏 𝑗 )) ≥ E𝑣∼𝐹 (𝑝𝑖 (𝑣𝑖 , 𝑏𝑖 )) (18)

This leads to the following inequality:

10000𝜆

3

− 5000𝜆

𝜆′
− 10000𝜆′

3

+
10000

√︃
𝜆′
𝜆
( 𝜆
𝜆′ )

3/2

3

− (19)

10000

√︃
𝜆
𝜆′

3

+ 5000 ≥ 0 (20)

We can leverage this equation to determine for a given 𝜆, at which

𝜁 , the expected payoff of bidder 𝑗 is higher than for agent 𝑖 . For our

setting, this is the case if 𝜁 ∈ (0, 0.60). □

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

331



B FURTHER RESULTS
The following tables provide an in-depth overview of the results

described in Section 3.3 above.

Table 2: Expected payoff of two competing firms that either exhibit risk-neutrality or risk-aversion in the first-price auction.
Here the only Nash equilibrium is to adhere to the risk-neutral strategy.

Firm i

Firm j

Risk-neutral Risk-aversion (𝜂)

- 0.95 0.90 0.85 0.80 0.75

Risk-neutral (16.749, 16.749) (16.371, 16.513) (16.036, 16.356) (15.728, 16.203) (15.413, 16.026) (15.089, 15.825)

Risk-aversion (0.95) (16.513, 16.371) (16.305, 16.305) (15.933, 16.088) (15.628, 15.935) (15.301, 15.749) (14.978, 15.540)

Risk-aversion (0.90) (16.356, 16.036) (16.088, 15.933) (15.837, 15.837) (15.482, 15.618) (15.157, 15.442) (14.815, 15.239)

Risk-aversion (0.85) (16.203, 15.728) (15.935, 15.628) (15.618, 15.482) (15.336, 15.336) (15.001, 15.124) (14.665, 14.935)

Risk-aversion (0.80) (16.026, 15.413) (15.749, 15.301) (15.442, 15.157) (15.124, 15.001) (14.833, 14.833) (14.488, 14.611)

Risk-aversion (0.75) (15.825, 15.089) (15.540, 14.978) (15.239, 14.815) (14.935, 14.665) (14.611, 14.488) (14.293, 14.293)

Table 3: Expected payoff of two competing firms that either exhibit risk-neutrality or are risk-seeking in the first-price auction.
Here the Nash equilibria are to play risk-seeking with a high parameterization.

Firm i

Firm j

Risk-neutral Risk-seeking (𝜂)

- 1.05 1.10 1.15 1.20 1.25

Risk-neutral (16.749, 16.749) (16.928, 16.747) (17.190, 16.859) (17.481, 16.958) (17.745, 17.026) (18.002, 17.110)

Risk-seeking (1.05) (16.747, 16.928) (16.984, 16.984) (17.314, 17.154) (17.612, 17.252) (17.859, 17.343) (18.115, 17.421)

Risk-seeking (1.10) (16.859, 17.190) (17.154, 17.314) (17.391, 17.391) (17.689, 17.532) (17.986, 17.598) (18.244, 17.695)

Risk-seeking (1.15) (16.958, 17.481) (17.252, 17.612) (17.532, 17.689) (17.766, 17.766) (18.047, 17.889) (18.339, 17.958)

Risk-seeking (1.20) (17.026, 17.745) (17.343, 17.859) (17.598, 17.986) (17.889, 18.047) (18.131, 18.131) (18.406, 18.224)

Risk-seeking (1.25) (17.110, 18.002) (17.421, 18.115) (17.695, 18.244) (17.958, 18.339) (18.224, 18.406) (18.482, 18.482)

Table 4: Expected payoff of two competing firms that either exhibit risk-neutrality or risk-aversion in the all-pay auction. Here
the only Nash equilibrium is to use a risk-averse utility model with a parameter 𝜂 that describes a high degree of risk-aversion.

Firm i

Firm j

Risk-neutral Risk-aversion (𝜂)

- 0.95 0.90 0.85 0.80 0.75

Risk-neutral (16.509, 16.509) (16.041, 16.647) (15.642, 16.585) (15.067, 16.604) (14.569, 16.583) (13.949, 16.493)

Risk-aversion (0.95) (16.647, 16.041) (16.134, 16.134) (15.651, 16.192) (15.137, 16.176) (14.652, 16.202) (14.025, 16.109)

Risk-aversion (0.9) (16.585, 15.642) (16.192, 15.651) (15.732, 15.732) (15.219, 15.733) (14.687, 15.741) (14.183, 15.710)

Risk-aversion (0.85) (16.604, 15.067) (16.176, 15.137) (15.733, 15.219) (15.304, 15.304) (14.750, 15.254) (14.216, 15.260)

Risk-aversion (0.80) (16.583, 14.569) (16.202, 14.652) (15.741, 14.687) (15.254, 14.750) (14.811, 14.811) (14.217, 14.709)

Risk-aversion (0.75) (16.493, 13.949) (16.109, 14.025) (15.710, 14.183) (15.260, 14.216) (14.709, 14.217) (14.242, 14.242)

Table 5: Expected payoff of two competing firms that either exhibit risk-neutrality or are risk-seeking in the all-pay auction.
Here, the Nash equilibrium is to play the risk-neutral BNE.

Firm i

Firm j

Risk-neutral Risk-seeking (𝜂)

- 1.05 1.10 1.15 1.20 1.25

Risk-neutral (16.509, 16.509) (16.969, 16.456) (17.364, 16.343) (17.767, 16.268) (18.070, 16.105) (18.430, 16.008)

Risk-seeking (1.05) (16.456, 16.969) (16.912, 16.912) (17.322, 16.810) (17.705, 16.718) (18.031, 16.587) (18.404, 16.463)

Risk-seeking (1.10) (16.343, 17.364) (16.810, 17.322) (17.208, 17.208) (17.582, 17.147) (17.959, 16.981) (18.309, 16.853)

Risk-seeking (1.15) (16.268, 17.767) (16.718, 17.705) (17.147, 17.582) (17.512, 17.512) (17.886, 17.399) (18.259, 17.309)

Risk-seeking (1.20) (16.105, 18.070) (16.587, 18.031) (16.981, 17.959) (17.399, 17.886) (17.765, 17.765) (18.144, 17.668)

Risk-seeking (1.25) (16.008, 18.430) (16.463, 18.404) (16.853, 18.309) (17.309, 18.259) (17.668, 18.144) (18.054, 18.054)
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