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ABSTRACT
Envy-freeness is one of the most prominent fairness concepts in the

allocation of indivisible goods. Even though trivial envy-free allo-

cations always exist, rich literature shows this is not true when one

additionally requires some efficiency concept (e.g., completeness,

Pareto-efficiency, or social welfare maximization). In fact, in such

case even deciding the existence of an efficient envy-free alloca-

tion is notoriously computationally hard. In this paper, we explore

the limits of efficient computability by relaxing standard efficiency

concepts and analyzing how this impacts the computational com-

plexity of the respective problems. Specifically, we allow partial

allocations (where not all goods are allocated) and impose only very

mild efficiency constraints, such as ensuring each agent receives

a bundle with positive utility. Surprisingly, even such seemingly

weak efficiency requirements lead to a diverse computational com-

plexity landscape. We identify several polynomial-time solvable or

fixed-parameter tractable cases for binary utilities, yet we also find

NP-hardness in very restricted scenarios involving ternary utilities.
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1 INTRODUCTION
Computing fair allocations of indivisible resources is an important

issue with many applications in all kinds of disciplines [11, 12, 28].

Envy-freeness, which ensures that no agent strictly prefers the

resources allocated to a different agent over their own, is one of the

most prominent fairness concepts [11]. Unfortunately, non-trivial
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envy-free allocations do not always exist, and computing them is

often associated to computationally very difficult problems [12].

In consequence, researchers have developed several ways to relax

that fairness notion, such as envy-free up to one good (EF1) [15]

and envy-free up to any good (EFX) [17].

Close observation reveals that envy-freeness alone implies no

computational or existence issues: allocating no resource is envy-

free. Adding an efficiency component, such as requiring each re-

source to be allocated to someone (completeness), changes the

picture. A folklore example is an instance with 𝑛 agents (say em-

ployees) and 𝑛+1 identical resources (say laptops): in every possible

complete allocation there is at least one agent 𝑎 who gets at most

one resource and another agent 𝑎′ that gets at least two resources,

so that (for reasonable preferences) 𝑎 envies 𝑎′. While problematic

in some applications, there is likely a trivial solution in most cases:

allocating only 𝑛 of the 𝑛 + 1 resources (one to each agent). Such

observations lead to the main question of our paper: which (weaker)

efficiency concepts can help to identify additional (in comparison

to completeness) envy-free allocations and what is the consequence

on the computational complexity of finding such allocations?

We come up with two basic ideas: What if the goal is not to

allocate all resources, but to either just allocate some resources to the
agents or just provide some utility for the agents? In each case, we

can focus on either the whole society or individual agents. More

concretely, we ask for an envy-free (partial) allocation that (i) allo-

cates at least 𝑡 resources in total, or (ii) allocates at least 𝑡 resources

to each agent, or (iii) has utilitarian welfare of at least 𝑡 , or (iv) has

egalitarian welfare of at least 𝑡 .

Note that even variants for 𝑡 = 1 have meaningful (potential)

applications. They allow us to ask if there is an envy-free allocation

of (some of) the resources such that (i) at least one resource is

allocated, (ii) each agent gets at least one resource, (iii) at least one

agent has a positive value for the allocated resources, or (iv) each

agent has a positive value for the allocated resources. The first two

cases (i,ii) model natural formal requirements while the other two

cases (iii,iv) model basic (individual) quality requirements.

The efficiency requirements are also relevant from the compu-

tational complexity perspective. To see this, assume—as we do in

our paper—that the resources are goods, that is, agents report non-

negative utilities for them. In this case, all our efficiency concepts
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for 𝑡 = 1 are significantly less demanding thanmultiple other promi-

nent efficiency concepts, such as completeness, as demonstrated

by the earlier folklore example. Hence, analyzing computational

complexity of these very special cases allows us to identify borders

of efficient computability more accurately than before. On the other

hand, if we find efficient algorithms for these relaxed cases, their

results can be practically interpreted as the minimum efficiency

levels that can be achieved. Indeed, given an instance of an allo-

cation problem, by computing the result with such an algorithm,

one can argue that any fair allocation that is less efficient is unjusti-

fied. Before we describe our findings, we briefly review the related

literature to present the context helpful to interpret our results.

1.1 Related Work
Computing fair and efficient allocations has recently emerged as

a very prominent stream of research in the area of fair allocation

of indivisible resources. Allocations with maximum Nash welfare

are both Pareto optimal and EF1, but computing such allocations is

NP-hard [17]. Likewise, computing an allocation with the highest

utilitarian social welfare among all EF1 allocations is NP-hard even

for two agents [3]. As discussed before, the main difference of our

model is that we allow partial allocations, and consequently we

consider envy-freeness instead of its relaxation EF1.

Allowing partial allocations is an important approach to guaran-

tee the existence of EFX allocations (the existence of EFX complete

allocations is still an open question). Caragiannis et al. [16] showed

that there always exists an EFX partial allocation with at least half

of the maximum Nash welfare. Chaudhury et al. [18] showed that

donating at most 𝑛−1 resources can guarantee the existence of EFX

allocation such that no agent prefers the donated resources to its

own bundle, where 𝑛 denotes the number of agents. This bound was

latter improved to 𝑛 − 2 in general and to 1 for the case with four

agents [7]. Besides existence, Bu et al. [14] studied the problem of

computing partial allocations with the maximum utilitarian welfare

among all EFX allocations. Our work differs from this stream of

research in that we focus on envy-freeness instead of EFX.

Aziz et al. [4] studied the problem of deleting (or adding) a mini-

mum number of resources such that the resulting instance admits

an envy-free allocation; which is equivalent to finding an envy-free

allocation with the maximum size. However, they consider ordinal

preferences whereas we consider cardinal preferences. Moreover,

Aziz et al. [4] considered the number of deleted resources, where the

problem is NP-hard even if no resource can be deleted. In contrast,

we consider the dual parameter the lower bound on the allocated

resources to identify polynomial-time solvable cases.

Boehmer et al. [10] studied the problem of transforming a given

unfair allocation into an EF or EF1 allocation by donating few

resources. In addition to upper bounds on the number of donated

resources and the decrease on the utilitarian welfare, they also

consider the lower bounds on the remaining allocated resources and

the remaining utilitarian welfare. Dorn et al. [19, Chap 5] studied

the same problem but focused on a different fairness notion. The

most prominent difference to our work is that in our model there

is no given allocation.

Hosseini et al. [24] introduced a fairness notion where agents can

hide some of the resources in their own bundles such that no agent

is envious assuming that the agents do not know the existence of

the hidden resources in other agents’ bundles. Then the goal is

to find a complete allocation and a minimum number of hidden

resources such that no agent is envious. While the idea is similar

to find an envy-free partial allocation with the maximum size, note

that the hidden resources are not deleted; their owners get utility

from them just like normal resources.

A series of works [8, 21, 25] studied the computational com-

plexity of finding an envy-free house allocation when the number

of houses is larger than the number of agents. This is equivalent

to finding an envy-free (partial) allocation that allocates exactly
one resource to each agent. Our model does not have this kind of

upper bound on the number of resources allocated to each agent.

Aigner-Horev and Segal-Halevi [1] studied the problem of finding

an envy-free matching of maximum cardinality in a bipartite graph.

Taking the bipartite graph as the representation of binary utilities of

agents on one side towards resources on the other side, the problem

studied by Aigner-Horev and Segal-Halevi [1] is equivalent to find-

ing an envy-free (partial) allocation with the maximum size such

that each agent gets at most one resource liked by it. Our model

differs from it in that we do not add an upper bound for agents’

bundles and we allow agents to receive resources with utility 0.

Nevertheless, many of our algorithms for binary utilities use the

structural properties of envy-free matchings by Aigner-Horev and

Segal-Halevi [1].

1.2 Contributions and Outline
We study the computational complexity of finding envy-free par-

tial allocations with mild efficiency requirements. To this end, we

consider a lower bound 𝑡 on utilitarian welfare, egalitarian welfare,

the number of allocated resources, or the minimum bundle size

among all agents. Formal definitions can be found in Section 2. An

overview of our results is provided in Table 1. In Section 3, we show

that finding such allocations is strongly NP-hard, even if all agents

have identical preferences. In Section 4, we focus on the case with

binary utilities, where each agent values a resource as either 0 or

1. We show that all the four variants are polynomial-time solvable

when 𝑡 = 1, indicating that determining the existence of envy-

free allocations with minimal efficiency requirements can be done

efficiently. For arbitrary 𝑡 , while most problem variants become

strongly NP-hard, we show that the utilitarian welfare variant and

the number of allocated resources variant are both fixed-parameter

tractable (FPT)
1
with respect to 𝑡 , implying that the problems can

still be efficiently solved for small 𝑡 . A surprising exception is the

egalitarian welfare variant (which is typically harder than the utili-

tarian welfare): We show a polynomial-time algorithm that finds an

envy-free partial allocation where each agent obtains a bundle with

value at least 𝑡 (for arbitrary 𝑡 ). In Section 5, we go beyond binary

preferences and allow for three different utility values. We show a

reduction from the egalitarian welfare variant to the other three

variants for ternary utilities and 𝑡 = 1, which reveals an interesting

connection between the four efficiency requirements and might

be of independent interest. Based on this reduction, we show that

all variants become strongly NP-hard already when 𝑡 = 1 for any

1
A problem is fixed-parameter tractable with respect to some parameter 𝑘 if it can be

solved in 𝑓 (𝑘 ) |𝐼 |𝑂 (1)
time, where |𝐼 | denotes the input size.
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Table 1: Summary of results. Columns denote different utility constraints and efficiency threshold 𝑡 values. Rows represent
different efficiency concepts E. The hardness results for 𝑡 = 1 apply to every positive 𝑡 as well.

Identical Binary Ternary

𝑡 = 1 𝑡 = 1 𝑡 𝑡 = 1

utilitarian social welfare (usw)

NP-h

P NP-h (FPT) NP-h

egalitarian social welfare (esw) P P NP-h

#resources allocated (size) P NP-h (FPT) NP-h

min-cardinality (mcar) P NP-h NP-h

ternary utility values {0, 𝑣,𝑢} with 0 < 𝑣 < 𝑢. Some details (e.g.,

of proofs of theorems marked with (⋆)) are deferred to the full

version [13]. Furthermore, all the problems shown to be NP-hard

in this paper are contained in NP, since verifying that an alloca-

tion (guessed non-deterministically) is envy-free and meets the

respective efficiency criterion is possible in polynomial time.

2 PRELIMINARIES
We fix a collection R of𝑚 resources and a set A of 𝑛 agents. Each
agent 𝑎 ∈ A reports its cardinal utility from each resource via the

utility function 𝑢𝑎 : R → N0.
2
We assume additive utilities, hence,

with a slight abuse of notation, for some set 𝐵 ⊆ R of resources,

the utility 𝑢𝑎 (𝐵) of agent 𝑎 ∈ A from 𝐵 is the sum of the agent’s

utilities for each resource in 𝐵, i.e., 𝑢𝑎 (𝐵) :=
∑
𝑟 ∈𝐵 𝑢𝑎 (𝑟 ).

We use specific classes of cardinal utilities reported by agents.

Identical utilities denote a family of utilities in which every agent’s

utility functions are the same. The utilities are binary if agents’

utilities use only values 0 or 1 and ternary when there are three

possible values of utility that agents can report.

An allocation 𝝅 : A → 2
R
assigns each agent 𝑎 ∈ A its private

bundle 𝝅 (𝑎), i.e., 𝝅 (𝑎) ∩ 𝝅 (𝑎′) = ∅ for each distinct 𝑎, 𝑎′ ∈ A. If

𝝅 (𝑖) = ∅, it is an empty bundle. If 𝝅 is a partition of R, we say

that 𝝅 is complete, otherwise we call it partial. We call the smallest

number mcar(𝝅) := min𝑎∈A |𝝅 (𝑎) | of resources allocated to some

agent themin-cardinality of 𝝅 , whereas by size(𝝅) :=
∑
𝑎∈A |𝝅 (𝑎) |

we denote the total number of resources allocated by 𝝅 .
Given an allocation 𝝅 : A → 2

R
and some collection (𝑢𝑎)𝑎∈A

of utility functions, we say that agent 𝑎 ∈ A is envious regard-
ing (𝑢𝑎) under 𝝅 if there is another agent 𝑎′ ∈ A whose bun-

dle 𝝅 (𝑎′) is preferred by 𝑎 over their own bundle 𝝅 (𝑎); formally

𝑢𝑎 (𝝅 (𝑎′)) > 𝑢𝑎 (𝝅 (𝑎)). An allocation 𝝅 is envy-free regarding (𝑢𝑎)
if no agent is envious under 𝝅 . The utilitarian social welfare usw(𝝅)
of 𝝅 regarding (𝑢𝑎) is the sum of the utilities of agents for their

bundles, i.e., usw(𝝅) :=
∑
𝑎∈A 𝑢𝑎 (𝝅 (𝑎)). Analogously, egalitar-

ian social welfare esw(𝝅) is the minimum of the agent’s utilities,

i.e., esw(𝝅) := min𝑎∈A 𝑢𝑎 (𝝅 (𝑎)). (We omit “regarding (𝑢𝑎)” and
“under 𝝅”, respectively, when the context is clear.)

Our problem of interest is a computational problem of deciding

if, for a given input, one can find allocations that are envy-free and

efficient. Following the introduction, we define our problem gener-

ally, using an efficiency measure placeholder E to be substituted

2N0 denotes the set of all non-negative integers.

by any of the efficiency measures of our interest: utilitarian and

egalitarian social welfare, size, and min-cardinality.

E-Envy-Free Partial Allocation (E-EF-PA)
Input: A set R of resources, a set A of agents, a collec-

tion (𝑢𝑎)𝑎∈A of utility functions 𝑢𝑎 : R → N0 and an efficiency

threshold 𝑡 .

Question: Is there an envy-free allocation 𝝅 such that E(𝝅) ≥ 𝑡?

3 IDENTICAL VALUATIONS
The case in which all agents have identical preferences is potentially

simpler to solve than the general case when finding our desired

allocations. However, we show even in this scenario, our problem

is NP-hard for each efficiency notion we consider.

We show hardness for all studied efficiency concepts with 𝑡 = 1

via a reduction from the 3-partition problem [22]. The main idea is

to have one resource for each number of the 3-partition instance

as well as some well-designed dummy resources and extra agents,

ensuring that each agent receives either one dummy resource or

three non-dummy resources such that the utility for them adds up

to the same value as the agents have for a dummy resource.

Theorem 3.1 (⋆). For each E ∈ {usw, esw, size,mcar} it holds
that E-EF-PA is strongly NP-hard, even if 𝑡 = 1 and each agent has
the same utility function.

The presented result categorically sets the limits of our expecta-

tions, as the hardness holds for the weakest variants of efficiency

concepts, that is, when the threshold 𝑡 = 1. Hence, we focus on

other aspects to identify polynomial-time tractable cases.

In the remaining sections, we will focus on restrictions on the set

of utilities (resp. the images of the utility functions), since it seems

essential that they are unrestricted in the above hardness reduction

for identical preferences. Specifically, we study binary and ternary

utilities, which are commonly studied utility restrictions in the

literature [5, 6, 20, 23].

4 BINARY UTILITIES
Given that identifying exact utility values imposes a high cognitive

burden for human agents, in practice binary utilities, where agents

express preferences by pointing out which resources they desire and

which not, are sometimes even preferred over more complicated

variants. It is then easier to elicit correct preference data and to

avoid excessive fatigue of the agents.

The good news is that for binary preferences, our problem with

𝑡 = 1 is solvable in polynomial time for all the four efficiency
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notions. On the negative side, for arbitrary 𝑡 , except for esw-EF-PA,

the other three efficiency concepts yield NP-hardness. For some of

these cases, however, we could find efficient (FPT) algorithms for

bounded values of the threshold 𝑡 .

4.1 Egalitarian social welfare
Beginning with esw-EF-PA, we show that it is polynomial-time solv-

able by providing a reduction to computing a maximum cardinality

matching in bipartite graphs.

Theorem 4.1. For 0/1-utilities esw-EF-PA is solvable in 𝑂 (𝑚2.5)
time.

Proof. If 𝑡 > 𝑚
𝑛 , then no allocation can get esw(𝝅) ≥ 𝑡 . So, in

the following we assume 𝑡 ≤ 𝑚
𝑛 . Given an envy-free allocation 𝝅

with esw(𝝅) ≥ 𝑡 , we construct a new allocation 𝝅 ′
by keeping

𝑡 arbitrary resources from each agent’s bundle that are liked by

the agent and deleting the other resources. Note that 𝝅 ′
also satis-

fies envy-freeness and esw(𝝅 ′) ≥ 𝑡 . Therefore, it suffices to check

whether there exists an allocation such that every agent gets ex-

actly 𝑡 resources liked by it. To this end, we create a bipartite graph

where one side consists of 𝑡 copies of each agent and the other side

consists of all resources, and there is an edge between an agent

and a resource if the agent likes the resource. Then there exists an

envy-free allocation with esw(𝝅) ≥ 𝑡 if and only if a maximum

cardinality matching of this bipartite graph, which can be computed

in 𝑂 ((𝑡𝑛)1.5𝑚) = 𝑂 (𝑚2.5) time [26], saturates the agent side. □

4.2 Utilizing envy-free matchings
For the other three efficiency measures, we create a bipartite graph

𝐺 = (𝑋 ¤∪𝑌, 𝐸), where 𝑋 = A, 𝑌 = R, and there is an edge between

𝑥𝑖 ∈ 𝑋 and 𝑦 𝑗 ∈ 𝑌 if 𝑢𝑖 (𝑟 𝑗 ) = 1. We use the concept of envy-
free matchings (EFM) for bipartite graphs introduced by Aigner-

Horev and Segal-Halevi [1]. A matching 𝑀 in a bipartite graph

𝐺 = (𝑋 ¤∪𝑌, 𝐸) is envy-free with respect to𝑋 if no vertex in𝑋 \𝑋𝑀 is

adjacent to any vertex in𝑌𝑀 , where𝑋𝑀 (resp.𝑌𝑀 ) represents the set

of vertices from𝑋 (resp.𝑌 ) saturated by𝑀 . Note that each envy-free

matching𝑀 in 𝐺 = (𝑋 ¤∪𝑌, 𝐸) induces an envy-free allocation 𝝅𝑀
,

where every agent gets at most one resource. Slightly abusing the

notation, we sometimes use subsets of 𝑋 (resp. 𝑌 ) to denote the

corresponding subsets of agents (resp. resources).

Aigner-Horev and Segal-Halevi [1] show that finding an envy-

free matching of maximum cardinality is solvable in polynomial

time. The idea is to first compute an arbitrary matching𝑀 of max-

imum cardinality. Then, starting with each vertex from 𝑋 that is

not saturated by𝑀 , we find𝑀-alternating paths, which partition

the vertex set into two parts according to whether they are covered

by these paths or not. It is shown that this partition is independent

of the initial matching 𝑀 and that all envy-free matchings are con-

tained in the part not covered by the above 𝑀-alternating paths.

In the following theorem, we summarize the findings of Aigner-

Horev and Segal-Halevi [1] related to envy-free matchings that are

relevant to our results.

Theorem 4.2 ([1]). Every bipartite graph 𝐺 = (𝑋 ¤∪𝑌, 𝐸) admits
a unique partition 𝑋 = 𝑋𝑆 ¤∪𝑋𝐿 and 𝑌 = 𝑌𝑆 ¤∪𝑌𝐿 , called the EFM

partition of 𝐺 , satisfying the following conditions:

• An 𝑋𝐿-saturating matching in𝐺 [𝑋𝐿 ;𝑌𝐿] always exists, and every
𝑋𝐿-saturating matching in 𝐺 [𝑋𝐿 ;𝑌𝐿] is an EFM in 𝐺 ;

• Every EFM in 𝐺 is contained in 𝐺 [𝑋𝐿 ;𝑌𝐿];
• There are no edges between 𝑋𝑆 and 𝑌𝐿 ;
• Each vertex in 𝑌𝑆 is connected to at least one vertex in 𝑋𝑆 .
Moreover, the unique EFM partition and a maximum envy-free match-
ing (𝑋𝐿-saturating matching in 𝐺 [𝑋𝐿 ;𝑌𝐿]) can be computed in
𝑂 ( |𝐸 |

√︁
min{|𝑋 |, |𝑌 |}) time.

Leveraging Theorem 4.2, we derive the following lemma for

designing algorithms in the remainder of this section.

Lemma 4.3. For any envy-free allocation, all agents in 𝑋𝑆 receive
a bundle of utility 0 and all the allocated resources are from 𝑌𝐿 .

Proof. Given any envy-free allocation 𝝅 , denote by A𝑧 the

set of agents receiving a bundle of utility 0 and by A𝑝 the set of

remaining agents (receiving a bundle of utility larger than 0). We

construct a new allocation 𝝅 ′
as follows. For each agent from A𝑧 ,

delete all resources from its bundle. For each agent from A𝑝 keep

an arbitrary resource in its bundle with utility 1 for the agent

and delete the other resources. We show that 𝝅 ′
is still envy-free.

Since the original allocation 𝝅 is envy-free and all agents from A𝑧

receive a bundle of utility 0 under 𝝅 , it must be that every agent

from A𝑧 values every resource allocated under 𝝅 as 0, and hence

no agent from A𝑧 will envy other agents under 𝝅 ′
. Moreover,

under 𝝅 ′
, every agent from A𝑝 receives a bundle of utility 1 and

every agent gets exactly one resource, so no agent from A𝑝 will

be envious. Therefore, 𝝅 ′
is envy-free. Since each agent either gets

nothing or gets one resource liked by it under 𝝅 ′
, it induces an envy-

free matching𝑀 in 𝐺 = (𝑋 ¤∪𝑌, 𝐸). According to Theorem 4.2, we

haveA𝑝 ⊆ 𝑋𝐿 . SinceA = 𝑋𝑆 ∪𝑋𝐿 = A𝑧 ∪A𝑝 , we have 𝑋𝑆 ⊆ A𝑧 ,

which means that all agents from 𝑋𝑆 receive a bundle of utility 0.

Since 𝝅 is envy-free, it follows that all the allocated resources

under 𝝅 have utility 0 for agents from𝑋𝑆 . According to Theorem 4.2,

each resource in 𝑌𝑆 is liked by at least one agent from 𝑋𝑆 , so all the

allocated resources are from 𝑌𝐿 . □

4.3 Social welfare and allocation size
Based on Lemma 4.3, we can design an FPT algorithm for usw-EF-

PA. The idea is that according to Lemma 4.3, it suffices to consider

allocations restricted to 𝑋𝐿 and 𝑌𝐿 . If |𝑋𝐿 | ≥ 𝑡 , there is a trivial

solution following from the envy-free matching. Otherwise, we can

bound the size of the instance by a function depending only on 𝑡 .

Theorem 4.4. For 0/1-utilities usw-EF-PA is NP-hard and fixed-
parameter tractable with respect to 𝑡 . In particular, if 𝑡 = 1, then
usw-EF-PA is solvable in 𝑂 (𝑛1.5𝑚) time for 0/1-utilities.

Proof. Hardness follows from the equivalence of usw-EF-PA

for 0/1-utilities with 𝑡 setting as the maximum utilitarian social

welfare among all allocations and the NP-hard problem of deciding

the existence of a Pareto efficient and envy-free allocation [12],

since Bliem et al. [9, Ob.1] shows that, in case of 0/1-utilities, an

allocation is Pareto-efficient if and only if it is complete and every

resource is allocated to an agent that assigns 1 to it.

Next, we show that usw-EF-PA for 0/1-utilities is fixed-parameter

tractable with respect to 𝑡 . According to Lemma 4.3, it suffices to

check allocations that only allocate resources from 𝑌𝐿 . In addition,
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since in any desired allocation agents from 𝑋𝑆 receive a bundle of

utility 0, it suffices to check allocations that only allocate resources

from 𝑌𝐿 to agents from 𝑋𝐿 . If 𝑋𝐿 = ∅, then no such allocations

exists. In the following analysis we assume 𝑋𝐿 ≠ ∅. According to
Theorem 4.2, there exists an envy-free matching 𝑀 of cardinal-

ity |𝑋𝐿 | in 𝐺 [𝑋𝐿 ;𝑌𝐿]. If |𝑋𝐿 | ≥ 𝑡 , then 𝑀 induces an envy-free

allocation with social welfare at least 𝑡 and we are done. Other-

wise, we have |𝑋𝐿 | < 𝑡 . Since agents have binary utilities, we can

partition all resources from 𝑌𝐿 into at most 2
|𝑋𝐿 | < 2

𝑡
groups

according to the subset of agents from 𝑋𝐿 who like the resource.

If there is a group with more than 𝑡2
resources, then allocating

each agent from 𝑋𝐿 a different set of 𝑡 resources from this group

is an envy-free allocation with social welfare 𝑡 |𝑋𝐿 | ≥ 𝑡 and we are

done. This is because resources with zero utility for all agents are

irrelevant and can be removed during preprocessing. Thus, every

resource has a positive value for at least one agent. Otherwise, we

have |𝑌𝐿 | < 2
𝑡 𝑡2

and then we can bound the number of all possible

allocations restricted to 𝑋𝐿 and 𝑌𝐿 by𝑂 (2𝑡2

𝑡2𝑡 ). Thus, the problem
is fixed-parameter tractable for 𝑡 .

When 𝑡 = 1, it suffices to compute the EFM partition of 𝐺 and

check whether |𝑋𝐿 | ≥ 1, so the running time is𝑂 (𝑛1.5𝑚) according
to Theorem 4.2. □

Next, we provide an FPT algorithm for size-EF-PA using similar

ideas. Here we just need to consider allocations restricted to 𝑌𝐿 and

we will compare the size of 𝑋 (instead of 𝑋𝐿) and 𝑡 .

Theorem 4.5. For 0/1-utilities size-EF-PA is NP-hard and is fixed-
parameter tractable with respect to 𝑡 . In particular, if 𝑡 = 1, then
size-EF-PA is solvable in 𝑂 (𝑛1.5𝑚) time for 0/1-utilities.

Proof. Hardness follows from size-EF-PA for 0/1-utilities with

𝑡 = |R | being equivalent to the problem of deciding the existence

of a complete and envy-free allocation, which is NP-hard [2, 24].

Next we show that size-EF-PA for 0/1-utilities is fixed-parameter

tractable with respect to 𝑡 . By Lemma 4.3, it suffices to check allo-

cations that only allocate resources from 𝑌𝐿 . If |𝑌𝐿 | < 𝑡 , then there

is no such allocation with size at least 𝑡 . In the following analysis

we assume |𝑌𝐿 | > 𝑡 . If |𝑋 | ≤ 𝑡 , then similar to the case for usw, we

can bound the number of all possible allocations restricted to 𝑌𝐿

by 𝑂 (2𝑡2

𝑡2𝑡 ), and hence the problem is fixed-parameter tractable

with respect to 𝑡 . If |𝑋 | > 𝑡 , then we can find an envy-free alloca-

tion with size at least 𝑡 as follows. According to Theorem 4.2, there

exists an envy-free matching 𝑀 of cardinality |𝑋𝐿 | in 𝐺 [𝑋𝐿 ;𝑌𝐿],
which induces an envy-free allocation 𝝅𝑀

. We extend 𝝅𝑀
by let-

ting each agent from 𝑋𝑆 select a different resource from 𝑌𝐿 \ 𝑌𝑀
until there is no remaining resource or each agent from𝑋𝑆 gets one

resource. Denote the resulting allocation by 𝝅 . We have size(𝝅) ≥
min{|𝑋 |, |𝑌𝐿 |} ≥ 𝑡 . According to Theorem 4.2, no resource from 𝑌𝐿
is liked by any agent from 𝑋𝑆 , so 𝝅 is still envy-free.

For 𝑡 = 1, computing the EFM partition of 𝐺 and checking

whether |𝑌𝐿 | ≥ 1 suffices; so Theorem 4.2 yields running time𝑂 (𝑛1.5𝑚).
□

4.4 Min-cardinality
Finally, we consider mcar-EF-PA. The following lemma reduces

mcar-EF-PA with 𝑡 = 1 to comparing the cardinality of 𝑋 and 𝑌𝐿 in

the EFM partition of 𝐺 .

Lemma 4.6. The following three statements are equivalent:

(1) There exists an envy-free allocation 𝝅 where every agent gets
a non-empty bundle, i.e., mcar(𝝅) ≥ 1;

(2) There exists an envy-free allocation 𝝅 where every agent gets
exactly one resource, i.e., |𝝅 (𝑎) | = 1 for each 𝑎 ∈ A;

(3) |𝑋 | ≤ |𝑌𝐿 |.

Proof. (1) ⇐ (2): If there exists an envy-free allocation 𝝅
with |𝝅 (𝑎) | = 1 for each 𝑎 ∈ A, then clearly mcar(𝝅) ≥ 1.

(1) ⇒ (2): Given an envy-free allocation 𝝅 with mcar(𝝅) ≥ 1,

denote byA𝑧 the set of agents receiving a bundle of utility 0 and by

A𝑝 the set of remaining agents (receiving a bundle of utility larger

than 0). For each agent from A𝑧 , keep an arbitrary resource in its

bundle and delete the other resources. For each agent fromA𝑝 , keep

an arbitrary resource in its bundle with utility 1 for the agent and

delete the other resources. Denote by 𝝅 ′
the resulting allocation,

where every agent gets exactly one resource. It remains to show

that 𝝅 ′
is envy-free. Since the original allocation 𝝅 satisfies envy-

freeness and all agents from A𝑧 have utility 0 under 𝝅 , it must be

that every agent from A𝑧 values every resource allocated under 𝝅
as 0, and hence no agent from A𝑧 will envy other agents under 𝝅 ′

.

Moreover, under 𝝅 ′
, since every agent from A𝑝 has utility 1 and

every agent gets exactly one resource, no agent from A𝑝 will be

envious. Thus, 𝝅 ′
satisfies envy-freeness.

(2) ⇐ (3): Suppose that |𝑋 | ≤ |𝑌𝐿 |. According to Theorem 4.2

we can find a 𝑋𝐿-saturating envy-free matching 𝑀 in 𝐺 [𝑋𝐿 ;𝑌𝐿],
which induces an envy-free allocation 𝝅𝑀

, where every agent

gets at most one resource. To get an envy-free allocation where

every agent gets exactly one resource, we let each remaining agent

corresponding to 𝑋𝑆 select a different resource from 𝑌𝐿 \𝑌𝑀 . Since

|𝑌𝐿 | ≥ |𝑋 |, there are enough remaining resources from 𝑌𝐿 \ 𝑌𝑀 .

Denote the resulting allocation by 𝝅 , where every agent now gets

exactly one resource. Since there are no edges between 𝑋𝑆 and

𝑌𝐿 , all agents corresponding to 𝑋𝑆 are non-envious. For agents

corresponding to 𝑋𝐿 , since they all have utility 1 and every agent

gets exactly one resource, all of them are non-envious. Therefore,

𝝅 is envy-free.

(2) ⇒ (3): Let 𝝅 be an envy-free allocation where every agent

gets exactly one resource. According to Lemma 4.3, all the allocated

resources are from 𝑌𝐿 . Thus, |𝑋 | ≤ |𝑌𝐿 |. □

It immediately follows that mcar-EF-PA with 𝑡 = 1 is solvable

in polynomial time. We subsequently prove the NP-hardness for

the general case with arbitrary 𝑡 . However, whether the problem is

fixed-parameter tractable with respect to 𝑡 remains open.

Theorem 4.7. For 0/1-utilities mcar-EF-PA is NP-hard. If 𝑡 = 1

then it is solvable in 𝑂 (𝑛1.5𝑚) time.

Proof. We show the NP-hardness of mcar-EF-PA by providing a

simple many-one reduction from size-EF-PA with 𝑡 = |R |, which is

shown to be NP-hard in Theorem 4.5. Given an instance (A,R, 𝑡 =
|R |) of size-EF-PA, we create an instance (A,R′, 𝑡 ′) of mcar-EF-PA,

where R′
contains all resources in R and also 𝑡 ( |A| − 1) dummy

resources that are not liked by any agent, and 𝑡 ′ = 𝑡 . It is easy to

verify that there exists an envy-free and complete allocation for the

former instance if and only if there exists an envy-free allocation

such that every agent gets exactly 𝑡 resources for the latter instance.
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When 𝑡 = 1, according to Lemma 4.6 and Theorem 4.2, it suffices

to compute the EFM partition for 𝐺 and check whether |𝑋 | ≤ |𝑌𝐿 |,
so the running time is 𝑂 (𝑛1.5𝑚). □

5 TERNARY VALUATIONS
We have seen that our problems are tractable for binary preferences

and 𝑡 = 1, which already has quite clear practical relevance as

discussed in the introduction. A very natural question is whether

these positive results transfer to three different utility values. In

this section we answer this question negatively by showing strong

NP-hardness for all the four goals under any three different utility

values {0, 𝑣,𝑢} with 0 < 𝑣 < 𝑢.

We start by providing a very general reduction from esw to the

other three problems for any ternary utilities which include utility

zero and 𝑡 = 1.

Lemma 5.1. Let 𝑣 and 𝑢 be two positive integers with 0 < 𝑣 < 𝑢.
Let R be a set of resources, A be a set of agents, and (𝑢𝑎)𝑎∈A be a
collection of utility functions with 𝑢𝑎 : R → {0, 𝑣,𝑢}. Then, there
exist extended sets of resources R∗ = R ∪ Rshadow and agents A∗ =
A ∪Ashadow, and a collection of extended utility functions (𝑢∗𝑎)𝑎∈𝐴∗

(with 𝑢∗𝑎 (𝑟 ) = 𝑢𝑎 (𝑟 ) for each 𝑎 ∈ A and each 𝑟 ∈ R) such that:
Regarding (𝑢𝑎) there exists an envy-free allocation 𝜋esw

: A →
2
R with esw(𝜋esw) ≥ 1, if and only if regarding (𝑢∗𝑎) there exists an

envy-free allocation 𝜋∗ : A∗ → 2
R∗

with E(𝜋∗) ≥ 1 for each E ∈
{mcar, usw, size}3. Moreover, (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ) can be computed
in linear time.

Proof. Given (R,A, (𝑢𝑎)𝑎∈A ), we construct (R∗ = R∪R
shadow

,

A∗ = A ∪ A
shadow

, (𝑢∗𝑎)𝑎∈𝐴∗ ) as follows. For each resource, we

create two corresponding shadow agents and two corresponding

shadow resources. That is,A
shadow

:= {𝑎′𝑟 , 𝑎′′𝑟 | 𝑟 ∈ 𝑅} andR
shadow

:= {𝑟 ′, 𝑟 ′′ | 𝑟 ∈ R}. We distinguish between original agents A and

shadow agents A
shadow

, as well as between original resources R
and shadow resources R

shadow
. The idea is to define utilities func-

tions (𝑢∗𝑎)𝑎∈𝐴∗ such that whenever any agent gets a resource, each

shadow agent will also require a shadow resource, which in turn

ensures that every agent gets a resource of positive value. Formally,

(𝑢∗𝑎)𝑎∈𝐴∗ is defined as follows (see also Table 2).

• For each original agent 𝑎 and each original resource 𝑟 , 𝑢∗ is

identical to 𝑢, i.e., 𝑢∗𝑎 (𝑟 ) = 𝑢𝑎 (𝑟 ).
• Each original agent is interested in all the shadow resources and

values each of them as 𝑣 .

• Each shadow agent is interested in all the shadow resources and

values each of them as 𝑢.

• Each shadow agent 𝑎′𝑟 or 𝑎′′𝑟 ∈ A∗
shadow

is also interested in

its unique corresponding original resource 𝑟 ∈ R, i.e., 𝑢∗
𝑎′𝑟
(𝑟 ) =

𝑢∗
𝑎′′𝑟

(𝑟 ) = 𝑣 , and values all other original resources as 0.

Next, we show that for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ) and any E, E′ ∈
{mcar, usw, size} it holds that for every envy-free allocation 𝜋 with

E(𝜋) ≥ 1 we also have E′ (𝜋) ≥ 1. By definition, it is obvious

that an envy-free allocation 𝜋 with mcar(𝜋) ≥ 1 or usw(𝜋) ≥ 1

must in both cases have size(𝜋) ≥ 1. Let us conversely assume

that there exists some envy-free allocation 𝜋 with size(𝜋) ≥ 1

3
Note that given any 𝜋E

for E ∈ {esw,mcar, usw, size}, we can compute each of

the respective other allocations in polynomial time. Here, the condition E(𝜋∗ ) ≥ 1

corresponds to the setting 𝑡 = 1 in E-EF-PA.

Table 2: Agent’s utility functions in the proof of Lemma 5.1.

𝑟 ∈ R \ {𝑟 } 𝑟 ∈ R 𝑟∗ ∈ R
shadow

𝑎 ∈ A 𝑢𝑎 (𝑟 ) 𝑢𝑎 (𝑟 ) 𝑣

𝑎′𝑟 , 𝑎
′′
𝑟 ∈ A

shadow
0 𝑣 𝑢

for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ). We want to show that mcar(𝜋) ≥ 1 and

usw(𝜋) ≥ 1 also hold for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ). Since size(𝜋) ≥ 1,

at least one resource 𝑟 is allocated. If 𝑟 is not a shadow resource,

then at least one of the two corresponding shadow agents 𝑎′𝑟 or 𝑎
′′
𝑟

gets a shadow resource. Thus, at least one shadow resource is

allocated under 𝜋 . Considering that each shadow agent can only

gain a maximum value of 𝑣 from the original resources, and 𝑢 > 𝑣 ,

the fact that at least one shadow resource is allocated under 𝜋 makes

every shadow agent require at least one shadow resource with value

at least 𝑢. Since |A
shadow

| = |R
shadow

| = 2|R |, each shadow agent

should receive exactly one shadow resource. Since each original

agent values each shadow resource as 𝑣 , this enforces that each

original agent gets a bundle with value at least 𝑣 . Therefore, we

have mcar(𝜋) ≥ 1 and usw(𝜋) ≥ 1.

To prove the lemma, it remains to show that there exists an envy-

free allocation 𝜋esw
with esw(𝜋) ≥ 1 for (R,A, (𝑢𝑎)𝑎∈A ) if and

only if there exists an envy-free allocation 𝜋size
with E(𝜋size) ≥ 1

for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ).
(=⇒) Assume there exists an envy-free allocation 𝜋esw

with

esw(𝜋esw) ≥ 1 for (R,A, (𝑢𝑎)𝑎∈A ). We construct a desired alloca-

tion 𝜋size
for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ) as follows. Analogously to 𝜋esw

,

we let 𝜋size

𝑎 = 𝜋esw

𝑎 for each original agent 𝑎 ∈ A. Aside from

that, each shadow agent is assigned an arbitrary shadow resource.

Clearly, original agents will not envy each other, and each of them

receives a bundle with positive value of at least 𝑣 . Consequently,

original agents will not envy shadow agents either, since they per-

ceive the value of each shadow agent’s bundle to be exactly 𝑣 . Mean-

while, shadow agents will not envy original agents because, in their

views, the value of each shadow agent’s bundle is 𝑢, whereas the

value of any original agent’s bundle does not exceed 𝑣 .

(⇐=) Assume there exists some envy-free allocation 𝜋size
with

size(𝜋size) ≥ 1 for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ). Recall that in 𝜋size
, each

shadow agent must get exactly one shadow resource, and each orig-

inal agent must get a bundle with a positive value. Thus, we have

esw(𝜋size) ≥ 1. We create an allocation 𝜋esw
for (R,A, (𝑢𝑎)𝑎∈A )

in a straight-forward way by setting 𝜋esw

𝑎 := 𝜋size

𝑎 for each origi-

nal agent 𝑎 ∈ 𝐴. Note that this is indeed a well-defined allocation

for (R,A, (𝑢𝑎)𝑎∈A ) since 𝜋size
allocates shadow resources only

to shadow agents. Since the original agents do not envy each an-

other in 𝜋size
for (R∗,A∗, (𝑢∗𝑎)𝑎∈A∗ ), and the utility functions of

the original agents for original resources are identical for (R∗,A∗,
(𝑢∗𝑎)𝑎∈A∗ ) and (R,A, (𝑢𝑎)𝑎∈A ), it follows that 𝜋esw

is envy-free

for (R,A, (𝑢𝑎)𝑎∈A ). □

According to Lemma 5.1, if we show that esw-EF-PA is strongly

NP-hard for ternary utility values 0 < 𝑣 < 𝑢, then we auto-

matically also get the strong NP-hardness of E-EF-PA for each

E ∈ {mcar, usw, size}. Our main result in this section is that all the

four goals are strongly NP-hard for ternary utility values 0 < 𝑣 < 𝑢

even if 𝑡 = 1, stated as follows.
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Theorem 5.2. Let E ∈ {esw,mcar, usw, size} and let 𝑣,𝑢 ∈ N be
fixed with 0 < 𝑣 < 𝑢. Then, E-EF-PA is strongly NP-hard, even if each
agent assigns only values from {0, 𝑣,𝑢} to the resources and 𝑡 = 1.

By Lemma 5.1, it suffices to show the strong NP-hardness for

esw-EF-PA. To this end, the following Lemma 5.1 to 5.5 serve as

a case distinction over the values of 𝑢 and 𝑣 . Each lemma shows

a different reduction from the NP-hard Exact Cover by 3-Sets

(X3C) problem [22]. Given a multiset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥3𝑛} and a

collection 𝐶 = {𝑆1, 𝑆2, . . . , 𝑆𝑚} of 3-element subsets of 𝑋 , X3C asks

whether there is some 𝐶′ ⊆ 𝐶 where every element of 𝑋 occurs in

exactly one member of 𝐶′
. We assume without loss of generality

that𝑚 > 3𝑛, as we can always add dummy 3-sets to guarantee this.

Lemma 5.3. esw-EF-PA with ternary utility values {0, 𝑣,𝑢}, 𝑢 =

𝑘𝑣 > 0, 𝑘 ≥ 3, and 𝑡 = 1 is strongly NP-hard.

Proof. The hardness proof proceeds by a reduction from X3C.

Given an instance (𝑋,𝐶) of the X3C, we construct an instance

I = (R,A, (𝑢𝑎)𝑎∈A , 𝑡 = 1) of the esw-EF-PA problem as follows.

• There are 𝑚 cover agents A𝐶 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} and a special
agent 𝑎∗, i.e., A = A𝐶 ∪ {𝑎∗}.

• There are 3𝑛 normal resources R𝑁 = {𝑟1, 𝑟2, . . . , 𝑟3𝑛}, (𝑘 − 3)𝑛
small resources R𝑆 = {𝑠1, 𝑠2, . . . , 𝑠 (𝑘−3)𝑛}, (𝑚 − 𝑛) dummy re-
sources R𝐷 = {𝑑1, . . . , 𝑑𝑚−𝑛}, and a special resource 𝑠∗, i.e.,
R = R𝑁 ∪ R𝑆 ∪ R𝐷 ∪ {𝑠∗}.

• For each cover agent 𝑎 𝑗 and each normal resource 𝑟𝑖 , the utility

function is defined such that𝑢 𝑗 (𝑟𝑖 ) = 𝑣 if 𝑥𝑖 ∈ 𝑆 𝑗 , and𝑢 𝑗 (𝑟𝑖 ) = 0

otherwise. Besides, each cover agent values each small resource

as 𝑣 . Each cover agent values each dummy resource and the

special resource 𝑠∗ as 𝑘𝑣 . Finally, the special agent 𝑎∗ values the
special resource 𝑠∗ as 𝑘𝑣 and values all other resources as 0.

We show that (𝑋,𝐶) is a YES-instance if and only if I is a YES-

instance.

(=⇒) Assume that (𝑋,𝐶) is a YES-instance, then there is a subset
𝐶′ ⊆ 𝐶 with |𝐶′ | = 𝑛 such that each 𝑒 ∈ 𝑋 occurs in exactly one

member of 𝐶′
. For each 𝑆 𝑗 ∈ 𝐶 , if 𝑆 𝑗 ∈ 𝐶′

, then we allocate the

3 corresponding normal resources to 𝑎 𝑗 resulting in value that 𝑎 𝑗
gets being exactly 3 for now. Then, 𝑎 𝑗 will also get 𝑘 − 3 small

resources, finally getting the value 𝑢 (= 𝑘𝑣). If 𝑆 𝑗 ∉ 𝐶′
, then we

allocate 1 dummy resource to 𝑎 𝑗 , which also results in value 𝑢. In

addition, the special agent will get the special resource which is

valued at exactly 𝑢. It is easy to check that every agent gets utility

𝑢 = 𝑘𝑣 and values other agents’ bundle by at most 𝑢 = 𝑘𝑣 . Thus, I
is also a YES-instance.

(⇐=) Assume that there is a solution for the constructed instance

I of esw-EF-PA. Since in this solution each agent has to get a

bundle with a positive value, the special agent will get the special

resource 𝑠∗. Then, each of the cover agents will require a bundle of

value at least𝑢 = 𝑘𝑣 . Since the total value that all the𝑚 cover agents

can receive is at most 3𝑛𝑣 + (𝑘 − 3)𝑛𝑣 + (𝑚 −𝑛)𝑘𝑣 =𝑚𝑘𝑣 , the value

that each cover agent receives should be exactly 𝑘𝑣 . Notice that

𝑚 − 𝑛 dummy resources can be allocated to𝑚 − 𝑛 cover agents, so

the remaining 𝑛 agents get all the normal and small resources. Since

each remaining agent can receive at most value 3𝑣 from the normal

resources, we conclude that each of them gets 3 normal resources

they like and 𝑘 − 3 small resources. Let 𝐼 𝑗 = {𝑖 𝑗𝑎, 𝑖 𝑗𝑏 , 𝑖 𝑗𝑐 } be the
normal resources received by each remaining agent 𝑎 𝑗 . Then we

Table 3: Agent’s utility functions in the proof of Lemma 5.4.

𝑏 𝑐 𝑑

𝑟∗
1

2𝑣 2𝑣 0

𝑟∗
2

0 𝑣 0

𝑟∗
3

2𝑣 2𝑣 2𝑣

𝑟∗
4

0 𝑣 0

can find 𝑛 corresponding sets 𝑆 𝑗 = {𝑥 𝑗𝑎, 𝑥 𝑗𝑏 , 𝑥 𝑗𝑐 } from𝐶 , which are

pairwise disjoint. This induces a feasible solution𝐶′
for (𝑋,𝐶). □

Next we consider the case with 𝑢 = 2𝑣 . The distinctive feature

of the following proof, lies in our creation of standard agents and

special resources as benchmarks, ensuring that the value of the

bundle desired by each agent exceeds a certain constant value.

Additionally, we introduce a large number of special “observer”

agents and corresponding blank resources to monitor potential

combinations of resources that may interfere with the reduction.

Lemma 5.4. esw-EF-PA with ternary utility values {0, 𝑣,𝑢}, 𝑢 =

2𝑣 > 0, and 𝑡 = 1 is strongly NP-hard.

Proof. The hardness proof also proceeds by a reduction from

X3C. Given an instance (𝑋,𝐶) of the X3C, we construct an instance

of I = (R,A, (𝑢𝑎)𝑎∈A , 𝑡 = 1) of the esw-EF-PA problem as follows.

• There are 𝑚 cover agents A𝐶 = {𝑎1, 𝑎2, . . . , 𝑎𝑚}, 3 standard
agents 𝑏, 𝑐, 𝑑 , and a set W of observers (of finite size to be speci-

fied later), i.e., A = A𝐶 ∪ {𝑏, 𝑐, 𝑑} ∪W.

• There 3𝑛 normal resources R𝑁 = {𝑟1, 𝑟2, . . . , 𝑟3𝑛}, 𝑛 small re-
sources R𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} , 2(𝑚 − 𝑛) dummy resources R𝐷 =

{𝑑1, . . . , 𝑑2(𝑚−𝑛) } and a finite number of blank resources R𝐵

(where |R𝐵 | = 2|W|) and 4 special resources 𝑟∗
1
, 𝑟∗

2
, 𝑟∗

3
, 𝑟∗

4
, i.e.,

R = R𝑁 ∪ R𝑆 ∪ R𝐷 ∪ R𝐵 ∪ {𝑟∗
1
, 𝑟∗

2
, 𝑟∗

3
, 𝑟∗

4
}.

• For each cover agent 𝑎 𝑗 and each normal resource 𝑟𝑖 , the utility

function is defined such that 𝑢 𝑗 (𝑟𝑖 ) = 𝑣 if 𝑥𝑖 ∈ 𝑆 𝑗 and 𝑢 𝑗 (𝑟𝑖 ) = 0

otherwise. Besides, each cover agent values each small resource

as 𝑣 . In addition, each cover agent values each dummy resource

and each special resource as 2𝑣 . The cover agents are not inter-

ested in blank resources.

• For each standard agent and each special resource, the utility

function is defined in Table 3 and the standard agents are not

interested in any of the other resources:

• Each observer assigns value 2 to each blank resource and each

special resource. In particular, there are three different kinds of

observers. Listing only resources for which the observers have

a non-zero value, we define them as follows: (1) Each observer

𝑤𝑖, 𝑗 ;𝑘 of type 1 values the two normal resources 𝑟𝑖 , 𝑟 𝑗 , and one

dummy resource 𝑑𝑘 at 2𝑣 , respectively. (2) Each observer𝑤 ′
𝑖;𝑗 ;𝑘

of type 2 values the normal resource 𝑟𝑖 and the dummy resource

𝑑 𝑗 and the small resource 𝑠𝑘 at 2𝑣 , respectively. (3) An observer

𝑤∗
values every small resource and every dummy resource at 2𝑣 .

Overall, we create

(
3𝑛
2

)
· 𝑚 + 3𝑚 · 𝑛 · 2(𝑚 − 𝑛) + 1 observers.

Thus, there are 𝑂 (𝑚2𝑛) numbers of observers and blank resources.

Assuming that there is a solution for the constructed instance I of

esw-EF-PA, we have the following observations.
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(1) We first consider the standard agents. Since each agent has

to get a positive value, standard agent 𝑑 will get 𝑟∗
3
. Then,

standard agent 𝑏 will get 𝑟∗
1
and standard agent 𝑐 will get 𝑟∗

2

and 𝑟∗
4
. Since 𝑐 gets 𝑟∗

2
and 𝑟∗

4
, each of the cover agents and

the observers will require a value of at least 4𝑣 .

(2) The normal resources, dummy resources and small resources

can only be allocated to the𝑚 cover agents. This is because

the cover agents are not interested in the blank resources

and the sum of the value that these three kinds of resources

can provide is at most 4𝑚𝑣 .

(3) Each cover agent gets utility exactly 4𝑣 . Thus, if a cover agent

gets 2 dummy resources, it cannot get any other resources.

(4) Since the observers can only get blank resources, each ob-

server will get exactly two blank resources.

(5) From the previous Observations 1–4, we can claim that each

resource is allocated to one agent in this allocation.

(6) No cover agent can get three different kinds of resources.

Otherwise, some observer𝑤 ′
𝑖;𝑗 ;𝑘

of type 2 will envy.

(7) No cover agent can get one dummy resource and one small

resource. Otherwise, this agent needs another resource to en-

sure the bundle is of value at least 4𝑣 . However, this resource

cannot be a normal resource according to Observation 6,

and it cannot be a small or dummy resource since otherwise

observer𝑤∗
would envy this agent.

(8) No cover agent receives one dummy resource and one normal

resource. Otherwise, the agent needs another resource. Yet,

neither can it be a dummy nor a normal resource because of,

respectively, the type 2 and 1 observers.

(9) It follows from Observations 3 and 6–8 above, that if some

cover agent gets a dummy resource then it will get exactly

two dummy resources and nothing else. Thus, there are𝑚−𝑛
cover agents who get 2(𝑚 − 𝑛) two dummy resources.

(10) The remaining 𝑛 cover agents get some normal resources

and small resources and each of them gets exactly 1 small

resource. This is because the value that each of them can

get from the normal resources is at most 3𝑣 . According to

the pigeonhole principle, there is and can only be one small

resource for each cover agent.

We show that (𝑋,𝐶) is a YES-instance if and only if I is a YES-

instance.

(=⇒) Since (𝑋,𝐶) is a YES-instance, there is a subset 𝐶′ ⊆ 𝐶

with |𝐶′ | = 𝑛 such that every element of 𝑋 occurs in exactly one

member of 𝐶′
. If 𝑆 𝑗 ∈ 𝐶′

, we allocate the 3 corresponding normal

resources to each 𝑎 𝑗 such that the value that 𝑎 𝑗 can get is exactly 3𝑣

for now. In addition, each𝑎 𝑗 will also get 1 small resource and finally

get the value 4𝑣 . If 𝑆 𝑗 ∉ 𝐶′
, we allocate 2 dummy resources and the

value is also 4𝑣 . Further, each observer gets 2 blank resources and

the value is also 4𝑣 . Finally, 𝑏 gets 𝑟∗
1
, 𝑐 gets 𝑟∗

2
and 𝑟∗

4
, 𝑑 gets 𝑟∗

3
. In

this case, no agent is envious. Thus, I is also a YES-instance.

(⇐=) Since I is a YES-instance, combining the observations

above, note that there are 𝑛 agents 𝑎 𝑗 who only get three normal

resources 𝐼 𝑗 = {𝑖 𝑗𝑎, 𝑖 𝑗𝑏 , 𝑖 𝑗𝑐 } and one small resource such that we

can find 𝑛 corresponding sets 𝑆 𝑗 = {𝑥 𝑗𝑎, 𝑥 𝑗𝑏 , 𝑥 𝑗𝑐 }. We can find

exactly 𝑛 such disjoint sets, which induces a feasible solution 𝐶′
.

Thus, (𝑋,𝐶) is a YES-instance. □

Finally, we consider the case when 𝑢 is not divisible by 𝑣 . The

following proof, while similar to the previous one, involves ad-

ditional considerations. These arise primarily because 𝑢 may be

significantly greater than 𝑣 . For some agents, in order to achieve a

value exceeding 𝑢 or even 2𝑢 solely through resources valued at 𝑣 ,

they would need to acquire a multiple of these resources.

Lemma 5.5 (⋆). With ternary utility values {0, 𝑣,𝑢 = 𝑘𝑣 + 𝑐} for
𝑣 > 𝑐 > 0, 𝑘 > 0 esw-EF-PA is strongly NP-hard and 𝑡 = 1.

The claim of Theorem 5.2 follows from Lemmas 5.1 and 5.3 to 5.5.

6 CONCLUSIONS
We studied how to allocate indivisible resources to agents in an

envy-free manner by relaxing the common requirement that all

resources must be allocated. We considered envy-free partial allo-

cations that provide at least some utility or allocate some resources

from both systematic or individual perspectives, and we obtained

comprehensive results under various classes of utilities. While most

of the problems we considered are generally NP-hard, we identified

several tractable results for binary utilities by establishing interest-

ing connections to matching problems on bipartite graphs. Notably,

our tractable results imply that, at least for binary utilities, if the

goal is to allocate some resources or provide some utility to agents,

then the problem of finding envy-free partial allocations (or confirm-

ing their non-existence) can be efficiently solved. Complementing

the well-known NP-hardness of finding envy-free complete alloca-

tions, our results provide a more fine-grained understanding of the

computational complexity of finding efficient envy-free allocations.

Our work can be extended in several directions. First, we show a

stark contrast: some cases are tractable under binary utilities but all

scenarios becomeNP-hard under ternary utilities. It is worth further

exploring this frontier, in particular, bivalued utilities other than the

combination of 0 and 1, that lie between binary and ternary utilities.

In the full version [13], we provide some initial results for 1/2

utilities. When 𝑡 = 1 all the four efficiency measures are equivalent,

and we can reduce the problem to the case where each agent can

get at most two resources. Second, we assumed all resources are

goods. A natural extension is to study chores or mixed resources.

For chores, the case of a planner who wants to distribute as many

tasks to agents as possible well justifies our measures size and

mcar. Here a relevant result is that for chores and binary values (or

even binary marginals), there always exists an envy-free allocation

with at most 𝑛 − 1 unallocated resources [27]. Finally, applying our

setting for alternative fairness notions, such as equitability, instead

of envy-freeness offers another research direction. We note that for

identical utilities, these two fairness notions are equivalent.
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