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ABSTRACT
Reinforcement learning (RL) algorithms for mean-field games offer
a scalable framework for optimizing policies in large populations
of interacting agents. Existing methods often depend on online
interactions or assume access to system dynamics, limiting their
practicality in real-world scenarios where such interactions are
infeasible or difficult to model. In this paper, we present Offline
Munchausen Mirror Descent (Off-MMD), a novel mean-field RL
algorithm that approximates equilibrium policies in mean-field
games using purely offline data. By leveraging iterative mirror de-
scent and importance sampling, Off-MMD estimates the mean-field
distribution from static datasets without relying on simulation or en-
vironment dynamics. Additionally, we incorporate techniques from
offline RL to address common issues like Q-value overestimation,
ensuring robust policy learning even with limited data coverage.
Our algorithm scales to complex environments and demonstrates
strong performance on benchmark tasks like crowd exploration or
navigation, highlighting its applicability to real-world multi-agent
systems where online experimentation is infeasible. We empirically
demonstrate the robustness of Off-MMD to low-quality datasets
and conduct experiments to investigate its sensitivity to hyperpa-
rameter choices.
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1 INTRODUCTION
Reinforcement Learning (RL) has emerged as a foundational tool
for solving sequential decision-making problems across a diverse
range of domains, including robotics, healthcare, autonomous sys-
tems, and game theory. However, while RL techniques have seen
significant success in single-agent settings, the transition to multi-
agent reinforcement learning (MARL) presents unique challenges,
such as the exponential growth in the state and action spaces as
the number of interacting agents increases, making the problem
significantly more complex in terms of computation.

Traditional MARL methods often do not scale to many-agent
settings and rapidly become infeasible in environments with large
populations of agents. As the number of agents grows, learning
effective strategies can become computationally prohibitive. To ad-
dress this challenge,Mean-Field Games (MFGs), introduced by Lasry
and Lions [23] and Huang et al. [17], provide a scalable approxi-
mation for large 𝑁 -player games. The core idea is to represent the
collective state of the population as a distribution over individual
agent states, known as the mean-field. This reduces the decision-
making problem to interactions between a single representative
agent and the mean-field, enabling more efficient analysis and com-
putation. This approach has shown great promise in reducing the
complexity of multi-agent interactions, allowing for the develop-
ment of more tractable solutions in environments with many agents.
Early works on MFGs tackled problems of relatively small scale,
often under restrictive assumptions such as linear dynamics and
quadratic cost functions. These simplified models, while mathemat-
ically elegant, limit the applicability of MFGs to real-world systems
that exhibit complex, nonlinear behavior. However, recent advances
in the field have focused on scaling MFG solutions by leveraging
deep reinforcement learning (DRL) techniques. These methods use
neural network function approximators to compute equilibrium
policies in MFGs, as demonstrated in [24, 31, 32]. Such approaches
have enabled significant progress in applying MFG theory to more
practical and large-scale environments.

Despite these advances, a critical issue remains: most existing
MFG-based RL algorithms rely on online interaction with the en-
vironment. In many real-world applications, particularly those in-
volving large populations of agents or human interactions (e.g.,
traffic routing, crowd dynamics, or recommendation systems), on-
line interaction is either impractical or ethically unjustifiable. For
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example, in systems with human agents, it is often costly or in-
trusive to collect real-time data, and continuous exploration could
lead to unintended consequences such as user dissatisfaction or
safety risks. Furthermore, environments with many agents can be
difficult to model accurately, and real-time experimentation in such
systems may not be possible. In single-agent RL, offline learning is
a well researched area and allows to solve this problem by learning
policies from pre-collected, fixed datasets, eliminating the need for
online interactions. These offline methods have proven highly effec-
tive in settings where real-time interaction is limited or expensive.
However, the application of offline RL techniques to MFGs remains
underexplored. Current MFG methods have largely overlooked the
offline setting, where no online interaction with the environment
is available during learning.

To bridge this gap, we propose Offline Munchausen Mirror
Descent (Off-MMD), an offlinemean-field RL algorithm. Off-MMD
extends the recently introduced Deep Munchausen Online Mirror
Descent (D-MOMD) method by Lauriere et al. [24] and combines
the scalability of MFG approximations with the data efficiency of
offline RL. To the best of our knowledge, Off-MMD is the first deep
offline RL algorithm specifically designed for MFGs, capable of
handling arbitrarily sized datasets. This innovation opens the door
for applying MFG theory in real-world systems where online data
collection is prohibitive. The primary challenge in adapting MFGs
to the offline setting stems from the fact that these systems typically
require estimating the distribution of agents (the mean-field), which
complicates the direct adaptation of online algorithms. To address
this, we repurpose ideas from off-policy policy evaluation (OPE) to
approximate the mean-field distribution using offline data. Addi-
tionally, we apply a robust regularization mechanism to mitigate
the effects of distributional shift, a well-known issue in offline RL.
This regularization stabilizes the policy learning process, ensuring
more reliable performance even in underrepresented areas of the
state space. We empirically validate Off-MMD on a suite of bench-
mark tasks to demonstrate its efficacy. Specifically, we assess its
performance on tasks that involve both fully cooperative and non-
cooperative behaviors across two common benchmarks in the field
of MFGs. Additionally, we explore the sensitivity of Off-MMD to the
quality of the datasets used for training, assessing how variations
in state-action coverage and trajectory quality impact performance.
We further investigate the importance of the proposed regulariza-
tion term, designed to prevent the overestimation of 𝑄-values. In
summary, our contributions are:

(1) Offline Munchausen Mirror Descent, a novel deep RL algo-
rithm for offline learning in MFGs.

(2) Extensive evaluation of the performance and ablation studies
with respect to regularization and dataset quality.

2 BACKGROUND
Sequential decision making problems commonly make use of finite
horizon Markov decision processes (MDP). A finite horizon MDP is
a tuple ⟨S,A, 𝑟 , 𝑝,𝛾, 𝐻, 𝜇0⟩ consisting of a set of states S, a set of
actions A, a reward function 𝑟 : S × A ↦→ R, stochastic dynamics
𝑝 : S ×A ↦→ ΔS , a discount factor 𝛾 ∈ (0, 1), a horizon 𝐻 ∈ N and
an initial state distribution 𝜇0 ∈ ΔS . Problems involving a large
number of interacting agents become intractable as the size of the

state and action space grows exponentially with the number of
agents. In many-agent games, where agents are anonymous and
identical, MFGs offer an effective framework to approximate the
population dynamics. First introduced by Lasry and Lions [23]
and Huang et al. [17], MFGs address this complexity by modeling
interactions through the distribution of agent states, rather than
tracking individual agents. This reduces the dimensionality of the
problem, making it more tractable and allows to approximate finite,
𝑁 -player games. In MFGs, a representative agent interacts with
the mean-field rather than directly interacting with each individual
agent. Consequently, the problem becomes optimizing a single
policy with respect to this population distribution.

In this work, we consider stochastic, finite-horizon MFGs with
a finite set of states S and actions A. The mean-field, which is
the distribution of agent states at time 𝑡 , is denoted by 𝜇𝑡 ∈ ΔS .
In the most general form, MFGs allow for mean-field-dependent
dynamics, rewards, and even policies. However, in this work, we
focus on the case where only the rewards depend on the mean-field:

𝑟𝑡 : S × A × ΔS ↦→ R. (1)

This allows an individual agent to incorporate the behavior of
a large number of other agents into its decision-making process.
Given a population policy 𝜋 : S ↦→ ΔA , the mean-field flow 𝜇𝜋 is
defined by the recursive relation

𝜇𝜋𝑡+1 (𝑠
′) =

∑︁
𝑠∈S

∑︁
𝑎∈A

𝑝 (𝑠′ |𝑠, 𝑎)𝜋 (𝑎 |𝑠)𝜇𝜋𝑡 (𝑠), (2)

𝜇𝜋0 = 𝜇0, (3)

where 𝑝 (𝑠′ |𝑠, 𝑎) represents the transition dynamics of the environ-
ment, and 𝜇0 is the initial distribution over states. Given a mean-
field flow 𝜇, the goal for an agent is to find a policy 𝜋 which maxi-
mizes the expected sum of rewards:

max
𝜋

𝐽 (𝜋, 𝜇) = E𝜋
[ 𝐻∑︁
𝑡=0

𝛾𝑡 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )
]

subject to: 𝑠0 ∼ 𝜇0

𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 )
𝑠𝑡+1 ∼ 𝑝 (·|𝑠𝑡 , 𝑎𝑡 ) .

By making the reward depend only on other agents via the mean-
field instead of the individual states and actions of all other agents,
we obtain a much smaller optimization problem to solve.

Learning in MFGs. In contrast to single-agent RL, where we
optimize a stationary reward signal, algorithms for MFGs typically
aim to find policies that are close to some equilibrium, as changes in
the policy influence the mean-field and vice-versa, making the op-
timization problem non-stationary. The concept of Nash-Equilibria
(NE), a common solution concept in game theory, has been extended
to MFGs [23] and is the main optimization target for algorithms
solving non-cooperative MFGs.

Definition 2.1. The best response (BR) to a mean-field flow 𝜇 is
the solution of the optimization problem

𝜋∗ = argmax
𝜋

𝐽 (𝜋, 𝜇) = 𝐵𝑅(𝜇).
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Definition 2.2 (𝜖-MFNE). An 𝜖-Mean-Field Nash Equilibriumwith
𝜖 ≥ 0 is defined as a tuple (𝜋, 𝜇𝜋 ) for which the following holds:

sup
𝜋 ′∈Π

𝐽 (𝜋 ′, 𝜇𝜋 ) ≤ 𝐽 (𝜋, 𝜇𝜋 ) + 𝜖.

Intuitively, a MFNE entails that no agent has the incentive to
deviate unilaterally from the population policy. Early methods to
solve MFGs primarily involved solving coupled partial differential
equations, typically a forward-backward system of Hamilton-Jacobi-
Bellman and Fokker-Planck-Kolmogorov equations, to compute the
value function and distribution flow of agents [1, 2]. However, these
methods struggle with scalability in high-dimensional state-action
spaces and complex environments.

Algorithms for solving MFGs using RL commonly rely on some
form of fixed point iteration, alternating between policy updates
and the mean-field distribution computation, denoted by the mean-
field evaluation operator 𝜙 (𝜋) = 𝜇𝜋 . Thereby, they use a best
response computation step before evaluating the mean-field. On
convergence, the fixed point iteration

𝜙 (𝜋∗) = 𝜙 (𝐵𝑅(𝜇∗)) = 𝜇∗

yields the MFNE (𝜋∗, 𝜇∗). Generally, convergence is not guaran-
teed [12] and methods from algorithmic game theory, such as Fic-
titious Play (FP) [4], are used to stabilize training. In recent years,
machine learning approaches, particularly RL, have been explored
as a promising alternative for solving MFGs [8, 14, 40]. One of
the central challenges in using RL to solve MFGs lies in the non-
stationarity introduced by multi-agent interactions, which com-
plicates the learning process. Deep Learning variants of FP [15]
were adapted to the MFG settings to scale to larger state and action
spaces [6, 31, 32, 37].

In this work, we focus on a class of algorithms that evaluate a
policy instead of computing a BR at each iteration [5]. Specifically,
we adapt the Online Mirror Descent algorithm (OMD) [24, 29] to
the offline setting. OMD alternates between policy evaluation and
mean-field updates, as outlined in Algorithm 1. The main differ-
ence to FP-style algorithms is that OMD tracks the sum of previous
𝑄-functions instead of average policies. The policy update in OMD
is a softmax over the sum of previous 𝑄-functions. However, it is
not straightforward to sum up 𝑄-functions in the case of nonlin-
ear function approximators, such as neural networks. This can be
avoided by leveraging the following identity, as proposed in [24]:

𝜋𝑖 = softmax
( 1
𝜏

𝑖∑︁
𝑗=0

𝑄 𝑗
)

(4)

= argmax𝜋∈ΔA
(
⟨𝜋,𝑄𝑖 ⟩ − 𝜏 KL

(
𝜋 | |𝜋𝑖−1) ) (5)

= argmax𝜋∈ΔA
(
⟨𝜋,𝑄𝑖 + 𝜏 ln𝜋𝑖−1︸           ︷︷           ︸

�̃�𝑖

⟩ − 𝜏 ⟨𝜋, ln𝜋⟩︸   ︷︷   ︸
H(𝜋 )

)
(6)

= softmax
( 1
𝜏
�̃�𝑖

)
. (7)

This insight allows us to apply policy evaluation directly on �̃� to
compute the sum of𝑄-functions. In Equations (5) and (6), the inner
product ⟨𝜋,𝑄𝑖 ⟩ is the shorthand notation for

∑
𝑎 𝜋 (𝑎 |𝑠)𝑄𝑖 (𝑠, 𝑎).

The modified Bellman Operator is then defined as:

(B𝜋𝜇 �̃�) (𝑠, 𝑎) = 𝑟 + 𝛾 E𝑠′,𝑎′ [�̃� (𝑠′, 𝑎′) − 𝜏 ln𝜋𝑖−1 (𝑎′ |𝑠′)] (8)

𝑟 (𝑠, 𝑎, 𝜇) = 𝑟 (𝑠, 𝑎, 𝜇) + 𝜏 𝛼 ln𝜋𝑖−1 (𝑎 |𝑠), (9)

with modified reward 𝑟 , which penalizes deviations from the previ-
ous policy 𝜋𝑖−1. The hyperparameter 𝜏 acts as a temperature and
scales the sum of𝑄-values to avoid premature convergence whereas
𝛼 is a regularization parameter to control how far a new policy
can be from the previous policy. For a more detailed derivation, we
refer to [24].

Algorithm 1 Munchausen Online Mirror Descent for MFGs [24]

1: for 𝑖 = 1 ... 𝐿 do
2: Mean-Field Update: 𝜇𝑖 ← 𝜙 (𝜋𝑖 )
3: Regularized Policy Evaluation: �̃�𝑖+1 ← B𝜋𝑖

𝜇𝑖
�̃�𝑖

4: Policy Update: 𝜋𝑖+1 (·|𝑠) ← softmax( 1
𝜏 �̃�

𝑖+1 (𝑠, ·))
5: end for

3 RELATEDWORK
Recent years brought up many works that address various lim-
itations of MFGs. Lauriere et al. [24] introduce the basis of our
work, Deep Munchausen Mirror Descent, a deep neural network
based variant of OMD [29] with strong empirical performance.
Also Cui and Koeppl [12] and Perrin [30] introduce deep RL based
approaches for MFGs. Other works address the assumption of iden-
tical agents and extend MFGs to multi-population games [7, 13].
Subramanian et al. [35] propose decentralized MFGs, allowing to
lift the assumption of indistinguishable agents. Inverse-RL (IRL)
methods are applied to the MFG setting to infer unknown reward
signals [10, 11]. Yang et al. [39] develop an IRL approach that learns
the dynamics and the reward model from data. However, their work
focuses on behavior prediction rather than finding MFNE. Recent
work on model-based algorithms in the mean-field control (MFC)
setting, a subclass of MFGs in which agents fully cooperate, can
learn a model of the environment and use that to optimize a MFC
policy with better sample efficiency [16, 34]. Jusup et al. [18] ex-
tend this to safety-constrained problems. However, although those
approaches learn a model of the environment, they still assume
access to the environment for exploration.

Despite many advances in the field of MFGs, the direction of
offline learning remains an underexplored topic. SAFARI [9] is, to
our knowledge, the only approach specifically designed for offline
mean-field RL, which is not directly comparable to our approach
as it does not approximate MFNE. Its main innovation lies in using
Reproducing Kernel Hilbert Space (RKHS) embeddings to model the
mean-field distribution, combined with an uncertainty-regularized
value iteration based on fixed trajectories. While theoretically ro-
bust, with dataset-dependent performance bounds, SAFARI faces
significant scalability issues. The RKHS embeddings require in-
verting a Gram matrix that grows quadratically with the dataset
size, leading to substantial memory demands and computational
bottlenecks.
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4 METHOD
In this section we discuss the foundational components of Off-
MMD. In particular, we elaborate how we can leverage methods
from offline policy evaluation to estimate the mean-field 𝜇 from
static datasets and provide a modified version of the D-MOMD
algorithm to adapt it to the offline learning regime.

4.1 Offline Mean-Field Estimation
Fixed point algorithms for solving mean-field games, as discussed in
Section 2, iterate between (1) evaluating the mean-field distribution
of agents and (2) best-response computation or policy evaluation.
The first step, mean-field estimation, can be done via direct compu-
tation if one has access to the transition model or via Monte-Carlo
samples if a simulator is provided. In scenarios where only a static
dataset of previously collected environment interactions is available,
online algorithms like D-MOMD [24] are not applicable.

Therefore, we seek to approximate the mean-field flow

𝜇𝜋𝑡+1 (𝑠
′) =

∑︁
𝑠∈𝑆

∑︁
𝑎∈𝐴

𝑝 (𝑠′ |𝑠, 𝑎) 𝜋 (𝑎 |𝑠) 𝜇𝜋𝑡 (𝑠) (10)

without having access to the transition model 𝑝 (𝑠′ |𝑠, 𝑎). One ap-
proach to mitigate this is to leverage the data to learn a model
of the dynamics. However, the models may be inaccurate in large
action spaces, where not all actions are frequently visited. More-
over, approximating the environment dynamics with neural net-
works might cause additional biases from covariate shifts due to the
change of policies [38]. In this work, we leverage the fact that this
problem can be equivalently treated as an off-policy state density
estimation problem. OPE methods are designed to estimate quanti-
ties such as rewards or value functions from off-policy samples. We
repurpose this idea to estimate the state distribution under a new
policy. In particular, we are interested to estimate 𝜇𝜋 from samples
that are not collected from 𝜋 but some other, possibly unknown,
behavior policy 𝜋𝛽 and without having access to environment dy-
namics 𝑝 (𝑠′ |𝑠, 𝑎).

Let 𝑑𝜋𝜇 (𝑠, 𝑎) = 𝜋 (𝑎 |𝑠) 𝜇 (𝑠) be the joint state-action distribution
given a mean-field 𝜇 and policy 𝜋 . We restate the mean-field flow
as an expectation over 𝑑𝜋𝜇 :

𝜇𝜋𝑡+1 (𝑠
′) = E(𝑠,𝑎)∼𝑑𝜋

𝜇𝑡

[
𝑝 (𝑠′ |𝑠, 𝑎)

]
. (11)

In general, we could apply any OPE method capable of estimating
density (ratios) such as model-based estimators [19, 41] or DICE-
style approaches for estimating stationary distributions [26, 36],
because Off-MMD is agnostic to the estimation method. In this
work we choose importance sampling to estimate 𝜇𝜋

𝑡+1. In particu-
lar, we make use of the marginalized importance sampling (MIS)
estimator of Xie et al. [38] because of its theoretical properties
and its simplicity compared to other approaches, which typically
require additional steps, such as solving an inner optimization prob-
lem [28, 42] or fitting another model [19, 41].

Let 𝑑𝛽 (𝑠, 𝑎) = 𝜋𝛽 (𝑎 |𝑠) 𝑑 (𝑠) be the joint state-action distribu-
tion of the dataset collected under behavior policy 𝜋𝛽 . In practice,
𝜋𝛽 is often unknown and can be approximated using the state-
conditional empirical distribution over actions in D [21]. We can

apply importance sampling to reformulate Equation (11) as

𝜇𝜋𝑡+1 (𝑠
′) = E(𝑠,𝑎)∼𝑑𝛽

[
𝑑𝜋𝜇𝑡 (𝑠, 𝑎)
𝑑𝛽 (𝑠, 𝑎)

𝑝 (𝑠′ |𝑠, 𝑎)
]

(12)

= E(𝑠,𝑎)∼𝑑𝛽

[𝜋 (𝑎 |𝑠) 𝜇𝜋𝑡 (𝑠)
𝜋𝛽 (𝑎 |𝑠) 𝑑 (𝑠)

𝑝 (𝑠′ |𝑠, 𝑎)
]
. (13)

This factorization of the state-action distribution allows us to apply
MIS to approximate Equation (13) using samples (𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑠𝑖𝑡+1) from
finite dataset D. Let 𝑑 (𝑠𝑡 ) = 1

|D |
∑ |D |
𝑖

1[𝑠 (𝑖 )𝑡 = 𝑠𝑡 ] denote the
empirical state distribution at time 𝑡 , then the marginalized state
distribution can be estimated recursively by

𝜇𝜋𝑡+1 (𝑠) ≈
1
|D|

|D |∑︁
𝑖=0

𝜋 (𝑎 (𝑖 )𝑡 |𝑠
(𝑖 )
𝑡 )

𝜋𝛽 (𝑎 (𝑖 )𝑡 |𝑠
(𝑖 )
𝑡 )

𝜇𝜋𝑡 (𝑠
(𝑖 )
𝑡 )

𝑑 (𝑠 (𝑖 )𝑡 )
1[ 𝑠 (𝑖 )

𝑡+1 = 𝑠]

𝜇𝜋0 (𝑠) = 𝑑 (𝑠0) .

(14)

This yields an unbiased estimator of 𝜇𝜋 with polynomial error
bound with respect to time horizon 𝐻 , which reduces to O(𝐻 ) in
some cases, such as bounded maximum expected returns [38]. Note
that, unlike in typical single-agent offline RL scenarios, we can
not directly estimate reward 𝑟𝑡 , as it depends nonlinearly on 𝜇𝑡 in
general. Thus, for the general case, we require access to the reward
function. For special cases, such as reward functions monotonic in
𝜇𝑡 , we could in principle approximate 𝑟𝑡 directly.

4.2 Offline Munchausen Mirror Descent
In Section 4.1, we introduced an offline method for estimating the
mean-field distribution of a policy. This method can, in principle,
be directly applied to D-MOMD to adapt it to the offline learning
setting. The update rule in our algorithm follows the classic TD-
error minimization approach, as used in DQN [27], where the target
𝑄-values are parameterized by 𝜃 . Specifically, the objective is to
minimize the temporal-difference error where the policy evaluation
operator is defined as in Equation (8):

min
𝜃
E(𝑠,𝑎,𝑠′ )∼D

[ (
𝑄𝜃 (𝑠, 𝑎) − (B𝜋𝜇 𝑄𝜃 ) (𝑠, 𝑎)

)2]
. (15)

However, naively applying off-policy algorithms to offline RL
tasks typically leads to the overestimation of 𝑄-values for actions
not well represented in the dataset. To address this issue, we in-
corporate a regularization term following the idea of Conservative
Q-Learning (CQL) [21], which is designed to learn a conservative
lower bound of the true 𝑄-function. CQL introduces a regularized
version of the Bellman equation, where the objective balances the
maximization of the 𝑄-values over the dataset and the minimiza-
tion of the temporal-difference error. The general CQL optimization
problem is given as:

min
𝑄

max
�̃�
E(𝑠,𝑎)∼D,�̃�

[
𝑄 (𝑠, 𝑎)

]
− E(𝑠,𝑎)∼D,𝜋𝛽

[
𝑄 (𝑠, 𝑎)

]
+
��𝑄 − B∗𝑄 ��2 + R(�̃�), (16)

where �̃� represents a policy used to define the joint-state-action
distribution over which we minimize the state-action values. The
second term encourages tighter bounds by maximizing 𝑄-values
under the dataset distribution. The last term is the classic Bellman
equation minimizing the TD error with a regularization term R
applied to �̃� . For specific choices of R, the inner maximization
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problem can be solved in closed form. A common choice for R is
to use the KL divergence to some prior action distribution 𝜌 . If we
chose 𝜌 to be the uniform distribution over actions, we obtain an
entropy regularized, closed-form loss function for Off-MMD:

L(𝜃 ) =𝜂 E(𝑠,𝑎)∼D
[

log
∑︁
𝑎′

exp𝑄𝜃 (𝑠, 𝑎′) −𝑄𝜃 (𝑠, 𝑎)
]

+E(𝑠,𝑎,𝑠′ )∼D
[ (
𝑄𝜃 (𝑠, 𝑎) − (B𝜋𝜇 𝑄𝜃 ) (𝑠, 𝑎)

)2]
,

(17)

where 𝜂 is a hyperparameter to control the importance of the CQL-
regularization term.

The pseudo-code for Off-MMD is shown in Algorithm 2. We use
Equation (14) to compute the offline mean-field and Equation (17)
to compute the loss function and update the parameters 𝜃 via sto-
chastic gradient descent. Off-MMD thus follows the same iterative
schema as Algorithm 1.

Algorithm 2 Offline Munchausen Mirror Descent (Off-MMD)

1: Input: Dataset D, initial parameters 𝜃1

2: for 𝑖 = 1 ... 𝐿 do
3: Estimate mean-field 𝜇𝑖 for current policy using eq. (14)
4: for 𝑗 = 1 ... 𝐵 do
5: Sample batch B: {(𝑠𝑘𝑡 , 𝑎𝑘𝑡 , 𝑠𝑘𝑡+1)}

𝑁
𝑘=1 ∼ D

6: Relabel reward using 𝜇𝑖𝑡 : 𝑟
𝑘
𝑡 = 𝑟 (𝑠𝑘𝑡 , 𝑎𝑘𝑡 , 𝜇𝑖𝑡 )

7: Update: 𝜃𝑖 ← 𝜃𝑖 − ∇𝜃L(𝜃𝑖 ) using eq. (17)
8: end for
9: 𝜃𝑖+1 ← 𝜃𝑖

10: Update policy: 𝜋 (𝑎 |𝑠) = softmax
( 1
𝜏𝑄𝜃𝑖+1 (𝑠, 𝑎)

)
11: end for

5 EXPERIMENTAL EVALUATION
We empirically evaluate Off-MMD on two grid-world problems
introduced by Lauriere et al. [24] and compare its performance
against the online variant. We also conduct experiments to investi-
gate the sensitivity to the quality of the dataset and the importance
of the regularization term in the loss function. The algorithms and
the environments are implemented in JAX [3] and build on code by
Kostrikov [20] and Lanctot et al. [22]. The code for the experiments
and hyperparameters are available on GitHub.1

5.1 Experiment Setup
To make runs comparable with each other, we employ Exploitability
as an evaluation criteria (also often referred to as Regret):

E(𝜋, 𝜇) = max
𝜋 ′

𝐽 (𝜋 ′, 𝜇) − 𝐽 (𝜋, 𝜇).

It directly measures how far a learned policy is from a MFNE by
quantifying the potential utility an agent can gain by deviating from
its policy, with lower exploitability indicating better equilibrium
approximation. We use the same evaluation protocol as in [24] and
compute the ground truth mean-field and exploitability.

Both, Off-MMD and D-MOMD, optimize a 𝑄 function repre-
sented as a fully connected neural network with 3 layers of 128
nodes and ReLU activations. The hyperparamer settings are the
1https://github.com/axelbr/offline-mmd

same for all instances of Off-MMD over all tasks, except the ablation
studies.

5.2 Performance Evaluation
We evaluate the performance of our algorithm on two distinct tasks
within a gridworld environment consisting of four separated rooms
connected by narrow corridors, as described in [24, 25]. Agents can
choose from five actions: move up, down, left, right, or stay in place.
If an action results in a collision with a wall, the agent remains in
its current position. The time horizon for each episode is set to 40
timesteps. The two tasks we evaluate are exploration and crowd
navigation. For each task, we train Off-MMD on three datasets of
varying quality and compare its exploitability against the baseline.
The following variants of Off-MMD are included in the evaluation:
• D-MOMD: The online baseline algorithm.
• Off-MMD (Expert): Trained on data collected by a fully
trained D-MOMD policy.
• Off-MMD (Int): Trained on data collected from an interme-
diate checkpoint.
• Off-MMD (Rand): Trained on data collected from a uniform
random policy.

All datasets contain 100K episodes with 40 timesteps each. The sub-
sequent sections present the evaluation results for the exploration
and crowd navigation tasks.

Exploration Task. In this task, agents start in the left upper
corner and must spread evenly across all four rooms. The reward
function is defined as

𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ) = − log 𝜇𝑡 (𝑠𝑡 ),
which incentivizes agents to occupy less crowded states, leading to
higher rewards when low-density states are reached. The optimal
policy for this task spreads evenly across the whole state-space.

In Figure 1a, we present the exploitability over 100 iterations of
our algorithm. The online variant rapidly converges to the expected
outcome. We evaluate the performance of three instances of Off-
MMD, each trained on a dataset of different quality. When trained
on sufficiently high-quality datasets, Off-MMD consistently learns
policies that perform well. Figure 1b illustrates the evolution of the
mean-field over time, supporting this observation. As expected, the
policy trained on data generated by a uniform random policy fails
to spread evenly across all rooms, particularly in the lower-right
room, due to insufficient coverage of this region in the dataset.

Crowd Modelling with Congestion. In this task, agents also
start in the upper left corner. Differently to the exploration task,
agents must navigate to the target position in the lower right cor-
ner while avoiding high-density areas. Furthermore, we simulate
congestion effects by penalizing movements when agents are in
crowded areas. The reward function is defined as

𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ) = −||𝑠𝑡 − 𝑠target | | − | |𝑎𝑡 | | 𝜇𝑡 (𝑠𝑡 ) − log 𝜇𝑡 (𝑠𝑡 ),
where | |𝑠𝑡 − 𝑠target | | denotes the distance to the target and | |𝑎𝑡 | |
is 1 if the agent moves in any direction, 0 otherwise. This is a
more complex reward function, as it poses a trade-off of conflicting
goals for the agents. The results, shown in Figure 2a, demonstrate
convergence of Off-MMD (Exp) and Off-MMD (Int) towards the
baseline. Notably, the policy trained on the random dataset also
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Figure 1: (a) Off-MMD can approximate the performance
of D-MOMD on the Exploration task when being trained
on reasonably good datasets. Training runs were conducted
over 10 seeds for 100 iterations of Off-MMD and D-MOMD.
We report the mean exploitability and the 95% confidence
interval. (b) Evolution of the mean-field over timesteps 𝑡 .
Darker areas indicate higher state density.

performs reasonably well. We hypothesize that the distance penalty
provides effective guidance, enabling the policy to solve the task
even with limited state-action coverage in certain parts of the state
space.

5.3 Impact of Dataset Quality
In offline RL, we are interested in the robustness of policy perfor-
mance to dataset quality. In this experiment, we aim to investigate
the sensitivity of Off-MMD to changes in the quality of the trajec-
tories in the dataset and the coverage of the state space.
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Figure 2: Off-MMD performs best with intermediate and ex-
pert quality datasets. Compared to the exploration task, the
policy trained on the random behavior dataset performs bet-
ter. Experiment settings are the same as in Figure 1.

Building on the methodology of Schweighofer et al. [33], we
characterize datasets based on two quality criteria: state-action
coverage and trajectory quality.

Definition 5.1 (State-Action Coverage). Let 𝑢𝑠,𝑎 (D) denote the
number of unique state-action pairs in a dataset D, then the state-
action coverage of this dataset is defined as

Coverage(D) =
𝑢𝑠,𝑎 (D)
|𝑆 | |𝐴| . (18)

Definition 5.2 (Trajectory Quality). Let 𝑔(D) denote the average
episode return of a dataset. Furthermore, let Dmin and Dexpert be
reference datasets, collected by a suboptimal and an expert policy,
respectively. The trajectory quality of dataset D is defined as

Quality(D) = 𝑔(D) − 𝑔(Dmin)
𝑔(Dexpert) − 𝑔(Dmin)

. (19)

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

413



0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

State-Action Coverage

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

je
ct

or
y

Q
u

al
it

y

Exploitability vs. Dataset Quality

Expert Intermediate Random

60

80

100

120

140

160

E
xp

lo
it

ab
ili

ty
Figure 3: Exploitability vs. Data-Quality: Each point repre-
sents a training run of Off-MMD on a dataset with specific
state-action coverage and trajectory quality. The color indi-
cates the exploitability of the policy after 100 iterations with
darker colors indicating higher exploitability. For reference,
we also mark the datasets used in previous experiments.

In our experiments, we use datasets collected by the expert policy
and the random policy for computing the normalization bounds in
Equation (19). Using the three datasets introduced previously for
the navigation task, we generate 100 synthetic datasets by randomly
subsampling episodes. The dataset sizes range from 1,000 to 100,000
episodes. We then train policies using Off-MMD on these datasets
to evaluate the effect of dataset quality on performance.

Figure 3 presents the exploitability of Off-MMD when trained on
datasets with varying state-action coverage and trajectory quality.
The results indicate a strong correlation between state-action cov-
erage and performance, whereas trajectory quality appears to be a
weaker predictor, except in extreme cases such as expert demon-
strations or fully random datasets (highlighted in Figure 3). This
behavior can be explained by the challenges inherent in multi-agent
systems: the policy return is strongly influenced by the behavior
of other agents. Therefore, performance achieved under one mean-
field setting may not be comparable to another.

In Figure 4, we visualize the approximation of the mean-field
under datasets of varying quality for a fixed policy. The left-most
column shows the empirical state distribution of the datasets, the
center column shows the true mean-field for the policy and serves
as a reference, and the right-most column shows the offline approx-
imation. Figure 4 shows how the approximation of the mean-field
changes with the state coverage in the dataset. This is particularly
prevalent in the first row, where we chose the dataset with the
lowest state coverage from the set of synthetic datasets. The ap-
proximation can not provide estimates for unvisited parts of the
state space. However, for the states that are in the dataset, it pro-
duces correct estimates of the mean-field distribution. In scenarios
with higher quality datasets, we observe accurate approximations
of the ground-truth distribution.
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Figure 4: The left column shows the empirical state distri-
bution of datasets collected by behavior policy 𝜋𝛽 (from the
navigation task) with different state coverages. The center
column shows the ground-truth mean-field that is generated
by the new policy to evaluate and the right column shows
the approximated mean-field of that policy using just the
dataset. The mean-fields are picked at 𝑡 = 15. White spots
indicate no state-action coverage in this area.

5.4 Effect of Regularization
In the following, we investigate the importance of the CQL regu-
larization term with respect to the robustness to varying levels of
state-coverage in the dataset and the training stability of Off-MMD.

The first experiment, shown in Figure 5, aims to examine the
effect of the regularization hyperparameter 𝜂 on the quality of
the policy. We conduct training runs with varying regularization
strengths, ranging from 0 (e.g. no regularization) to 5 across datasets
with different levels of state-action coverage. Specifically, we select
five datasets closest to each state-action coverage bin, with cover-
age values ranging from 0.15 to 0.45. Off-MMD is trained for 100
iterations on each of these datasets, allowing us to analyze the influ-
ence of regularization under diverse coverage conditions. Figure 5
shows that moderate regularization allows to reach comparable
exploitability as D-MOMD on higher state-action coverages while
being significantly more robust than Off-MMD without regulariza-
tion. The best final performance is achieved with 𝜂 = 2.0, which
coincides with the recommended setting for CQL [21]. Furthermore,
we can see that larger values for the regularization hyperparameter
𝜂 dampen the difference in performance over different coverage
levels, but hurt the maximum achievable performance.

In another ablation experiment, we investigate the training stabil-
ity of Off-MMD, specifically focusing on monotonic improvement,
under different values of the regularization parameter 𝜂. Figure 6
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Figure 5: We report the exploitability of policies with dif-
ferent values of 𝜂 in eq. (17). We train each configuration
on 5 datasets that have state-action coverages close to a spe-
cific value, ranging from 0.15 to 0.45. We report the mean
exploitability of the policies after 100 iterations. For refer-
ence, we also plot the performance of the online baseline
after 100 iterations.
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Figure 6: We optimize policies with different values of 𝜂 on
the same expert dataset of the navigation tasks and plot the
exploitability over training iterations. We show the mean
and 95% confidence interval over 10 seeds.

presents the results of five training runs on the expert dataset of the
navigation task, each with a different value of 𝜂. The results show
that the regularization term plays a crucial role in stabilizing the
training dynamics. Lower values of 𝜂 lead to oscillations in policy
performance and, in some cases, even result in divergence, as seen
in the unregularized case. In contrast, higher values of 𝜂 reduce
performance fluctuations between iterations, contributing to more
stable and consistent learning progress.

6 CONCLUSION
We present OfflineMunchausenMirror Descent (Off-MMD), a novel
algorithm designed for learning equilibrium policies in mean-field
games using only offline data. This approach addresses the limita-
tions of existing methods that rely on costly and often impractical
online interactions. By leveraging importance sampling and 𝑄-
value regularization techniques, Off-MMD provides an efficient
way to approximate the mean-field distribution from static datasets,
ensuring scalability and robustness in complex environments. Our
empirical evaluations demonstrated the algorithm’s strong perfor-
mance across two common benchmarks for MFGs, even in scenarios
with limited data coverage or sub-optimal datasets. With its ability
to scale and adapt to real-world multi-agent systems, Off-MMD
opens new avenues for applying RL based algorithms for MFGs to
settings where online experimentation is infeasible, irresponsible
or difficult to model. We believe that this work lays the foundation
for future research into offline learning methods for complex, large-
scale multi-agent interactions, bridging the gap between offline
RL and MFGs. Future research directions include applications to
real-world use-cases such as location recommendation systems or
traffic routing, two problem domains suffering from overcrowding
effects due to selfish agents.

6.1 Limitations
While Off-MMD marks a first step towards scalable offline RL al-
gorithms for MFGs, it is currently limited to environments where
the dynamics are independent of the mean-field. This assumption
restricts its applicability to scenarios where the environment dy-
namics are not arbitrarily influenced by the collective behavior of
agents. Addressing this limitation offers a promising avenue for fu-
ture research. One potential solution could involve adapting model-
based algorithms specifically designed for offline RL settings, to
handle mean-field dependencies in dynamics. Such advancements
would broaden the scope of Off-MMD, making it applicable to a
wider range of multi-agent systems where interactions between
agents and the environment are more intertwined.
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