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ABSTRACT
Partitioning a set of𝑛 items or agents while maximizing the value of

the partition is a fundamental algorithmic task. We study this prob-

lem in the specific setting of maximizing social welfare in additively

separable hedonic games. Unfortunately, this task faces strong com-

putational boundaries: Extending previous results, we show that

approximating welfare by a factor of 𝑛1−𝜀 is NP-hard, even for

severely restricted weights. However, we can obtain a randomized

log𝑛-approximation on instances for which the sum of input valu-

ations is nonnegative. Finally, we study two stochastic models of

aversion-to-enemies games, where the weights are derived from

Erdős-Rényi or multipartite graphs. We obtain constant-factor and

logarithmic-factor approximations with high probability.
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1 INTRODUCTION
Partitioning a set of items or agents, say humans or machines, is

a fundamental problem that has been studied across many disci-

plines such as computer science, economics, or mathematics. For

instance, it is relevant in the context of clustering, an important

task in machine learning with far-reaching applications like image

segmentation [19], or for community detection, which helps in

understanding networks, e.g., of societies or physical systems [31].

Our paper takes a game-theoretic perspective and considers the

prominent model of additively separable hedonic games [6]. We

assume that there is a set of agents that has to be partitioned into

coalitions and agents have preferences over the coalitions that they

are part of [21]. Preferences are given by a weighted graph, where

the agents are the vertices and the edge weights encode the valua-

tion between agents. The utility of an agent for a coalition is the sum

of weights of edges towards members of this coalition. This class of

games is quite expressive and contains more structured subclasses

of games. For instance, an agent might divide the other agents into

friends and enemies and could simply try to maximize the number

of friends within their coalition while minimizing the number of
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enemies. A priority between these two objectives can be captured

by the exact edge weights: for example, if there is a large negative

weight for enemies and a small positive weight for friends, thenmin-

imizing enemies is much more important than maximizing friends,

as conceptualized in so-called aversion-to-enemies games [20].

A fundamental quantity for evaluating a possible output is its

social welfare (also called utilitarian welfare) which is the sum of

all agents utilities. Unfortunately, maximizing this quantity faces

significant computational boundaries. Aziz et al. [2] show that it is

NP-hard to maximize, and, even worse, approximating maximum

welfare by a factor of at least 𝑛1−𝜀 is NP-hard for any 𝜀 > 0 [25].

Our paper aims at circumventing this computational boundary.

First, we investigate the inapproximability of maximum welfare.

Notably, the result by Flammini et al. [25] is for aversion-to-enemies

games, which use valuations −𝑛 and 1, i.e., the negative valuation

is dependent on the number of agents 𝑛. We complement this by

showing an 𝑛1−𝜀 -inapproximability result on instances in which

the valuations are restricted to {−𝑣−, 0, 1}, where 𝑣− ≥ 1 is an

arbitrary but fixed (and, therefore, globally bounded) number.
1
This

sounds discouraging but it strengthens the impression that negative

valuations seem to be the reason for computational boundaries.

In the remainder of the paper, we provide several possibilities

to achieve better approximation guarantees. First, we consider the

restricted domain of games in which the sum of all valuations is

nonnegative. This assumption still allows for the existence of rather

negative valuations, however, it disallows an overall bias towards

negative valuations. We make use of a result from the correlation

clustering literature [17] to prove the existence of a randomized

algorithm that approximates social welfare by a factor of O(log𝑛).
Second, we consider two stochastic models of aversion-to-

enemies games in which we achieve approximation guarantees

with high probability. We start by assuming a basic model where

valuations originate from an Erdős-Rényi graph. We show that a

constant approximation of maximum welfare is possible. Subse-

quently, we define a stochastic model inspired by teammanagement

where every agent has a role, such as project manager, software

engineer, UX designer, or marketing specialist. Coalitions repre-

sent teams and each role should be present in a team at most once.

This scenario can be conceptualized by making agents with the

same role mutually incompatible by introducing large negative

valuations. In other words, the compatibility of agents is captured

by a multipartite graph where the roles induce a partition of the

vertices. However, in reality, even agents of different roles might be

incompatible for various reasons. We model this by introducing a

parameter 𝑝 that captures the probability of agents being incompati-

ble. In our stochastic model, every pair of agents admitting different

1
By rescaling valuations, this is equivalent to assuming that, in addition to a neutral

valuation of 0, there is a single positive and negative valuation, where the former is

bounded by the absolute value of the latter.
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roles are incompatible independently. Based on the magnitude of 𝑝

we obtain perturbation regimes that lead to different approximation

guarantees. In the low perturbation regime, we can approximate

maximumwelfare by a constant factor, whereas a high perturbation

regime allows for a log𝑛-approximation.

2 RELATEDWORK
Hedonic games were introduced by Drèze and Greenberg [21] as

an ordinal model of coalition formation, in which agents state their

preferences as rankings over coalitions. Their broad consideration

started, however, only 20 years later [4, 6, 15]. Much of their pop-

ularity today is due to the introduction of additively separable

hedonic games by Bogomolnaia and Jackson [6] in this era.

While these first papers were in the realm of economic theory,

they soon sparked a broader consideration of hedonic games in

computer science. This led to increased attention of algorithmic

properties of solution concepts, including their computational com-

plexity [3, 14]. Social welfare was first realized to be a demanding

objective byAziz et al. [2] who showed that it isNP-hard to compute

even if valuations are restricted to be only −1 or 1. Subsequently,
Flammini et al. [25] significantly strengthened this to the 𝑛1−𝜀 -
inapproximability result for aversion-to-enemies games mentioned

in the introduction.

Beyond social welfare, other welfare objectives have been ex-

plored. Some early papers on hedonic games already studied Pareto

optimality, a less demanding notion of welfare studied through-

out economics [6, 21]. Pareto-optimal coalition structures can be

computed in polynomial time under fairly general assumptions

including symmetric valuations [2, 11]. However, this yields no

approximation of social welfare because Pareto-optimal outcomes

may have negative social welfare [22]. Moreover, Aziz et al. [2]

also considered egalitarian welfare, which aims at maximizing the

utility of the worst-off agent. Despite its challenges for the offline

model, welfare approximation has also been studied in an online

variant of additively separable hedonic games [13, 26]. Flammini

et al. [26] consider a general model where no finite competitive ra-

tio is possible if the utility range is unbounded. Moreover, Bullinger

and Romen [13] study a model where the algorithm is allowed to

dissolve coalitions into singleton coalitions, which allows to achieve

a coalition structure with a social welfare that is at most a factor of

Θ(𝑛) worse than the maximum possible welfare. In particular, they

show that maximumweight matchings achieve an 𝑛-approximation

of social welfare [13]. This essentially matches the aforementioned

inapproximability by a factor of 𝑛1−𝜀 [25]. Finally, social welfare
has been considered in a mechanism design perspective aiming at

strategyproof preference elicitation [24, 25].

Beyond welfare, the most common objectives in hedonic games

are notions of stability [2, 6–9, 27, 32, 34]. Rather than the global

guarantees provided by welfare notions, stability assumes a more

strategic perspective in that it requires the absence of beneficial

deviations by single agents or groups of agents. Single-deviation

stability often leads to NP-completeness [8, 32], whereas group

stability can even be Σ
𝑝

2
-complete [34]. Interestingly, symmetric

valuations lead to the existence of stable outcomes based on single-

agent deviations [6], but their computation is still infeasible. It is

PLS-complete, i.e., complete for the complexity class capturing prob-

lems that guarantee solutions based on local search algorithms [27].

An interesting objective that combines ideas of stability and global

guarantees is popularity [2, 7], which is akin to weak Condorcet

winners as studied in social choice theory [10].

While all the literature discussed so far considers a deterministic

model, stochastic models have been studied to some extent [12,

23]. In particular, Bullinger and Kraiczy [12] show how to obtain

stable outcomes if valuations are drawn uniformly at random. Their

algorithm runs in three stages, the first of which will turn out to

be useful in obtaining welfare guarantees as well, see Section 5.1.

By contrast, Fioravanti et al. [23] consider a deterministic game

model and aim at computing outcomes that are stable with high

probability.

Finally, hedonic games are also related to other graph partition-

ing problems such as correlation clustering. The input typically

consists of a complete graph with edges labeled as “+” or “−” to
indicate similarity or dissimilarity, respectively [5, 18, 33]. The goal

is to find a partition that maximizes agreements as measured by

the sum of “+” edges inside clusters plus “−” edges across different
clusters. Other objectives where the goal is to minimize errors of

the partition, measured by “−” edges within clusters plus “+” edges
across clusters have also been extensively studied [16]. By contrast,

our social welfare objective in hedonic games is different in that it

accounts only for the edges within the coalitions (in particular, it

ignores the edges across different coalitions).

Going beyond worst-case analysis, the two stochastic models we

study for hedonic games in the second part of our paper relate to

various stochastic models with random (or semi-random) edges that

have been proposed for correlation clustering. For example, [30]

investigates a noisy model on complete graphs, where they start

from an arbitrary partition of the vertices into clusters and for each

pair of vertices, the edge information (either 1 or −1) is corrupted
independently with probability 𝑝 . Other average-case models and

extensions to arbitrary graphs (not necessarily complete) have

been studied by Makarychev et al. [29], with the goal of designing

provably good approximation algorithms.

3 PRELIMINARIES
Consider a finite set 𝑁 of 𝑛 := |𝑁 | agents. A coalition is a nonempty

subset of 𝑁 . We denote by N𝑖 := {𝑆 ⊆ 𝑁 : 𝑖 ∈ 𝑆} the set of all

coalitions that agent 𝑖 belongs to. A coalition structure (or partition)

is a partition 𝜋 of 𝑁 into coalitions, i.e.,

⋃
𝐶∈𝜋 𝐶 = 𝑁 and for each

pair of coalitions 𝐶,𝐶′ ∈ 𝜋 with 𝐶 ≠ 𝐶′ it holds that 𝐶 ∩ 𝐶′ = ∅.
Note that there is no bound on the number or size of coalitions.

For an agent 𝑖 ∈ 𝑁 , we denote by 𝜋 (𝑖) the coalition that 𝑖 belongs

to in 𝜋 . We denote the set of all partitions of 𝑁 by Π𝑁 , and the

set of all partitions containing exactly two coalitions as Π
(2)
𝑁

, i.e.,

Π
(2)
𝑁

:= {𝜋 ∈ Π𝑁 : |𝜋 | = 2}. A coalition is called a singleton coalition

if it contains exactly one agent. The partition where every agent is

in a singleton coalition is called the singleton partition.

In a hedonic game, every agent possesses preferences over the

coalitions in N𝑖 . We use the model of additively separable hedonic

games by Bogomolnaia and Jackson [6] in which these preferences

are obtained from cardinal valuations that can be encoded by a

complete and directed weighted graph. Formally, a cardinal hedonic
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game is a pair (𝑁,𝑢) where 𝑢 = (𝑢𝑖 : N𝑖 → R)𝑖∈𝑁 is a vector

of utility functions. An additively separable hedonic game (ASHG)

is specified by a vector 𝑣 = (𝑣𝑖 : 𝑁 → R)𝑖∈𝑁 of (single-agent)

valuation functions. It is then defined as the cardinal hedonic game

(𝑁,𝑢), where for agent 𝑖 ∈ 𝑁 and coalition 𝐶 ∈ N𝑖 , it holds that

𝑢𝑖 (𝐶) :=
∑︁
𝑗∈𝐶

𝑣𝑖 ( 𝑗).

In words, the utility of a coalition is derived from single-agent

values, which are aggregated by summing the values of the agents

in this coalition. Since valuation functions fully specify an ASHG,

we also speak of the ASHG (𝑁, 𝑣). Note that ASHGs can be encoded
by a weighted graph where agents are vertices and edge weights

are given by the valuations.

We extend utilities over coalitions to utilities over partitions by

defining 𝑢𝑖 (𝜋) := 𝑢𝑖 (𝜋 (𝑖)). Given coalitions 𝐶,𝐶′ ∈ N𝑖 , we say

that agent 𝑖 prefers 𝐶 over 𝐶′ if 𝑢𝑖 (𝐶) ≥ 𝑢𝑖 (𝐶′). Moreover, we say

that 𝑖 strictly prefers 𝐶 over 𝐶′ if 𝑢𝑖 (𝐶) > 𝑢𝑖 (𝐶′). We use the same

terminology for partitions. Given an ASHG (𝑁, 𝑣) and a partition

𝜋 , we define its social welfare as

SW(𝜋) :=
∑︁
𝑖∈𝑁

𝑢𝑖 (𝜋) =
∑︁

𝐶∈𝜋 : 𝑖, 𝑗∈𝐶
𝑣𝑖 ( 𝑗).

Hence, the social welfare is the sum of the utilities which, in an

ASHG, is equivalent to the sum of all valuations between agents

in the same coalition. We denote by 𝜋∗ a partition that maximizes

SW.

ASHGs admit various interesting subclasses when restricting

valuations. Following Dimitrov et al. [20], an ASHG (𝑁, 𝑣) is called
an aversion-to-enemies game if 𝑣𝑖 ( 𝑗) ∈ {−𝑛, 1} for all 𝑖, 𝑗 ∈ 𝑁 . An

ASHG (𝑁, 𝑣) is called symmetric if for each pair of agents 𝑖, 𝑗 ∈ 𝑁 , it

holds that 𝑣𝑖 ( 𝑗) = 𝑣 𝑗 (𝑖).Wewrite 𝑣 (𝑖, 𝑗) for the symmetric valuation

function between 𝑖 and 𝑗 . In this paper, we restrict attention to

symmetric ASHGs.
2

Consider an ASHG (𝑁, 𝑣) and an approximation ratio 𝑐 ≥ 1. A

partition 𝜋 is said to provide a 𝑐-approximation to maximum welfare

if 𝑐 · SW(𝜋) ≥ SW(𝜋∗). We denote by 𝑐-ApproxWelfare the

computational problem of, given an ASHG, computing a partition

with a 𝑐-approximation to maximum welfare.

We consider both deterministic and randomized algorithms and

aim at efficient algorithms. For 𝑐 ≥ 1, a polynomial-time algorithm

is called a 𝑐-approximation algorithm for maximizing welfare if it

solves 𝑐-ApproxWelfare. For randomized algorithms, the expected

running time has to be bounded by a polynomial and the produced

partition has to provide a 𝑐-approximation to maximum welfare in

expectation. Note that we allow (and frequently assume) that the

factor 𝑐 depends on 𝑛.

Finally, given an ASHG (𝑁, 𝑣), we define its total value as

V(𝑁, 𝑣) :=
∑︁
𝑖, 𝑗∈𝑁

𝑣𝑖 ( 𝑗).

We will obtain good approximation guarantees by restricting atten-

tion to ASHGs with nonnegative total value.

2
In general ASHGs, symmetry is without loss of generality when reasoning about

social welfare as the welfare remains the same if we replace 𝑣𝑖 ( 𝑗 ) and 𝑣𝑗 (𝑖 ) by
𝑣𝑖 ( 𝑗 )+𝑣𝑗 (𝑖 )

2
, see, e.g., [11]. However, this is not the case for aversion-to-enemies games

as the symmetrization may leave this game class.

In this paper, we use [𝑘] to represent the set {1, . . . , 𝑘}. Moreover,

in asymptotic statements, we state logarithms without base. They

can be assumed to have base 𝑒 .

4 DETERMINISTIC GAMES
Recall that Aziz et al. [1] show that maximizing social welfare is NP-

hard. Their result even holds for symmetric valuations restricted to

{−1, 1}. Moreover, Flammini et al. [25] prove that approximating so-

cial welfare by a factor of 𝑛1−𝜀 is NP-hard for aversion-to-enemies

games, i.e., when valuations are in the set {−𝑛, 1}. In this section,

we will significantly deepen the understanding of welfare approx-

imability around this result. First, we show that the result does not

rely on unbounded negative weights by providing a reduction for

valuations restricted to {−𝑣−, 0, 1} where 𝑣− ≥ 1. In particular, this

means that unbounded negative weights or negative weights of

absolute value much larger than the value of positive weights are

not necessary. Subsequently, we will show how to circumvent the

inapproximability result for ASHG with nonnegative total value.

4.1 Welfare Inapproximability for Restricted
Valuations

We now prove our inapproximability result.
3

Theorem 4.1. Let 𝜀 > 0 and 𝑣− ≥ 1. Then, unless P = NP, 𝑛1−𝜀 -
ApproxWelfare cannot be solved in polynomial time for symmetric

ASHGs with valuations in the set {−𝑣−, 0, 1}.

Proof. Let 𝜀 > 0 and 𝑣− ≥ 1. We reduce from the 𝑛1−𝜀 -
approximateMaximumCliqe problem. The input is an unweighted

graph𝐺 and the task is to compute a clique𝐶 of𝐺 with 𝑛1−𝜀 · |𝐶 | ≥
𝜇∗, where 𝜇∗ is the size of a maximum clique of 𝐺 . Unless P = NP,
this problem cannot be solved in polynomial time [35].

We now describe the reduction. Assume that we are given an

unweighted graph 𝐺 = (𝑉 , 𝐸). We construct an ASHG (𝑁, 𝑣) as
follows. The set of players is 𝑁 = 𝑁𝑉 ∪ {𝑧}, where 𝑁𝑉 = {𝑎𝑢 : 𝑢 ∈
𝑉 }, i.e., 𝑁𝑉 contains a player for each vertex of 𝐺 . Symmetric

valuations are given by

𝑣 (𝑖, 𝑗) =


1 𝑖 = 𝑧, 𝑗 ∈ 𝑁𝑉 ,

−𝑣− 𝑖, 𝑗 ∈ 𝑁𝑉 , {𝑖, 𝑗} ∉ 𝐸, and

0 𝑖, 𝑗 ∈ 𝑁𝑉 , {𝑖, 𝑗} ∈ 𝐸.

Let 𝜋 be a partition of 𝑁 and let 𝐶1 = {𝑢 ∈ 𝑉 : 𝑎𝑢 ∈ 𝜋 (𝑧)}.
Hence, 𝐶1 is a vertex set in 𝐺 . We create a sequence of vertex sets

until we end with a clique of 𝐺 . For 𝑖 ≥ 1, assume that we have

constructed a set 𝐶𝑖 . We stop if 𝐶𝑖 is a clique. Otherwise, we find

a vertex 𝑢𝑖 ∈ 𝐶𝑖 such that 𝑢𝑖 is not adjacent to all other vertices

in 𝐶𝑖 and set 𝐶𝑖+1 = 𝐶𝑖 \ {𝑢𝑖 }. Since the number of vertices of

𝐺 is finite, this stops after 𝑘 ≤ |𝑉 | steps with a clique 𝐶𝑘 . For

1 ≤ ℓ ≤ 𝑘 , we define the partition 𝜋 ℓ = {{𝑎𝑢 : 𝑢 ∈ 𝐶ℓ } ∪ {𝑧}} ∪
{{𝑎𝑢 } : 𝑢 ∈ 𝑉 \ 𝐶𝑘 }. We now show that, for 1 ≤ ℓ ≤ 𝑘 − 1, it

holds that SW(𝜋 ℓ ) ≤ SW(𝜋 ℓ+1). Indeed, 𝑣 (𝑢ℓ , 𝑢) = 1 if 𝑢 = 𝑧

and 𝑣 (𝑢ℓ , 𝑢) ≤ 0 for all 𝑢 ∈ 𝜋 ℓ (𝑢ℓ ) \ {𝑢ℓ , 𝑧}. Moreover, since 𝐶ℓ

is not a clique, there exists an agent 𝑢 ∈ 𝜋 ℓ (𝑢ℓ ) \ {𝑢ℓ , 𝑧} with
𝑣 (𝑢ℓ , 𝑢) = −𝑣− ≤ −1. Hence, removing 𝑢ℓ from their coalition and

forming a singleton coalition can only increase the social welfare.

3
We would like to thank Abheek Ghosh for the proof idea of Theorem 4.1.
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In addition, it holds that SW(𝜋) ≤ SW(𝜋1) since 𝜋1 can only

differ from 𝜋 by dissolving nonsingleton coalitions not containing

𝑧, which can only increase the welfare. Finally, SW(𝜋𝑘 ) = |𝐶𝑘 |
as the only nonsingleton coalition in 𝜋𝑘 is 𝜋𝑘 (𝑧) which contains

exactly |𝐶𝑘 | other agents forming a clique in 𝐺 . Hence,

SW(𝜋) ≤ SW(𝜋𝑘 ) = |𝐶𝑘 |. (1)

Next, let 𝐶∗ be a maximum clique in 𝐺 . Consider 𝜋 ′ = {{𝑧} ∪
{𝑎𝑢 : 𝑢 ∈ 𝐶∗}} ∪ {{𝑎𝑢 } : 𝑢 ∈ 𝑉 \ 𝐶∗} is a partition in (𝑁, 𝑣) with
SW(𝜋 ′) = |𝐶∗ |. Hence, for the partition 𝜋∗ maximizing welfare,

it holds that

SW(𝜋∗) ≥ SW(𝜋 ′) = |𝐶∗ |. (2)

Now assume that we have a polynomial-time algorithm com-

puting a partition 𝜋 with 𝑛1−𝜀 · SW(𝜋) ≥ SW(𝜋∗). Clearly, the
procedure described above to construct𝐶𝑘 runs in polynomial time

as well. It holds that

𝑛1−𝜀 · |𝐶𝑘 |
Eq. (1)

≥ 𝑛1−𝜀 · SW(𝜋) ≥ SW(𝜋∗)
Eq. (2)

≥ |𝐶∗ |.
Hence, we have found a polynomial-time algorithm to approx-

imate the maximum clique within a factor of 𝑛1−𝜀 . As argued in

the beginning, this can only happen if P = NP, completing our

proof. □

Notably, Theorem 4.1 immediately implies hardness of 𝑛1−𝜀 -
ApproxWelfare for ASHGs with nonsymmetric valuations re-

stricted to {−1, 1}. We can simply replace valuations 𝑣 (𝑖, 𝑗) = 0 by

𝑣𝑖 ( 𝑗) = 1 and 𝑣 𝑗 (𝑖) = −1 and obtain a reduced instance in which

all partitions have the identical welfare. However, it remains an

open problem to resolve the complexity of 𝑐-ApproxWelfare for

symmetric ASHGs with valuations restricted to {−1, 1}, even if

𝑐 > 1 is assumed to be a constant not dependent on 𝑛.

4.2 Logarithmic Approximation for
Nonnegative Total Value

We will now show that we can get beyond the inapproximability

result of Theorem 4.1 if we restrict attention to ASHGs with a non-

negative total value. For this, we will draw a connection to a related

problem from the literature on correlation clustering. Instances

of correlation clustering usually only use binary information, i.e.,

whether two objects should belong to the same or different clusters.

The goal is then to optimize one of two objectives: maximizing

agreements, i.e., the number of pairs whose pairwise relationship is

classified correctly, and minimizing disagreements, i.e., the number

of pairs classified incorrectly. In addition, one can consider the

combination of these two objectives, where agreements should be

maximized while disagreements should simultaneously be mini-

mized. In the spirit of hedonic games, we capture a weighted version

of this objective as a notion of welfare. Given an ASHG (𝑁, 𝑣) and
a partition 𝜋 , we define its correlation welfare as

CW(𝜋) := 1

2


∑︁
𝑖∈𝑁

©­«
∑︁

𝑗∈𝜋 (𝑖 )
𝑣𝑖 ( 𝑗) −

∑︁
𝑗∈𝑁 \𝜋 (𝑖 )

𝑣𝑖 ( 𝑗)ª®¬
 .

Charikar and Wirth [17] present a randomized O(log𝑛)-
approximation algorithm for maximizing

4 CW subject to 𝜋 ∈ Π (2)
𝑁

.

4
In their terminology, this is the problem of maximizingMaxQP.

They then show that this extends to maximizing CW within Π𝑁

in the case of valuation functions in the range {−1, 1}. It is easy to

see that the same technique applies for the general range of valua-

tion functions (cf. Lemma 4.6). The goal of this section is to extend

the approximation guarantee to maximizing SW for ASHGs with

nonnegative total value.

By plugging in definitions, we immediately obtain the following

relationship between SW and CW. All proofs missing from this

section can be found in the full version of our paper.

Proposition 4.2. Consider an ASHG (𝑁, 𝑣) and a partition 𝜋 .

Then it holds that CW(𝜋) + 1

2
V(𝑁, 𝑣) = SW(𝜋).

As a consequence, we obtain that the same partitions maximize

SW and CW.

Proposition 4.3. Consider an ASHG (𝑁, 𝑣). Then a partition

maximizes SW if and only if it maximizes CW.

Hence, solving for social welfare maximization and correlation

welfare maximization is exactly equivalent. However, this does not

have any implications on approximation guarantees, as we illustrate

in the next example.

Example 4.4. Let 𝑥 > 0 be an arbitrary positive number. Con-

sider the symmetric ASHG (𝑁, 𝑣) with 𝑁 = {𝑎1, 𝑎2, 𝑎3} and sym-

metric valuation functions given by 𝑣 (𝑎1, 𝑎2) = 1, 𝑣 (𝑎1, 𝑎3) = −𝑥 ,
and 𝑣 (𝑎2, 𝑎3) = 0. Let 𝜋 denote the singleton partition and 𝜋∗ =
{{𝑎1, 𝑎2}, {𝑎3}}. Clearly, 𝜋∗ is the unique partition maximizing

SW and CW. In addition, it holds that
1+𝑥
𝑥−1CW(𝜋) = CW(𝜋

∗),
whereas

SW(𝜋 )
SW(𝜋∗ ) = 0.

Now, consider any approximation guarantee 𝑐 > 1. Then, 𝜋

provides a 𝑐-approximation of CW for 𝑥 = 𝑐−1
1+𝑐 , whereas 𝜋 yields

no 𝑐-approximation of SW. ◁

The reason why approximate outcomes in terms of correlation

welfare do not yield any guarantee on the social welfare in Exam-

ple 4.4 is that there is a single valuation that is very negative. It is

enough that the two corresponding agents are in different coali-

tions to obtain a good approximation of the correlation welfare.

However, the picture changes if such a situation does not occur. If

the total value of an instance is nonnegative, then social welfare

inherits approximation guarantees from correlation welfare.

Lemma 4.5. Let (𝑁, 𝑣) be an ASHG such thatV(𝑁, 𝑣) ≥ 0. Let 𝑐 ≥
1 and let 𝜋∗ be a partition maximizing CW. Let 𝜋 be a partition with

𝑐 · CW(𝜋) ≥ CW(𝜋∗). Then it holds that 𝑐 · SW(𝜋) ≥ SW(𝜋∗).

As a second lemma, we establish a relationship between max-

imizing welfare when partitions can only contain two coalitions

and when partitions are unconstrained. Its proof is an adaptation

of a similar result by Charikar and Wirth [17] concerning CW for

valuations in {−1, 1}.

Lemma 4.6. Let (𝑁, 𝑣) be an ASHG with V(𝑁, 𝑣) ≥ 0. Then it

holds that max𝜋∈Π𝑁
SW(𝜋) ≤ 2 ·max

𝜋∈Π (2)
𝑁

SW(𝜋).

We can combine the two last lemmas to apply the main theorem

by Charikar and Wirth [17] and obtain a randomized O(log𝑛)-
approximation algorithm.
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Theorem 4.7. There exists a randomized O(log𝑛)-approximation

algorithm for maximizing social welfare in ASHGs with nonnegative

total value.

Proof. Theorem 1 by Charikar and Wirth [17] states the exis-

tence of a randomized O(log𝑛)-approximation algorithm for CW
under the constraint that partitions are in Π

(2)
𝑁

. By Lemma 4.5,

the same approximation guarantee is obtained for SW under the

same constraint. Finally, Lemma 4.6 guarantees that the maximum

welfare of any partition is better by at most a factor of 2. □

5 BEYONDWORST-CASE ANALYSIS
In light of the hardness result by Flammini et al. [25] for approxi-

mating social welfare in aversion-to-enemies games, it is natural

to ask how well we can approximate welfare in such games gener-

ated by stochastic models. In this section, we introduce two such

models where the valuations originate from either Erdős-Rényi

or multipartite graphs. Erdős-Rényi graphs serve as a common

testbed for graph optimization problems and help us set the stage

for the more challenging setting of multipartite graphs. Interest-

ingly, our main theorems demonstrate that greedy algorithms are

remarkably effective in these models, yielding constant-factor and

logarithmic-factor approximations of social welfare.

In this section, 𝐺 = (𝑁, 𝑣) refers to a fixed symmetric aversion-

to-enemies game. In any partition of 𝑁 , a valuation of −𝑛 within

a coalition implies a negative utility for the corresponding agents.

Consequently, removing one of these agents from the coalition

and forming a singleton coalition would increase the overall social

welfare. This observation suggests that in an optimal partition 𝜋∗,
no coalition contains agents with a mutual valuation of −𝑛. Let
𝐺 ′ denote the subgraph of 𝐺 , obtained by removing all edges with

weight −𝑛. We now present a useful lemma.

Lemma 5.1. If the size of the maximum clique in 𝐺 ′ is 𝑡 , then
SW(𝜋∗) ≤ 𝑛(𝑡 − 1).

Proof. No coalition in the partition 𝜋∗ contains an edge with

weight −𝑛. Therefore, each coalition in 𝜋∗ forms a clique in 𝐺 ′.
Since the size of a maximum clique in 𝐺 ′ is 𝑡 , the size of every

coalition in 𝜋∗ is at most 𝑡 . Consequently, the utility of each agent

is bounded by 𝑡 − 1. We conclude that

SW(𝜋∗) =
∑︁
𝑖∈𝑁

𝑢𝑖 (𝜋∗ (𝑖)) ≤ 𝑛(𝑡 − 1) . □

5.1 Erdős-Rényi Graphs
In our first model, we assume a set of agents, each pair of which is

incompatible with probability 1 − 𝑝 . We model this as a symmetric

aversion-to-enemies game by assigning a valuation of −𝑛 between

incompatible agents and a valuation of 1 between compatible agents.

This corresponds to sampling its underlying graph as follows.

Definition 5.2. A weighted Erdős-Rényi graph 𝐺 = (𝑛, 𝑝) is a
random weighted graph with 𝑛 vertices such that, independently,

each edge takes a weight of −𝑛 with probability 𝑝 and a weight of

1 with probability 1 − 𝑝 .

We will show that a simple and natural greedy algorithm yields

a constant-factor approximation of the maximumwelfare with high

probability. For this, we use the greedy clique formation algorithm

by Bullinger and Kraiczy [12, Section 5.2] applied to the subgraph

𝐺 ′ formed by removing all negative edges from a graph 𝐺 . The

algorithm greedily forms maximal cliques in 𝐺 ′. as long as the

cliques reach a certain size threshold 𝑡 =

⌈
log

1/𝑝 𝑛
2

⌉
. If, at any point,

the size of the createdmaximal clique is smaller than 𝑡 , the algorithm

outputs the existing cliques as coalitions, and assigns singleton

coalitions to the remaining agents. The following theoremmeasures

the performance of this algorithm. It follows from the proof of

Theorem 5.2 by Bullinger and Kraiczy [12].
5

Theorem 5.3 (Bullinger and Kraiczy [12]). Consider an Erdős-

Rényi graph 𝐺 = (𝑛, 𝑝) and let 𝑏 = 1

𝑝 . Then, with probability at least

1 − 𝑒−Ω(log
3

𝑏
𝑛)
, the greedy clique formation algorithm assigns all

except at most
𝑛

log
2

𝑏
𝑛
to cliques of size

⌈
log𝑏 𝑛

2

⌉
.

We apply the theorem to obtain a constant-factor approximation

of maximum welfare. Essentially, Theorem 5.3 allows to obtain a

coalition with social welfare Θ(𝑛 log𝑛) while we apply Lemma 5.1

to show that the maximum welfare is also of this order.

Theorem 5.4. Let 𝑝 ∈ (0, 1). Then there exists a constant-factor

approximation algorithm for aversion-to-enemies games given by a

weighted Erdős-Rényi graph 𝐺 = (𝑛, 𝑝).

Proof. Note that 𝐺 ′ is a weighted Erdős-Rényi graph where

every edge was sampled with probability 𝑝 , i.e. 𝐺 ′ = (𝑛, 𝑝). Let
𝑏 = 1

𝑝 and let 𝜋 be the resulting partition after applying the greedy

clique formation algorithm to the subgraph 𝐺 ′. By Theorem 5.3, it

follows that E[SW(𝜋)] = Θ(𝑛 log𝑛).
In addition, the size of the maximum clique in 𝐺 ′ is O(log𝑏 𝑛)

with probability 1 [28]. Hence, by Lemma 5.1, the expected max-

imum welfare of a partition in 𝐺 ′ is O(𝑛 log𝑛). Note that all con-
stants hidden in the asymptotic behavior only depend on 𝑏 and,

therefore, on 𝑝 . It follows that the greedy clique formation algo-

rithm yields a constant-factor approximation. □

To get a feeling on the constant hidden in the previous theorem,

one can reason as follows. For large enough 𝑛, with probability

1 − 1

𝑛 , greedy clique formation will place
2𝑛
3

agents into coali-

tions of size
log𝑏 𝑛

2
, resulting in an expected social welfare of at

least (1 − 1

𝑛 )
2𝑛
3

log𝑏 𝑛

2
≥ 𝑛 log𝑏 𝑛

4
. Moreover, for large enough 𝑛,

with probability 1 − 1

𝑛2
, the maximum clique is of size at most

4 log 1

𝑝
𝑛 [28]. Hence the expected maximum welfare is at most

𝑛(4 log 1

1−𝑝
𝑛 + 1

𝑛2
𝑛2) = 𝑛(4 log 1

1−𝑝
𝑛 + 1), where the second term

bounds the maximum welfare of a partition with the formation

of a clique of all agents for the remaining cases occurring with

probability at most
1

𝑛2
. This yields a ratio of about

1

16
log 1

1−𝑝
𝑏.

5.2 Random Multipartite Graphs
Consider 𝑘 ≥ 2 distinct groups of agents, where the goal is to form

diverse coalitions that contain at most one agent from each group.

We model this by assigning a negative edge weight of −𝑛 to any

5
We remark that in their model the edges in the cliques occur with probability 𝑝

whereas they occur with probability 1 − 𝑝 in our model.
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pair of agents within the same group, rendering them incompatible.

Additionally, certain pairs of agents from different groups may

also be incompatible. In a random 𝑘-partite graph, any pair of

agents from different groups is incompatible with probability 𝑝 .

This problem can be formalized as follows.

Let 𝐺 = ({𝑉1, · · · ,𝑉𝑘 }) be a 𝑘-partite graph where vertices rep-

resent agents. The graph consists of 𝑛 vertices partitioned into 𝑘

disjoint “color” classes 𝑉1,𝑉2, . . . ,𝑉𝑘 . All our results hold if 𝑘 is

either a constant or any function satisfying 𝑘 = 𝑜

(
𝑛

log𝑛

)
. With-

out loss of generality, assume that the color classes are sorted in

nonincreasing order by the number of vertices they contain, i.e.,

|𝑉1 | ≥ |𝑉2 | ≥ · · · ≥ |𝑉𝑘 |.
A 𝑘-partite graph is said to be balanced if |𝑉𝑘 | ≥ 𝑞 |𝑉1 | holds for

some constant 𝑞 ∈ (0, 1). A Turán graph𝐺 = (𝑛, 𝑘) is a special case
of a balanced 𝑘-partite graph, where each color class contains the

same number of vertices, i.e., for all 𝑖 ∈ [𝑘], we require |𝑉𝑖 | = 𝑛
𝑘
.

We capture these in our second model of random graphs inducing

aversion-to-enemies games.

Definition 5.5. A random balanced 𝑘-partite graph 𝐺 =

({𝑉1, . . . ,𝑉𝑘 }, 𝑝) is a weighted graph where edge weights are sam-

pled independently as follows: each edge between vertices in two

different color classes independently takes a weight of −𝑛 with

probability 𝑝 , and a weight of 1 with probability 1 − 𝑝; each edge

between vertices of the same color class takes a weight of −𝑛 with

probability 1. The input parameter 𝑝 ∈ (0, 1) is called the perturba-

tion probability, and it is allowed to depend on 𝑛.

A random Turán graph 𝐺 = (𝑛, 𝑘, 𝑝) is a random balanced 𝑘-

partite graph where each color class contains the same number of

vertices, i.e., for all 𝑖 ∈ [𝑘] we have |𝑉𝑖 | = 𝑛
𝑘
.

The goal is to find a partition of maximum welfare for the case

when the input is a random balanced 𝑘-partite graph (or a ran-

dom Turán graph). Note that in the cases where 𝑝 = 0 or 𝑝 = 1

the problem becomes trivial. When 𝑝 = 0, all weights between

vertices from different color classes are deterministically positive,

and the graph 𝐺 ′ induced by 1-edges is a complete 𝑘-partite graph.

In this case, an optimal partition of a Turán graph consists of
𝑛
𝑘

coalitions, each containing a unique member from each of the

color classes 𝑉1, . . . ,𝑉𝑘 . For a general balanced 𝑘-partite graph, the

welfare-maximizing partition contains |𝑉𝑘 | 𝑘-cliques, |𝑉𝑘 | − |𝑉𝑘−1 |
(𝑘 − 1)-cliques, etc. Conversely, when 𝑝 = 1, then all edges in the

graph have weight of −𝑛, which implies the maximum welfare is

obtained by the singleton partition.

We now establish a straightforward upper bound on the maxi-

mum welfare. Recall that 𝐺 ′ is the graph obtained by removing all

negative edges from 𝐺 . Since 𝐺 ′ is 𝑘-partite, the maximum clique

size in 𝐺 ′ is at most 𝑘 . Thus, Lemma 5.1 implies the following

proposition.

Proposition 5.6. In a random balanced 𝑘-partite graph, the max-

imum welfare is bounded by SW(𝜋∗) ≤ 𝑛(𝑘 − 1).

In our analysis, both 𝑘 and 𝑝 can depend on 𝑛. We now present

polynomial-time algorithms that compute a constant-factor ap-

proximation of social welfare when 𝑝 = O
(
1

𝑘

)
, and a log𝑒 𝑛-

approximation when 𝑝 is a constant for random balanced 𝑘-partite

graphs. We illustrate our results by providing proofs for the special

case of random Turán graphs. Due to space limitations, the exten-

sion to random balanced 𝑘-partite graphs is deferred to the full

version of our paper. They are obtained by employing a reduction

to Turán graphs, as sketched at the end of the section.

5.2.1 Low Perturbation Regime in random Turán graphs. Algo-
rithm 1 takes as input a random Turán graph, and an accuracy

parameter (constant number) 𝜀 > 0. In addition, the algorithm takes

as input a subset of color classes denoted by 𝑆 ⊆ {𝑉1, . . . ,𝑉𝑘 }. The
number of color classes in 𝑆 is denoted by 𝑘′ ≤ 𝑘 . Our algorithm

outputs a partition of the vertices in 𝑆 into coalitions, meaning

that only the vertices in

⋃
𝑉𝑖 ∈𝑆 𝑉𝑖 are considered, as if the graph

consisted of exactly 𝑘′ color classes, each containing
𝑛
𝑘
vertices.

Algorithm 1 begins by randomly selecting a vertex to initiate

the formation of the first coalition. It then iteratively adds a new

vertex𝑤 to the coalition if𝑤 has only edges of weight 1 towards

all current members of the coalition (this ensures there are no −𝑛
edges in the created coalitions). This process continues until no

additional vertices can be included. Hence, each formed coalition

is a maximal clique in the subgraph 𝐺 ′ obtained by removing all

negative edges, and we refer to these coalitions as maximal cliques.

If the size of the resulting maximal clique exceeds 𝑘′
√
1 − 𝜀, the

vertices in the clique are removed from the pool of available vertices,

and the process is repeated with the remaining vertices. However,

if at any point the size of the obtained maximal clique is smaller

than 𝑘′
√
1 − 𝜀, the algorithm terminates and returns the current set

of coalitions, with any remaining vertices assigned to singletons

coalitions.

Algorithm 1 Greedy coalition formation

Input: ⟨𝐺, 𝑆, 𝜀⟩ where 𝐺 = (𝑛, 𝑘, 𝑝) is a random Turán graph and

𝑆 ⊆ {𝑉1, · · · ,𝑉𝑘 } is a subset of color classes with |𝑆 | = 𝑘′.
Output: Partition 𝜋 on

⋃
𝑉𝑖 ∈𝑆 𝑉𝑖

1: 𝜋 ← ∅, 𝑅 ← ⋃
𝑉𝑖 ∈𝑆 𝑉𝑖

2: while 𝑅 ≠ ∅ do
3: Select 𝑣 ∈ 𝑅 to begin coalition 𝐶 = {𝑣}
4: 𝐿 ← 𝑅

5: while ∃𝑤 ∈ 𝐿 with all edges towards 𝐶 of weight 1 do
6: 𝐶 ← 𝐶 ∪ {𝑤}, 𝐿 ← 𝐿 \ {𝑤}
7: if |𝐶 | ≥ 𝑘′ (

√
1 − 𝜀) then

8: 𝜋 ← 𝜋 ∪ {𝐶}, 𝑅 ← 𝑅 \𝐶
9: else
10: return 𝜋 ∪ {{𝑣} : 𝑣 ∈ 𝑅}
11: return 𝜋

The following lemma shows that for sufficiently small values

of 𝑝 , by selecting a subset of color classes 𝑆 ⊆ {𝑉1, . . . ,𝑉𝑘 }, where
𝑘′ = |𝑆 |, and running Algorithm 1, the algorithm produces nearly

𝑛
𝑘

maximal cliques, each of which exceeds the size 𝑘′
√
1 − 𝜀 with high

probability. When 𝑝 = O
(
1

𝑘

)
, the input set 𝑆 can include all 𝑘 color

classes, i.e., 𝑆 = {𝑉1, . . . ,𝑉𝑘 }. In this case, with high probability,

the algorithm finds nearly
𝑛
𝑘
maximal cliques, each larger than

𝑘
√
1 − 𝜀, making the size of these cliques nearly identical to the

ideal clique size of 𝑘 for small values of 𝜀. Consequently, this results

in a constant approximation of the social welfare.
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Lemma 5.7. Consider a random Turán graph 𝐺 = (𝑛, 𝑘, 𝑝), and a
nonempty subset of color classes 𝑆 ⊆ {𝑉1, · · · ,𝑉𝑘 }, and 𝑝 = O( 1

𝑘 ′ )
for 𝑘′ = |𝑆 |. For any fixed 𝜀 ∈ (0, 1) and 𝛼 ∈ (0, 1), Algorithm 1

returns a partition 𝜋 with 𝛼 𝑛
𝑘
cliques of size at least 𝑘′

√
1 − 𝜀 with

probability 1 − 𝑒−Θ
(
𝑛𝑘′
𝑘

)
.

Proof. We prove that the size of the first
𝑛
𝑘
maximal cliques

exceeds 𝑘′ (
√
1 − 𝜀) with high probability. Let𝐶 denote a clique that

is formed during the 𝑖th iteration of the while loop, with a current

size of 𝑡 . A color class is said to be available if no vertex from that

class has been added to 𝐶 , yet. The probability that 𝐶 is maximal

is

(
1 − (1 − 𝑝)𝑡

) (𝑘 ′−𝑡 ) ( 𝑛𝑘 −𝑖) , as this represents the probability that

none of the
𝑛
𝑘
− 𝑖 remaining vertices in each of the 𝑘′ − 𝑡 available

color classes can be added to 𝐶 , due to having at least one edge of

weight −𝑛 with a vertex in 𝐶 .

Let 𝑋 denote the number of maximal cliques in the subgraph

induced by the color classes in 𝑆 , where each clique has size at most

𝑡0 = 𝑘′
√
1 − 𝜀. As there are

(𝑘 ′
𝑡

)
( 𝑛
𝑘
)𝑡 cliques of size 𝑡 , and since(𝑘 ′

𝑡

)
( 𝑛
𝑘
)𝑡 ≤

(𝑘
𝑡

)
( 𝑛
𝑘
)𝑡 ≤ 𝑘𝑡 ( 𝑛

𝑘
)𝑡 ≤ 𝑛𝑡 , the following holds:

E[𝑋 ] ≤
𝑡0∑︁
𝑡=1

𝑛𝑡
(
1 − (1 − 𝑝)𝑡

) (𝑘 ′−𝑡 ) ( 𝑛𝑘 −𝑖)
≤ 𝑡0𝑛

𝑡0
(
1 − (1 − 𝑝)𝑡0

) (𝑘 ′−𝑡0 ) ( 𝑛𝑘 −𝑖)
= 𝑡0𝑛

𝑡0 (1 − (1 − 𝑝)𝑡0 )𝑛 (
𝑘′−𝑡

0

𝑘
− (𝑘

′−𝑡
0
)𝑖

𝑛
)

≤ 𝑡0𝑛
𝑡0𝑒
−(1−𝑝 )𝑡0

[
𝑛 ( 𝑘

′−𝑡
0

𝑘
− (𝑘

′−𝑡
0
)𝑖

𝑛
)
]

= 𝑡0𝑒
𝑡0 log𝑒 𝑛 · 𝑒−(1−𝑝 )

𝑡
0

[
𝑛 ( 𝑘

′−𝑡
0

𝑘
− (𝑘

′−𝑡
0
)𝑖

𝑛
)
]

where we used 1 − 𝑥 ≤ 𝑒−𝑥 . Since 𝑡0 = 𝑘′ (
√
1 − 𝜀) and 𝑝 = O( 1

𝑘 ′ ),
(1 − 𝑝)𝑡0 ≥ 𝑒𝑡0 (−𝑝−𝑝

2 ) → 𝑐0 for some positive constant 𝑐0. There-

fore, the expression can be rewritten as:

E[𝑋 ] ≤ 𝑡0𝑒
𝑡0 log𝑒 𝑛 · 𝑒𝑐0

[
−𝑛 ( 𝑘

′−𝑡
0

𝑘
− (𝑘

′−𝑡
0
)𝑖

𝑛
)
]

= 𝑘′ (
√
1 − 𝜀)𝑒𝑘

′√
1−𝜀 log𝑒 𝑛 · 𝑒𝑐0

[
−𝑛

(
𝑘′
𝑘
(1−
√
1−𝜀 )− 𝑘′ (1−

√
1−𝜀 )𝑖

𝑛

)]
.

For any constant 𝛼 ∈ (0, 1), while the current iteration satisfies

𝑖 ≤ 𝛼 𝑛
𝑘
, it holds that

E[𝑋 ] ≤ 𝑘′ (
√
1 − 𝜀)𝑒𝑘

′ (
√
1−𝜀 ) log𝑒 𝑛𝑒

𝑐0

[
−𝑛 𝑘′

𝑘
(1−𝛼 ) (1−

√
1−𝜀 )

]
.

Let 𝑎0 =
√
1 − 𝜀 and 𝑏0 = 𝑐0 (1 − 𝛼) (1 −

√
1 − 𝜀) be two constant

numbers,

E[𝑋 ] ≤ 𝑘′𝑒𝑘
′ [𝑎0 log𝑒 𝑛−𝑏0 𝑛𝑘 ] .

Since 𝑘 = 𝑜

(
𝑛

log𝑛

)
, we have that E[𝑋 ] tends to zero as 𝑛 tends

to infinity. By Markov’s inequality, the probability of having at least

one maximal clique of size at most 𝑡0 is at most 𝑘′𝑒
−Θ

(
𝑛𝑘′
𝑘

)
.

Thus, the probability of exiting the first while loop during the

𝑖th iteration, where 𝑖 ≤ 𝛼 𝑛
𝑘
, is also at most 𝑘′𝑒

−Θ
(
𝑛𝑘′
𝑘

)
. By a union

bound, the probability that the algorithm exits the while loop before

𝑖 = 𝛼 𝑛
𝑘
is bounded by

𝛼
𝑛

𝑘
𝑘′𝑒
−Θ

(
𝑛𝑘′
𝑘

)
= 𝑒
−Θ

(
𝑛𝑘′
𝑘

)
.

Therefore, with probability 1 − 𝑒−Θ
(
𝑛𝑘′
𝑘

)
, the algorithm returns

𝛼 𝑛
𝑘
cliques of size 𝑘′ (

√
1 − 𝜀). □

We now prove our main theorem for the low perturbation regime.

Note that the theorem extends to the case of random balanced 𝑘-

partite graphs as we show in the full version.

Theorem 5.8. Consider aversion-to-enemies games given by ran-

dom Turán graphs 𝐺 = (𝑛, 𝑘, 𝑝), where 𝑘 ≥ 2 and 𝑝 = O( 1
𝑘
). Then

there is a polynomial-time algorithm that returns a constant-factor

approximation to maximum welfare with probability 1 − 𝑒−Θ(𝑛) .

Proof. Fix a small 𝜀 ∈ (0, 1), and consider Algorithm 1 for input

⟨𝐺, 𝑆 = {𝑉1, . . . ,𝑉𝑘 }, 𝜀⟩. Since 𝑝 = O
(
1

𝑘

)
, Lemma 5.7 implies that

the algorithm returns 𝛼 𝑛
𝑘
cliques of size at least 𝑘 (

√
1 − 𝜀) with

probability 1 − 𝑒−Θ(𝑛) , where 𝛼 is any constant in the range (0, 1).
Each clique contains at least 𝑘

√
1 − 𝜀 agents, and the utility of every

agent in such cliques is at least 𝑘 (
√
1 − 𝜀) − 1. Therefore, the social

welfare of the partition returned by the algorithm is bounded as

SW(𝜋) ≥ 𝛼
𝑛

𝑘
𝑘
√
1 − 𝜀 (𝑘 (

√
1 − 𝜀) − 1) = 𝛼𝑛𝑘 (1 − 𝜀) − 𝛼𝑛

√
1 − 𝜀.

Moreover, Proposition 5.6 implies thatSW(𝜋∗) ≤ 𝑛(𝑘−1) < 𝑛𝑘 .

Hence,

SW(𝜋)
SW(𝜋∗) ≥ 𝛼 (1 − 𝜀) − 𝛼

√
1 − 𝜀
𝑘

. (3)

Note that 𝜀 is a parameter of our choice, and it can be chosen

arbitrarily close to zero. In addition, 𝛼 is a constant with 𝛼 ∈ (0, 1),
meaning that 𝛼 can be made arbitrarily close to 1. This implies

that the approximation factor as bounded in Equation (3) can be

arbitrarily close to 1 − 1

𝑘
≥ 1

2
, where we use that 𝑘 ≥ 2. □

As we just showed, the approximation factor can be arbitrarily

close to 1 − 1

𝑘
. Hence, in case that 𝑘 tends to infinity as 𝑛 tends to

infinity, we obtain nearly optimal partitions for large 𝑛.

5.2.2 High Perturbation Regime for Random Turán Graph. We now

present a second algorithm, which uses Algorithm 1 as a subroutine,

for the case when the perturbation probability is constant, i.e.,

𝑝 = 𝑐 for some constant 𝑐 ∈ (0, 1). Algorithm 2 partitions the

set of color classes {𝑉1, · · · ,𝑉𝑘 } into ⌈𝑐𝑘⌉ disjoint sets, so that the

sizes of the sets differ by at most one. Denote these disjoint sets by

{𝑆1, . . . , 𝑆⌈𝑐𝑘 ⌉ }.6
At least ⌊𝑐𝑘⌋ of these sets contain 𝑘′ =

⌊
1

𝑐

⌋
color classes. Since

𝑘′ is a constant, it follows that 𝑝 = O
(
1

𝑘 ′

)
. Each set of colors forms

a subproblem, and by applying Algorithm 1 to each subproblem, we

obtain 𝛼 𝑛
𝑘
coalitions of size 𝑘′

√
1 − 𝜀 with probability 1 − 𝑒−Θ(

𝑛
𝑘 ) ,

for some fixed constants 𝜀 ∈ (0, 1) and 𝛼 ∈ (0, 1), as established
by Lemma 5.7. By a union bound, the probability that Algorithm 1

returns fewer than 𝛼 𝑛
𝑘
coalitions of size 𝑘′

√
1 − 𝜀 in at least one

subproblem is at most ⌈𝑐𝑘⌉𝑒−Θ(
𝑛
𝑘 ) ≤ 𝑛𝑒−Θ(

𝑛
𝑘 ) . Since 𝑘 = 𝑜

(
𝑛

log𝑛

)
,

6
For example, if 𝑘 = 11 and 𝑐 = 1

3
, one can take 𝑆1 = {𝑉1,𝑉2,𝑉3 }, 𝑆2 =

{𝑉4,𝑉5,𝑉6 }, 𝑆3 = {𝑉7,𝑉8,𝑉9 }, and 𝑆4 = {𝑉10,𝑉11 }.
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this probability approaches zero as 𝑛 increases. Therefore, with

probability 1 − 𝑛𝑒−Θ(
𝑛
𝑘 ) , all subproblems return at least 𝛼 𝑛

𝑘
coali-

tions of size 𝑘′
√
1 − 𝜀. This leads to the following lemma.

Lemma 5.9. Let 𝜋 be the partition returned by Algorithm 2. Then

SW(𝜋) = Ω(𝑛) with probability 1 − 𝑛𝑒−Θ(
𝑛
𝑘
)
.

Proof. In at least ⌊𝑘𝑐⌋ subproblems, the number of color classes

is 𝑘′, and with probability 1 − 𝑛𝑒−Θ(
𝑛
𝑘
)
, all these subproblems

return 𝛼 𝑛
𝑘
coalitions of size 𝑘′

√
1 − 𝜀 for some constant 𝜀 ∈ (0, 1)

and 𝛼 ∈ (0, 1). The utility of agents in these coalitions is least

𝑘
√
1 − 𝜀 − 1. Therefore,

SW(𝜋) ≥ ⌊𝑘𝑐⌋𝛼 𝑛
𝑘
(𝑘′
√
1 − 𝜀) (𝑘′

√
1 − 𝜀 − 1).

Since 𝑘′ =
⌊
1

𝑐

⌋
and 𝑐 is constant, it follows that SW(𝜋) ≥ 𝑛𝑐0 for

some constant 𝑐0. □

Algorithm 2 Dividing into smaller subproblems

Input: ⟨𝐺, 𝜀⟩ where 𝐺 = (𝑛, 𝑘, 𝑝) is a random Turán graph and

𝑝 = 𝑐 for some constant 𝑐 ∈ (0, 1)
Output: Partition 𝜋

1: 𝜋 ← ∅
2: Partition {𝑉1, . . . ,𝑉𝑘 } into ⌈𝑐𝑘⌉ disjoint sets 𝑆1, . . . , 𝑆⌈𝑐𝑘 ⌉ that

differ in size by at most one

3: for each group of colors 𝑆 ∈ {𝑆1, · · · , 𝑆⌈𝑘𝑐 ⌉ } do
4: Let 𝜋𝑆 be the partition within vertices in color classes of 𝑆 ,

after applying Algorithm 1 on input ⟨𝐺, 𝑆, 𝜀⟩
5: 𝜋 ← 𝜋 ∪ 𝜋𝑆

We now bound the maximum welfare. The proof is similar to our

arguments for Erdős-Rényi graphs and deferred to the full version.

Lemma 5.10. When 𝑘 = Ω(log𝑛) and 𝑝 = 𝑐 for some constant

𝑐 ∈ (0, 1), the maximum welfare satisfies 𝑆𝑊 (𝜋∗) = O(𝑛 log𝑛) with

probability 1 −
(

𝑐𝑒
2 log𝑒 𝑛

) 2

𝑐
log𝑒 𝑛

.

We now prove our main result for the high perturbation regime.

Again, the theorem extends to random balanced 𝑘-partite graphs.

Theorem 5.11. Consider aversion-to-enemies games given by ran-

dom Turán graphs 𝐺 = (𝑛, 𝑘, 𝑝), where 𝑝 = 𝑐 for some constant

𝑐 ∈ (0, 1). Then there exists a polynomial-time algorithm that returns

a partition 𝜋 which provides a log𝑛-approximation of the maximum

welfare with probability 1 − 𝑛𝑒−Θ(
𝑛
𝑘 ) −

(
𝑐𝑒

2 log𝑒 𝑛

) 2

𝑐
log𝑒 𝑛+1

.

Proof. Lemma 5.9 implies that Algorithm 2 returns a partition

𝜋 where SW(𝜋) = Ω(𝑛) with probability 1 − 𝑛𝑒−Θ(
𝑛
𝑘 ) . A sim-

ple upper bound on the maximum welfare is provided in Proposi-

tion 5.6, which implies SW(𝜋∗) ≤ 𝑛(𝑘 − 1). If 𝑘 = O(log𝑛), this
results in SW(𝜋∗) = O(𝑛 log𝑛). However, when 𝑘 = Ω(log𝑛), it
does not provide a useful guarantee. Instead, Lemma 5.10 shows

that even in this case, SW(𝜋∗) = O(𝑛 log𝑛) with probability

1 −
(

𝑐𝑒
2 log𝑒 𝑛

) 2

𝑐
log𝑒 𝑛

. By a union bound, we have

SW(𝜋) ≥ Ω

(
1

log𝑒 𝑛

)
SW(𝜋∗) .

with probability 1 − 𝑛𝑒−Θ(
𝑛
𝑘 ) −

(
𝑐𝑒

2 log𝑒 𝑛

) 2

𝑐
log𝑒 𝑛+1

. □

Extension to Balanced Multipartite Graphs. We finish the section

by discussing our extension. The main idea is a reduction to the case

of Turán graphs. Recall that in a balanced 𝑘-partite graph, the input

has components of comparable sizes, i.e., |𝑉𝑘 | ≥ 𝑞 |𝑉1 | holds for
some constant 𝑞 ∈ (0, 1). We refine the greedy algorithm by forcing

the components’ sizes to become equal; the crucial observation is

that by considering subsets of agents 𝑉 ′
𝑖
⊆ 𝑉𝑖 such that |𝑉 ′

𝑖
| = |𝑉𝑘 |,

we do not affect the edge distribution, i.e., −𝑛 edges are still present

with probability 𝑝 and weight 1 edges with probability 1 − 𝑝 . Our
analysis for both the low and high perturbation regimes proceed

by bounding how much the social welfare changes because of the

changes in the sizes.

6 CONCLUSION
We have investigated maximizing social welfare in additively sep-

arable hedonic games. This is known to be a very hard problem

in a worst-case analysis: approximating welfare better than the

𝑛-approximation provided by maximum weight matchings faces

computational boundaries. We have strengthened the existing ap-

proximation hardness to games with bounded valuations, in partic-

ular when restricting them to {−1, 0, 1}.
By contrast, we have carved out various possibilities to ob-

tain better approximation guarantees. In games with nonnegative

total value, a randomized polynomial-time algorithm achieves a

O(log𝑛)-approximation. Our proof establishes an interesting con-

nection to the correlation clustering literature. Moreover, going

beyond worst-case guarantees, we have defined two stochastic mod-

els of aversion-to-enemies games, i.e., the games which cause the

inapproximability in the first place. In both models, we perform

a high probability analysis. The first stochastic model is based on

Erdős-Rényi graphs, where we can efficiently compute partitions

that approximate social welfare within a constant factor. The second

stochastic model is based on balanced multipartite graphs. We dis-

tinguish a low and high perturbation regime, in which we can again

guarantee a constant and logarithmic approximation, respectively.

Social welfare is a fundamental objective in ASHGs that de-

serves further attention in future research. A specific open question

is to investigate whether efficient approximation algorithms are

possible for symmetric ASHGs with valuations of {−1, 1}, see our
discussion after Theorem 4.1. Moreover, considering welfare ap-

proximation in suitable classes of random hedonic games might

lead to intriguing discoveries. One candidate are random ASHGs

with uniformly random valuations [12]. Finally, we restricted atten-

tion to symmetric games, which is not without loss of generality

for aversion-to-enemies games (cf. Footnote 2). Hence, another

direction is to consider asymmetric subclasses of ASHGs.
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