
Fair Division in a Variable Setting
Harish Chandramouleeswaran

Chennai Mathematical Institute

Chennai, India

harishc@cmi.ac.in

Prajakta Nimbhorkar
∗

Chennai Mathematical Institute

Chennai, India

prajakta@cmi.ac.in

Nidhi Rathi
†

Max Planck Institute for Informatics,

SIC

Saarbrücken, Germany

nrathi@mpi-inf.mpg.de

ABSTRACT
We study the classic problem of fairly dividing a set of indivisible

items among a set of agents and consider the popular fairness

notion of envy-freeness up to one item (EF1). While in reality, the set

of agents and items may vary, previous works have studied static
settings, where no change can occur in the system. We initiate

and develop a formal model to understand fair division under the

variable input setting: here, there is an EF1 allocation that gets

disrupted because of the loss/deletion of an item, or the arrival of a

new agent, resulting in a near-EF1 allocation. The objective is to
perform a sequence of transfers of items between agents to regain

EF1 fairness by traversing only via near-EF1 allocations. We refer

to this as the EF1-Restoration problem.

In this work, we present algorithms for the above problem when

agents have identical monotone valuations, and items are either all

goods or all chores. Both of these algorithms achieve an optimal

number of transfers (at most𝑚/𝑛, where𝑚 and 𝑛 are the number

of items and agents respectively) for identical additive valuations.

Next, we consider a valuation class with graphical structure, in-

troduced by Christodoulou et al. (EC 2023), where each item is

valued by at most two agents, and hence can be seen as an edge

between these two agents in a graph. Here, we consider EF1 orienta-
tions on (multi)graphs - allocations in which each item is allocated

to an agent who values it. While considering EF1 orientations on
multigraphs with additive binary valuations, we present an optimal

algorithm for the EF1-Restoration problem. Finally, for monotone

binary valuations, we show that the problem of deciding whether

EF1-Restoration is possible is PSPACE-complete.
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1 INTRODUCTION
Fair Division studies the fundamental problem of dividing a set

of indivisible resources among a set of interested parties (often

dubbed as agents) in a fair manner. The need of fairness is inher-

ent in the design of many social institutions and occur naturally

in many real-life scenarios like inheritance settlement, allocating

radio and satellite spectrum, and air traffic management, to name

a few [13, 19, 29, 30, 38]. While the first mentions of fair division

date back to the Bible and Greek mythology, its first formal study

is credited to Steinhaus, Banach, and Knaster in 1948 [35]. Since

then, the theory of fair division has enjoyed flourishing research

from mathematicians, social scientists, economists, and computer

scientists alike. The last group has brought a new flavor of ques-

tions related to different models of computing fair allocations. We

refer to [3, 10, 11, 31] for excellent expositions and surveys of fair

division.

Envy-freeness is one of the quintessential notions of fairness for
resource allocation problems that entails every agent to be happy
with their own share and not prefer any other agent’s share over

theirs in the allocation, i.e., being envy-free [20]. This notion has

strong existential properties when the resource to be allocated is

divisible, like a cake [36, 37]. But, a simple example of two agents

and one item, shows that envy-free allocations may not exist for the

case of indivisible items. Hence, several variants of envy-freeness

have been explored in the literature. Envy-freeness up to some item
(EF1) is one such popular relaxation [12] that entails an allocation

to be fair when any envy for an agent must go away after removing

some item from the envied bundle. When we have an EF1 allocation,
we say that the agents are EF1-happy, while if an agent’s envy does

not go away after removing some item from the envied bundle, we

refer to it as EF1-envy. It is known that EF1 allocations always exist
and can be computed efficiently as well [27].

Given that the notion of EF1 is tractable, it becomes a tempting

problem to explore it in a changing environment - that is, what

happens when we have a variable input of items and agents, as

is natural in many real-world scenarios. This work aims to de-

velop tools for the problem of restoring fairness in the system when

changes occur, with minimal disruption to the existing allocation.
We initiate the study of fair division of indivisible items in a

changing environment due to variable input. In this work, we go

beyond the classic static setting of fair division and study an in-

teresting variant where an agent may lose an item in a given EF1
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allocation, and therefore, may no longer be EF1-happy. Another
such scenario is when a new agent enters the system with an empty

bundle to begin with, and starts EF1-envying some of the existing

agents. We call such allocations near-EF1 allocations - where every
agent but one (say, the new agent, or the agent who lost an item),

is EF1-happy.
Given a near-EF1 allocation, the goal is to redistribute the items

by causing minimal disruption to the existing allocation. In par-

ticular, the redistribution needs to be carried out while ensuring

the EF1-happiness of other agents (i.e., creating no new EF1-envy),
and to finally reach an EF1 allocation. Starting from a near-EF1
allocation where every agent except one, say agent 1, is EF1-happy,
we allow a sequence of transfers of a single item from one bundle to

another, such that the new allocation is near-EF1, i.e., every agent

other than agent 1 remains EF1-happy. Our aim is to modify the

allocations by performing a sequence of transfers between agents

so as to eventually reach an EF1 allocation.
Note that it is always possible to start from scratch and find an

EF1 allocation (say, by using the algorithm in [27]), but this leads

to an excessive and undesirable (and possibly unnecessary) amount

of change in the bundles of all the agents. Hence, restoring fairness

after any change in the input by ensuring minimal modifications to

what is already allocated is desirable. This is well-motivated from a

practical perspective, both in the case of goods as well as chores.

Consider a company where various people work on different tasks

simultaneously. When a task is completed, the person who was

working on it has less work at hand, and hence, the task allocation

may no longer be fair. It is imperative to redistribute the tasks with

as little reshuffling as possible so as to restore fairness. Similarly,

when goods get damaged, stolen, or expire, the fairness guarantees

must be restored with as little reshuffling of goods as possible. For

instance, consider the scenario in which people are allocated slots

for their computing tasks on various machines. If a machine stops

working, then it is desirable to redistribute the slots on the working

machines so as to regain fairness, and also minimize the disturbance

caused to others.

To avoid confusion, we remark that a different non-static set-

ting of online fair division has also been studied, where items or

agents arrive and depart over time and the aim is to dynamically

build (from scratch) a fair division against an uncertain future; see

the survey [1]. Another line of research is to explore fair division

protocols that remain consistent with population monotonicity and

resource monotonicity, where the set of agents or items may vary

[15].

Our Contribution: In this work, we develop a formal model of

fair division under variable input, where an agent loses an item, or

a new agent with an empty bundle enters the system. This leads to

a near-EF1 allocation, where all agents but one are EF1-happy. The
goal is to restore EF1 fairness guarantees via a sequence of transfers
of items while maintaining near-EF1 allocations - we call this the
EF1-Restoration problem. If this is possible for a given instance, we

say EF1-Restoration admits a positive solution. Our main results

are given below. Proofs omitted due to space constraints appear in

the full version [16].

(1) For the EF1-Restoration problem with identical monotone

valuations, we present an algorithm (Algorithm 1) to restore

EF1. Moreover, for identical additive valuations, our algo-

rithm is optimal with𝑚/𝑛 transfers. This remains true when

all the items are chores ([16], Appendix A). On the other

hand, a positive result doesn’t hold in the mixed setting with

both goods and chores, or for the analogous EFX-Restoration
problem for goods, even in the case of identical additive val-

uations ([16], Appendix B).

(2) We consider a class of graphical valuations introduced by

Christodoulou et al. [17], where every item is positively

valued by at most two agents, and hence can be represented

as an edge between them. Moreover, let the initial near-EF1
allocation have the property that each item is allocated to

an agent who values it positively (known as an orientation
[18, 40]). In this setting, we present an optimal algorithm

(Algorithm 2) to restore EF1with 𝑛−1 transfers (when agent

1 loses one item), while maintaining a near-EF1 orientation
at each step.

(3) We prove that deciding if EF1-Restoration is possible is

PSPACE-complete for monotone binary valuations (Sec-

tion 6).

Related Work: The closest work to ours is by Igarashi et al. [24],

in which they consider the problem of deciding whether one EF1 al-
location can be reached from another EF1 allocation via a sequence

of exchanges such that every intermediate allocation is EF1. They
prove reachability is guaranteed for two agents with identical or

binary valuations, as well as for any number of agents with iden-

tical binary valuations. Ito et al. [25] also consider the problem of

reachability via exchanges, with the allocations satisfying some

different constraints. We ask a similar question in a variable input

setting, in which we start with a near-EF1 allocation, and the goal

is to reach an EF1 allocation via a sequence of near-EF1 allocations.
As mentioned earlier, several non-static models of fair division

have been studied. One such model considers the online nature of

either items or agents arriving or departing over time, in which one

needs to dynamically allocate the items in a fair manner against

an uncertain future. There are various works that tackle different

dimensions of the problem: (i) resources being divisible [39] or

indivisible [2, 26], (ii) resources being fixed and agents arriving

over time [39], or agents being fixed and resources arriving over

time [1], or both arriving online [28], and (iii) whether mechanisms

are informed [39] or uninformed [23] about the future.

Another line of work studies resource- and population-

monotonicity, in which the set of agents or items may change.

The goal is construct fair division protocols in which the utility of

all participants change in the same direction - either all of them are

better off (if there is more to share, or fewer to share among), or all

are worse off (if there is less to share, or more to share among); see

[15, 33, 34].

The notion of fairness considered in our work as well as in

the results mentioned above is envy-freeness up to one item (EF1).
Since its introduction by Budish [12], it has been extensively studied

in the literature in various settings ([14], [6], [22], to mention a

few). For goods, a polynomial-time algorithm to compute an EF1
allocation was given by Lipton et al. [27]. For a mixture of goods

and chores, Aziz et al. [5] defined an analogous notion of EF1 and
gave a polynomial-time algorithm to compute an EF1 allocation
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in the case of additive valuations. For chores (resp. a mixture of

goods and chores), a polynomial-time algorithm to compute EF1
allocations for monotone (resp. doubly monotone) valuations was

given by Bhaskar et al. [7].

As mentioned earlier, the class of graphical valuations, in which

every item is valued by at most two agents and hence can be seen

as an edge between them, was introduced in [17] in the context

of envy-freeness up to any item (EFX) allocations. They proved the

existence of EFX allocations on simple graphs. This work has moti-

vated studies on EFX and EF1 orientations and allocations on graph

settings - e.g. Zhou et al. [41] studied the mixed manna setting

with both goods and chores and proved that determining the ex-

istence of EFX orientations for agents with additive valuations is

NP-complete and provide certain tractable special cases. Zeng et

al. [40] relate the existence of EFX orientations and the chromatic

number of the graph. Recently, Deligkas et al. [18] showed that

EF1 orientations always exist for monotone valuations and can be

computed in pseudopolynomial time. We refer the readers to the

excellent surveys by Biswas et al. [8] on fair division under such

“structured set constraints”, and by Amanatidis et al. [3] and Guo et

al. [21] on various notions of fairness in the settings of both goods

and chores.

2 NOTATION AND PRELIMINARIES
For a positive integer 𝑘 , we write [𝑘] to denote the set {1, 2, . . . , 𝑘},
and we write 2

𝑆
to denote the power set of a set 𝑆 .

Consider a set G of𝑚 indivisible items that needs to be assigned

to a set [𝑛] of 𝑛 agents fairly. The preferences of an agent 𝑖 ∈ [𝑛]
over these items is specified by a valuation function 𝑣𝑖 : 2

G →
R+∪{0}, i.e., 𝑣𝑖 (𝑆) denotes the value agent 𝑖 ∈ [𝑛] associates to the
set of items 𝑆 ⊆ G. We define an allocation𝑋 = (𝑋1, . . . , 𝑋𝑛) to be a
partition of the set G among the 𝑛 agents, where 𝑋𝑖 corresponds to

the bundle assigned to agent 𝑖 ∈ [𝑛]. The goal is to construct “fair”,

i.e., envy-freeness up to one item (EF1) allocations (see Definition 2.3).
We call the tuple I =

〈
[𝑛],G, {𝑣𝑖 }𝑖∈[𝑛]

〉
a fair division instance.

For an item 𝑔 ∈ G, we denote 𝑣𝑖 ({𝑔}) simply by 𝑣𝑖 (𝑔) for a
cleaner presentation.

We say that a valuation function 𝑣 is monotone if 𝑣 (𝑆) ≤ 𝑣 (𝑇 )
for all 𝑆,𝑇 ⊆ G with 𝑆 ⊆ 𝑇 . We say that 𝑣 is binary if, for each

𝑆 ⊆ G, and for each 𝑔 ∈ G, we have 𝑣 (𝑆 ∪ 𝑔) − 𝑣 (𝑆) ∈ {0, 1}, i.e.,
if each item 𝑔 ∈ G adds a marginal value of either 0 or 1 to any

bundle. A natural subclass of monotone valuations is the class of

additive valuations - we say 𝑣 is additive if, for all 𝑆 ⊆ G, we have
𝑣 (𝑆) = ∑

𝑔∈𝑆 𝑣 (𝑔). Observe that an additive valuation is binary if

and only if 𝑣 (𝑔) ∈ {0, 1}, for each 𝑔 ∈ G.
We study the class of graphical valuations [17] in this work, that

we now define. These are inspired by geographic contexts, where

agents only care about resources nearby and show no interest in

those located farther away.

Definition 2.1 (Graphical Valuation). A graphical valuation is one

that is representable as a (multi)graph where vertices correspond

to the agents, and edges correspond to the items. An item is valued

positively only by the two agents incident to the corresponding

edge. In other words, for a multigraph𝐺 = (𝑉 , 𝐸), each vertex 𝑖 ∈ 𝑉
has a valuation 𝑣𝑖 such that 𝑣𝑖 (𝑔) > 0 if and only if 𝑔 is incident to

𝑖 in 𝐺 .

Definition 2.2 (Envy and EF1-envy). Agent 𝑖 ∈ [𝑛] is said to envy
agent 𝑗 ∈ [𝑛] in an allocation 𝑋 if 𝑖 values 𝑗 ’s bundle strictly more

than their own bundle, i.e., 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋 𝑗 ). Furthermore, we say

𝑖 EF1-envies 𝑗 if, for all 𝑔 ∈ 𝑋 𝑗 , we have 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋 𝑗 \ 𝑔), i.e.,
𝑖 continues to envy 𝑗 even after virtually removing any one item

from 𝑗 ’s bundle. We say 𝑖 is EF1-happy in 𝑋 if they don’t EF1-envy
any other agent.

We now define the fairness notion of envy-freeness up to one item
(EF1).

Definition 2.3 (Envy-freeness up to one item (EF1) [12]). An

allocation 𝑋 is said to be EF1 if every agent is EF1-happy in 𝑋 .

A special type of allocation called an orientation has been studied
recently, and was introduced by Christodoulou et al. [17] while

studying EFX allocations in the context of graphical valuations.

There has been further work on EFX orientations by Zeng and

Mehta [40], and was first studied in the EF1 setting by Deligkas et

al. [18].

Definition 2.4 (Orientation). An allocation 𝑋 is an orientation if

every item is allocated to an agent who has positive marginal value

for it.

An orientation is a type of non-wasteful allocation. Note that

orientations for graphical valuations with graph𝐺 , are equivalent to

assigning a direction to each edge in𝐺 , such that the edge is directed

towards the agent who owns the item in a particular allocation.

We next define the concept of envy graph of an allocation.

Definition 2.5. For an allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛), its envy graph
Genvy (𝑋 ) is a directed graph with agents appearing as vertices.

We add a directed edge from agent 𝑖 to agent 𝑗 if 𝑖 envies 𝑗 , i.e.,

𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋 𝑗 ).

3 OUR PROBLEM AND CONTRIBUTION
In this section, we define the problem and state our results formally.

Recall that our variable input setting involves an initial EF1 alloca-
tion, from which, either an item allocated to an agent is lost, or a

new agent with an empty bundle arrives. Without loss of generality,

let this be agent 1.

We will now introduce our notion of a “near-EF1” allocation,
which is the primary object of study in this work.

Definition 3.1 (Near-EF1 allocation). An allocation 𝑋 is said to

be near-EF1 if every agent is EF1-happy in 𝑋 except possibly one

fixed agent, say agent 1, who we refer to as the unhappy agent.

Definition 3.2 (Amount of EF1-envy). Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be an
allocation. The amount of EF1-envy that agent 𝑖 has towards agent

𝑗 in 𝑋 , denoted by 𝜀𝑖→𝑗 (𝑋 ), is defined as

𝜀𝑖→𝑗 (𝑋 ) ≔ min

𝑔∈𝑋 𝑗

{
𝑣𝑖 (𝑋 𝑗 \ 𝑔) − 𝑣𝑖 (𝑋𝑖 )

}
.

Note that 𝑋 is an EF1 allocation, if and only if 𝜀𝑖→𝑗 (𝑋 ) ≤ 0 for

each 𝑖, 𝑗 ∈ [𝑛].

3.1 Problem Setup
Given a near-EF1 allocation, the goal of this work is to restore EF1
by redistributing the items in a way that causes minimal disruption
to the system, that we formally define next.
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Definition 3.3 (Valid Transfer). Let 𝑋 be a near-EF1 allocation
with one unhappy agent - agent 1. Then, the transfer of an item from

one agent to another is said to be a valid transfer, if the resulting
allocation 𝑌 is a near-EF1 allocation, and the amount of EF1-envy
agent 1 has towards other agents is no larger in 𝑌 as compared to

that in 𝑋 .

Let us now formally conceptualize the problem of fair division

in a variable setting that forms the focus of this work.

Problem 3.4 (The EF1-Restoration problem). Given a fair division

instance, and a near-EF1 allocation 𝑋 , where every agent except

agent 1 is EF1-happy, determine if it is possible to reach an EF1
allocation by a sequence of valid transfers.

3.2 Technical Contribution
We begin by studying identical valuations and prove that any

EF1-Restoration instance has a positive solution here. Formally,

we prove the following (in Section 4).

Theorem 3.5. Given a fair division instance with an identical mono-
tone valuation 𝑣 , and any near-EF1 allocation𝑋 , the EF1-Restoration
problem always admits a positive solution. Moreover, it is possible
to ensure that the unhappy agent 1 is the only recipient in each of
these valid transfers, and the transfer is always made from an agent 𝑖
whom agent 1 EF1-envies (i.e., 𝜀1→𝑖 > 0).

Furthermore, if 𝑣 is additive, at most𝑚/𝑛 valid transfers to agent
1 suffice to reach an EF1 allocation. This is tight in the worst case.

The above theorem also holds for the case in which all the items

are chores. The proof is analogous ([16], Appendix A). However, a
positive result doesn’t hold in themixed setting with both goods and
chores, or for the analogous EFX-Restoration problem for goods,

even in the case of identical additive valuations ([16], Appendix B).

Next (in Section 5), we identify another interesting valuation

class where we can achieve EF1-Restoration. We study EF1 orien-
tations in graphical setting, with additive binary valuations and

prove the following.

Theorem 3.6. Consider a fair division instance on multigraphs with
additive binary valuations. Given any near-EF1 orientation 𝑋 , the
EF1-Restoration problem always admits a positive solution. And, an
EF1-orientation may be restored by effecting at most 𝐾 (𝑛 − 1) valid
transfers, where 𝐾 = max𝑗∈[𝑛] 𝜀1→𝑗 in 𝑋 . Furthermore, this bound
is tight and each transfer results in a near-EF1 orientation.

In Section 6, we prove that EF1-Restoration is hard in general, by

considering the subclass of binary monotone valuations, in which

every subset of the set of items is valued at either 0 or 1. It turns

out that the EF1-Restoration problem is PSPACE-complete even in

this case.

Theorem 3.7. The EF1-Restoration problem is PSPACE-complete
for monotone binary valuations.

In fact, the result holds even if valid exchanges, apart from
valid transfers are allowed. We present a reduction from the

PSPACE-complete problem of Perfect Matching Reconfiguration
[9]. We have an involved construction of the valuation functions

in our EF1-Restoration instance, so that we prohibit all problem-

atic transfers/exchanges, and ensure that every EF1 allocation

that may be constructed from our instance corresponds to ex-
actly one perfect matching - the target perfect matching in the

Perfect Matching Reconfiguration instance with which we begin.

4 EF1-RESTORATION FOR IDENTICAL
VALUATIONS

In this section, we first consider identical monotone valuations and

give a constructive proof (via Algorithm 1) for the EF1-Restoration
problem (in Lemma 4.1), and then bound the number of transfers

required in the additive case (in Lemma 4.2). These two lemmas

together establish Theorem 3.5.

Let us denote the given near-EF1 allocation by𝑋 wherein agent 1

is unhappy. In each step of Algorithm 1, an agent 𝑖 ≠ 1 is chosenwho

would be least affected by giving away their most valuable item, de-

noted 𝑔𝑋
𝑖,best

, to agent 1. Formally, let 𝑔𝑋
𝑖,best

≔ arg min

𝑔∈𝑋𝑖

{𝑣 (𝑋𝑖 \ 𝑔)}.

The item 𝑔𝑋
𝑖,best

is then transferred to agent 1. The crux of our proof

is to show that the above transfer is valid.

Algorithm 1: EF1-Restoration for identical valuations

Input : A fair division instance I = ⟨[𝑛],G, 𝑣⟩ with
identical monotone (positive) valuation 𝑣 and a

near-EF1 allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) with agent 1

being unhappy.

Output : An EF1 allocation in I.
1 EF1_Restorer(𝑋):
2 𝑆 ← agents that agent 1 EF1-envies in 𝑋
3 while 𝑆 ≠ ∅ do
4 𝑖 ← arg max

𝑘∈[𝑛]\{1}

{
𝑣 (𝑋𝑘 \ 𝑔𝑋𝑘,best)

}
5

𝑋𝑖 ← 𝑋𝑖 \ 𝑔𝑋𝑖,best
𝑋1 ← 𝑋1 ∪ 𝑔𝑋𝑖,best

}
Transfer 𝑔𝑋

𝑖,best
from 𝑖 to 1

6 Update 𝑆

7 end
8 return 𝑋 = (𝑋1, . . . , 𝑋𝑛)

Lemma 4.1. The EF1-Restoration problem admits a positive solution
for identical monotone (positive) valuations.

Proof. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be the input near-EF1 allocation,
with a positive valuation 𝑣 that is common to all the agents. Let

𝑖 ≔ arg max

𝑘∈[𝑛]\{1}

{
𝑣 (𝑋𝑘 \ 𝑔𝑋𝑘,best)

}
. That is, in the allocation 𝑋 , agent 𝑖

is the one (other than agent 1, of course) who would possess the

most valuable bundle, even after losing their most valuable item.

As indicated in Line 5 of Algorithm 1, we transfer 𝑔𝑋
𝑖,best

from 𝑖 to

agent 1, and denote the resulting allocation by𝑌 . We will prove that

this is a valid transfer, i.e., 𝑌 is near-EF1 and the transfer does not

lead to an increase in the amount of EF1-envy agent 1 has towards

any other agent.

• We first show that agent 𝑖 does not EF1-envy any agent 𝑗 ≠ 1

after the transfer. We have 𝑌1 = 𝑋1 ∪ 𝑔𝑋𝑖,best, 𝑌𝑖 = 𝑋𝑖 \ 𝑔
𝑋
𝑖,best

,
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and 𝑌𝑗 = 𝑋 𝑗 for all 𝑗 ∈ [𝑛] \ {1, 𝑖}. Then, we have, for each
𝑗 ∉ {1, 𝑖},
𝑣 (𝑌𝑖 ) = 𝑣 (𝑋𝑖 \ 𝑔𝑋𝑖,best) ≥ 𝑣 (𝑋 𝑗 \ 𝑔𝑋𝑗,best) = 𝑣 (𝑌𝑗 \ 𝑔

𝑌
𝑗,best
), (1)

where the inequality in (1) follows from the choice of 𝑖 in

Line 4 of Algorithm 1. Hence, agent 𝑖 does not EF1-envy any

agent 𝑗 ≠ 1 after the transfer.

• Next, we prove that no agent EF1-envies agent 1 after the

transfer (i.e., in 𝑌 ). Note that the transfer was made because

agent 1 had EF1-envy towards some agent, say agent 2 in 𝑋 .

So, for each 𝑗 ∉ {1, 𝑖}, we have the following:

𝑣 (𝑌𝑗 ) = 𝑣 (𝑋 𝑗 ) ≥ 𝑣 (𝑌𝑖 ) = 𝑣 (𝑋𝑖 \ 𝑔𝑋𝑖,best) (𝑋 is near-EF1)

≥ 𝑣 (𝑋2 \ 𝑔𝑋
2,best
) (by our choice of 𝑖)

> 𝑣 (𝑋1) (agent 1 EF1-envies agent 2)

and

𝑣 (𝑋1) = 𝑣 (𝑌1 \ 𝑔𝑋𝑖,best) ≥ 𝑣 (𝑌1 \ 𝑔𝑌
1,best
) (𝑋1 ⊂ 𝑌1)

Therefore, we have 𝑣 (𝑌𝑗 ) ≥ 𝑣 (𝑌1 \ 𝑔𝑌
1,best
) for all 𝑗 ≠ 1.

• Observe that agent 1 must have had EF1-envy towards agent
𝑖 . As assumed earlier, let agent 2 be one of the agents who

is EF1-envied by agent 1. So, 𝑣 (𝑋2 \ 𝑔𝑋
2,best
) > 𝑣 (𝑋1). But,

since agent 𝑖 was chosen for the transfer, we must have had

𝑣 (𝑋𝑖 \ 𝑔𝑋𝑖,best) ≥ 𝑣 (𝑋2 \ 𝑔𝑋
2,best
) > 𝑣 (𝑋1).

• Since 1 has gained an item, the EF1-envy agent 1 has towards

any other agent in 𝑌 cannot be larger than that in 𝑋 .

Overall, we have shown that the transfer in Line 5 is valid and

results in an increase of one item in the bundle of agent 1 (as

long as agent 1 is not EF1-happy). Hence, Algorithm 1 eventually

terminates with an EF1 allocation. □

Next, we give an upper bound on the number of transfersmade by

Algorithm 1 in the case of identical additive valuations in Lemma 4.2,

and prove that this is tight.

Lemma 4.2. Algorithm 1 reaches an EF1 allocation by making at
most𝑚/𝑛 valid transfers to agent 1 for the EF1-Restoration problem
with identical additive valuations. This bound is tight.

Proof. Let 𝑋 be the input near-EF1 allocation, and 𝑌 be the

output (EF1) allocation of Algorithm 1. We write 𝑣 to denote com-

mon additive valuations of the agents. To bound the number of

transfers executed in the worst-case, we may assume (i) 𝑋1 = ∅,
since otherwise, we may only have to make fewer transfers and

(ii) all items in G are valued the same. This means that, at each

iteration, the most valuable item that is transferred from a bundle,

is no more valuable than the least valuable item in all of G, thereby
requiring more transfers to 1 to restore EF1. Given that we assume

(ii), we may further assume that 𝑣 (𝑔) = 1 for every 𝑔 ∈ G.
Let 𝑖 ∈ [𝑛]. Let 𝑘𝑖 ≔ 𝑣 (𝑋𝑖 ) = |𝑋𝑖 |, and let 𝑘′

𝑖
≔ 𝑣 (𝑌𝑖 ) = |𝑌𝑖 |. By

(i), we have 𝑘1 = 0, and hence the number of transfers made by

Algorithm 1 is 𝑘′
1
(recall that every transfer is to agent 1). Since 𝑌

is EF1, and each item is valued at 1 by all agents, it follows that

𝑘′
𝑖
= 𝑘′

1
or 𝑘′

𝑖
= 𝑘′

1
+ 1. Hence,

𝑛𝑘′
1
≤

𝑛∑︁
𝑖=1

𝑘′𝑖 =𝑚,

so that 𝑘′
1
≤ 𝑚

𝑛 , which is what we set out to prove.
1

This bound is tight (see Footnote 1). Consider a near-EF1 allo-
cation 𝑋 in which 𝑋1 ≔ ∅, and each of 𝑋2, . . . , 𝑋𝑛 contain 𝑚/𝑛
items, each of same value. Here, the transfer of

⌈
𝑚−𝑛+1

𝑛

⌉
goods to

the unhappy agent 1 is necessary to restore EF1. □

Remark 4.3. Theorem 3.5 also holds in the case of chores (i.e.,
when 𝑣 is an identical monotone (negative) valuation) on similar

arguments, and hence deferred to the full version of this work (see

[16], Appendix A).

Remark 4.4. Even with identical additive valuations, (i)

EF1-Restoration in the mixed setting (with both goods and chores),
and (ii) the analogous EFX-Restoration problem for goods may not

admit a positive solution. This discussion is deferred to the full

version ([16], Appendix B).

5 EF1-RESTORATION FOR ORIENTATIONS
UNDER GRAPHICAL VALUATIONS

In this section, we consider the valuation class defined using multi-

graphs where an item is valued by at most two agents and consider

additive binary valuations. Here, any item 𝑔 corresponds to an edge

(𝑖, 𝑗) between two agents 𝑖 and 𝑗 with 𝑣𝑖 (𝑔) = 𝑣 𝑗 (𝑔) = 1, while

𝑣𝑘 (𝑔) = 0 for all agents 𝑘 ≠ 𝑖, 𝑗 .

We study a special class of non-wasteful allocations, called ori-

entations. We prove that the EF1-Restoration problem admits a

positive solution for this setting (Theorem 3.6). We do so by devel-

oping Algorithm 2, that achieves an optimal number of transfers

(in the worst case) to reach an EF1 allocation. Note that EF1 orien-
tations always exist for monotone valuations, as proved recently in

[18].

Before describing our algorithm, we prove the following proper-

ties of orientations for additive binary valuations.

Lemma 5.1. For fair division instances with graphical structure, let
𝑣𝑖 be the additive binary valuation of an agent 𝑖 ∈ [𝑛], and let 𝑋 be
an orientation. Then, we have

(1) For any 𝑖, 𝑗 ∈ [𝑛], 𝑣𝑖 (𝑋𝑖 ) = |𝑋𝑖 | ≥ 𝑣 𝑗 (𝑋𝑖 ). That is, if the
allocation is an orientation, every agent values their bundle at
least as much as any other agent values it.

(2) If there exists a (directed) path (𝑖0, 𝑖1, 𝑖2, . . . , 𝑖𝑑 ) of length 𝑑
from agent 𝑖0 to agent 𝑖𝑑 in the envy graph Genvy (𝑋 ), then
𝑣𝑖𝑑 (𝑋𝑖𝑑 ) ≥ 𝑣𝑖0 (𝑋𝑖0 ) + 𝑑 .

(3) The envy graph Genvy (𝑋 ) is acyclic.

Proof. (1) Since 𝑋 is an orientation, and the valuation is binary,

we have 𝑣𝑖 (𝑋𝑖 ) = |𝑋𝑖 |. Note that, for any other agent 𝑗 ≠ 𝑖 , we

have 𝑣 𝑗 (𝑔) ∈ {0, 1} for any 𝑔 ∈ 𝑋𝑖 . Hence, we have 𝑣 𝑗 (𝑋𝑖 ) ≤ |𝑋𝑖 | =
𝑣𝑖 (𝑋𝑖 ).

(2) Assume agent 𝑖 envies agent 𝑗 . Then, using part (1), we have

|𝑋𝑖 | = 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋 𝑗 ) ≤ 𝑣 𝑗 (𝑋 𝑗 ) = |𝑋 𝑗 |. Therefore, we obtain

𝑣 𝑗 (𝑋 𝑗 ) ≥ 𝑣𝑖 (𝑋𝑖 ) + 1. Generalizing it to a 𝑑-length envy path in

Genvy (𝑋 ), say (𝑖0, 𝑖1, . . . , 𝑖𝑑 ), we get the following:
𝑣𝑖𝑑 (𝑋𝑖𝑑 ) ≥ 𝑣𝑖𝑑−1

(𝑋𝑖𝑑−1
) + 1 ≥ 𝑣𝑖𝑑−2

(𝑋𝑖𝑑−2
) + 2 . . . ≥ 𝑣𝑖0 (𝑋𝑖0 ) + 𝑑

1
In fact, the EF1 allocation with 𝑘 ′

2
= . . . = 𝑘 ′𝑛 = 𝑘 ′

1
+1 will be reached by Algorithm 1

before the EF1 allocation having𝑛 identical bundles. Solving𝑘 ′
1
+ (𝑛− 1) (𝑘 ′

1
+1) ≤ 𝑚

would then give us𝑘 ′
1
≤ 𝑚−𝑛+1

𝑛
, which is the exact bound. The given example instance

shows that this is tight.
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(3) Let us now assume a cycle (𝑖0, . . . , 𝑖𝑑 ) in Genvy (𝑋 ), where agent
𝑖𝑑 envies 𝑖0. Using part (2), we can first write 𝑣𝑖𝑑 (𝑋𝑖𝑑 ) ≥ 𝑣𝑖0 (𝑋𝑖0 )+𝑑 .
And then using part (1), we have 𝑣𝑖0 (𝑋𝑖0 ) ≥ 𝑣𝑖𝑑 (𝑋𝑖0 ). Combining the

last two inequalities, we obtain 𝑣𝑖𝑑 (𝑋𝑖𝑑 ) ≥ 𝑣𝑖𝑑 (𝑋𝑖0 ). This means

𝑖𝑑 does not envy 𝑖0, leading to a contradiction. Hence, Genvy is

acyclic. □

Algorithm 2: EF1-Restoration on multigraphs

Input :A fair division instance I = ⟨[𝑛],G, {𝑣𝑖 }𝑖 ⟩ on a

multigraph with additive binary valuations and a

near-EF1 orientation 𝑋 = (𝑋1, . . . , 𝑋𝑛).
Output :An EF1-orientation.

1 EF1_Orientation_Restorer(𝑋):
2 𝑆 ← agents EF1-envied by 1 in 𝑋

3 while 𝑆 ≠ ∅ do
4 𝑠 ← closest sink to 1 in Genvy (𝑋 )
5 P ← shortest path from 1 to 𝑠 in Genvy (𝑋 )
6 𝑝 ← the predecessor of 𝑠 on P
7 𝑔← an item in 𝑋𝑠 with 𝑣𝑝 (𝑔) = 1

8
𝑋𝑠 ← 𝑋𝑠 \ 𝑔
𝑋𝑝 ← 𝑋𝑝 ∪ 𝑔

}
Transfer of 𝑔 from 𝑠 to 𝑝

9 Update 𝑆

10 end
11 return 𝑋 = (𝑋1, . . . , 𝑋𝑛)

With Lemma 5.1 at our disposal, we are ready to prove our main

theorem. We present Algorithm 2 for the EF1-restoration problem

and prove the following.

Theorem 5.2. For the EF1-Restoration problem on a multigraph
with additive binary valuations, Algorithm 2 terminates with an
EF1-orientation, and it transfers at most 𝐾 (𝑛 − 1) items, where 𝐾 ≔

max

𝑗∈[𝑛]

{
𝜀1→𝑗

}
in the given near-EF1 orientation 𝑋 .

Proof. Let 𝑋 be the given near-EF1 orientation. Since 𝐾 =

max

𝑗∈[𝑛]

{
𝜀1→𝑗

}
in 𝑋 , and each item is valued at most 1, we know

that at least 𝐾 transfers to agent 1 are necessary to restore EF1. We

prove that it is sufficient as well.

Using Lemma 5.1, we know that Genvy (𝑋 ) is acyclic. Note that
the transfer of an item from an agent 𝑖 who envies some 𝑗 in 𝑋 is

not valid since it creates EF1-envy from 𝑖 to 𝑗 . So, a valid transfer

can only be from a sink in Genvy (𝑋 ). However, agent 1 may not

positively value any item in the bundle of any sink. Therefore, in

Algorithm 2, we transfer an item from a sink to its predecessor in

Genvy (𝑋 ). Since the predecessor must positively value at least one

item from the sink’s bundle, the orientation property is maintained

along with the near-EF1 condition. We show that such transfers

are always valid. Furthermore, we show that agent 1 will receive

an item after at most 𝑛 − 1 (valid) transfers. Hence, after 𝐾 (𝑛 − 1)
transfers, we must reach an EF1 orientation.

Let 𝑠 ∈ [𝑛] be a sink that is reachable from agent 1 in Genvy (𝑋 ).
We note that 𝑠 ≠ 1 as otherwise, 𝑋 is already an EF1-orientation.
Furthermore, among all sinks reachable from 1 in Genvy (𝑋 ), let

𝑠 be a closest sink to 1. Let P be a shortest path from 1 to 𝑠 , say

of length 𝑑 . Let 𝑝 be the predecessor of 𝑠 on P. Since 𝑝 envies 𝑠 ,

there exists an item 𝑔 ∈ 𝑋𝑠 such that 𝑣𝑝 (𝑔) = 1. Moreover, since 𝑋

is an orientation, we know 𝑣𝑠 (𝑔) = 1 as well. Now, since we have

graphical valuations, every other agent 𝑗 ≠ 𝑝, 𝑠 must value 𝑔 at zero.

Hence, after this transfer, the resulting allocation (𝑌 , say) remains

an orientation.

We have𝑌𝑠 = 𝑋𝑠 \𝑔,𝑌𝑝 = 𝑋𝑝∪𝑔, and𝑌𝑗 = 𝑋 𝑗 for all 𝑗 ≠ 𝑝, 𝑠 . Since

𝑔 is valued only by 𝑝 and 𝑠 , no agent other than 𝑠 can have any EF1-
envy towards 𝑝 . Using Lemma 5.1, we know 𝑣𝑠 (𝑋𝑠 ) ≥ 𝑣𝑝 (𝑋𝑝 ) + 1.

Hence,

𝑣𝑠 (𝑌𝑠 ) = 𝑣𝑠 (𝑋𝑠 ) − 1 ≥ 𝑣𝑝 (𝑋𝑝 ) = 𝑣𝑝 (𝑌𝑝 \ 𝑔)

That is, 𝑠 has no EF1-envy towards 𝑝 in 𝑌 . Therefore, the transfer

of 𝑔 from 𝑠 to 𝑝 is a valid transfer.

If 𝑝 ≠ 1, 𝑝 does not envy anyone in 𝑌 . To see this, note that

𝑝 has no EF1-envy towards anyone, including 𝑠 in 𝑋 . So, for any

agent 𝑡 who 𝑝 envies in 𝑋 , we have 𝑣𝑝 (𝑋𝑝 ) ≥ 𝑣𝑝 (𝑋𝑡 ) − 1, and

𝑣𝑝 (𝑌𝑝 ) = 𝑣𝑝 (𝑋𝑝 ) + 1 ≥ 𝑣𝑝 (𝑋𝑡 ) = 𝑣𝑝 (𝑌𝑡 ). Therefore, 𝑝 becomes a

sink in Genvy (𝑌 ).
Observe that, in 𝑌 , 𝑝 is a sink which has a path of length 𝑑 −

1 from 1 in Genvy (𝑌 ). Thus, after each valid transfer of an item

from a closest sink to its predecessor, the distance between agent

1 to its closest sink in the envy graph decreases by 1. As soon as

one of the successors of agent 1 becomes a sink, 1 can receive an

item and become EF1-happy. Since the closest sink in Genvy (𝑋 )
can be at distance at most 𝑛 − 1, clearly 𝑛 − 1 transfers from a

closest sink to its predecessor suffice, to give one item to agent 1.

Since the recipient always values the transferred item positively,

the orientation property is maintained. Overall, 𝐾 items can be

transferred to agent 1 via 𝐾 (𝑛 − 1) valid transfers and this results

in an EF1 orientation. This completes our proof. □

5.1 Lower bound on the transfer complexity
In this section, we give an example to show that the bound on

transfers given in Theorem 5.2 is tight. In particular, we prove the

following result.

Theorem 5.3. For every 𝑛 ≥ 2, there exists a near-EF1 orientation
with𝑚 = 𝑛2+3𝑛−2

2
, such that 𝑛 − 1 valid transfers are required for

transferring one item to agent 1 that she positively values, so that
each intermediate allocation is a near-EF1 orientation. This is true
for additive binary valuations.

Proof. Consider a fair division instance with 𝑛 agents and a

near-EF1 orientation 𝑋 as follows. Let |𝑋1 | = 1 and |𝑋𝑖 | = 𝑖 + 1 for

all 𝑖 ≠ 1. For an agent 𝑖 ≠ 𝑛, we define her valuation 𝑣𝑖 as,

𝑣𝑖 (𝑔) =
{

1, if 𝑔 ∈ 𝑋𝑖 ∪ 𝑋𝑖+1
0, otherwise

Finally, for agent 𝑛, we define 𝑣𝑛 (𝑔) = 1 if and only if 𝑔 ∈ 𝑋𝑛 . It
can be seen that Genvy (𝑋 ) consists of a single envy path with 1 as

its source and 𝑛 as its sink. Also, 𝑋 is a near-EF1 orientation since

every agent other than 1 is EF1-happy. In particular, agent 1 has

EF1-envy towards agent 2 with 𝜀1→𝑗 = 1.

To have every intermediate allocation be an orientation, an agent

may receive any item only from her successor in the envy graph.
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Thus, agent 1 may receive an item only from agent 2, since she does

not value any item in any other agent’s bundle. However, agent

2 may not transfer an item to agent 1 unless she receives an item

from agent 3, and in general, any agent 𝑖 ≠ 𝑛 may not transfer an

item to her predecessor, as this creates EF1-envy from 𝑖 towards

her successor in Genvy (𝑋 ). Therefore, the only way to restore an

EF1 orientation is to transfer an item from agent 𝑛 to agent 𝑛 − 1,

followed by a transfer from agent 𝑛 − 1 to agent 𝑛 − 2 and so on,

and finally from agent 2 to agent 1. These are a total of 𝑛 − 1 valid

transfers, thereby completing the proof.

Below, we show this example with three agents and eight items.

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8

Agent 1 1 1 1 1 0 0 0 0

Agent 2 0 1 1 1 1 1 1 1

Agent 3 0 0 0 0 1 1 1 1
□

Theorem 5.2 and Theorem 5.3 together imply Theorem 3.6.

6 PSPACE-COMPLETENESS
In this section, we show that the EF1-Restoration problem may

not always have an affirmative answer, and in fact, it is PSPACE-
complete to decide so, even with monotone binary valuation func-

tions, and even when valid exchanges of single items are permitted,

in addition to valid transfers. Our reduction is inspired by Igarashi

et al. [24], in which they give a polynomial-time reduction from the

PSPACE-complete problem of Perfect Matching Reconfiguration
[9] to the problem of deciding if there exists an EF1 exchange path
between two fixed EF1 allocations, with general additive valuations.

Their problem involves deciding if there is a sequence of ex-

changes between two given EF1 allocations. We would like to prove

that deciding if any EF1 allocation (as opposed to some fixed EF1
allocation, as in [24]) is reachable from a given near-EF1 allocation
via transfers and exchanges (as opposed to reachability only via ex-

changes in [24]) is PSPACE-complete, provided we maintain a near-

EF1 allocation after each operation. This leads to an involved con-

struction of the valuation functions in our EF1-Restoration instance,
so as to ensure that every EF1 allocation that may be constructed

from our instance corresponds to exactly one perfect matching - the

target perfect matching in the Perfect Matching Reconfiguration
instance with which we begin.

Proof of Theorem 3.7. Containment in PSPACE:We first show

that the EF1-Restoration problem is in PSPACE. Recall that PSPACE
is the set of all decision problems that can be solved by a de-

terministic polynomial-space Turing machine. We can solve the

EF1-Restoration problem non-deterministically by simply guessing

a path from the given near-EF1 allocation to some EF1 allocation.
Since the total number of allocations is at most 𝑛𝑚 , if there exists

such a path, then there exists one with length at most 𝑛𝑚 . This

shows that the problem is in NPSPACE, the non-deterministic ana-

logue of PSPACE.2 It is known that NPSPACE = PSPACE [32],

which implies that the EF1-Restoration problem is in PSPACE. We

2NPSPACE is the set of all decision problems that can be solved by a non-deterministic

polynomial-space Turing machine.

refer the reader to a standard complexity theory text like [4] for

formal definitions of PSPACE, NPSPACE, etc.
PSPACE-hardness: We reduce the PSPACE-complete problem of

Perfect Matching Reconfiguration problem to EF1-Restoration.

Definition 6.1 (The Perfect Matching Reconfiguration problem).
For an undirected bipartite graph𝐺 = (𝐴⊔𝐵, 𝐸) with |𝐴| = |𝐵 | = 𝑛,
the problem is to decide reachability between two given perfect

matchings 𝑀0 and 𝑀∗. It involves deciding if 𝑀0 and 𝑀∗ can
be reached from each other via a sequence of perfect match-

ings 𝑀0, 𝑀1, 𝑀2, . . . , 𝑀𝑡 = 𝑀∗, such that for each 𝑘 ∈ [𝑡], there
exist edges 𝑒𝑘

1
, 𝑒𝑘

2
, 𝑒𝑘

3
, 𝑒𝑘

4
of 𝐺 such that 𝑀𝑘−1

\ 𝑀𝑘 = {𝑒𝑘
1
, 𝑒𝑘

3
},

𝑀𝑘 \𝑀𝑘−1
= {𝑒𝑘

2
, 𝑒𝑘

4
}, and 𝑒𝑘

1
, 𝑒𝑘

2
, 𝑒𝑘

3
, 𝑒𝑘

4
form a cycle.

The operation of going from𝑀𝑘−1
to𝑀𝑘 is called a flip, and we

say that𝑀𝑘−1
and𝑀𝑘 are adjacent to each other.

Construction of an instance of the EF1-Restoration problem: For
a given instance of Perfect Matching Reconfiguration as described

above, let us denote 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛}.
We write 𝑁 (𝑣) to denote the set of neighbors of vertex 𝑣 ∈ 𝐴∪𝐵 in

𝐺 . By possible renaming of vertices, let𝑀0 = {(𝑎𝑖 , 𝑏𝑖 )}𝑖∈[𝑛] and the
final matching𝑀∗ = {(𝑎𝑖 , 𝑏𝜋 (𝑖 ) )}𝑖∈[𝑛] , where 𝜋 is a permutation

on [𝑛].
Now, we construct an instance of the EF1-Restoration problem,

with agents having monotone binary valuations.

• Create a set N = {0, . . . , 𝑛 + 2} of 𝑛 + 3 agents and a set

G = {𝑎𝑖 , 𝑎𝑖 , 𝑏𝑖 | 𝑖 ∈ [𝑛]} ∪ {𝑟1, 𝑟2, 𝑟3, 𝑟4} of 3𝑛 + 4 items. That

is, for each 𝑖 ∈ [𝑛], we have three items 𝑎𝑖 , 𝑎𝑖 , and 𝑏𝑖 , with

four additional items 𝑟1, 𝑟2, 𝑟3, and 𝑟4.

• Create the initial near-EF1 allocation 𝑋 = {𝑋0, . . . , 𝑋𝑛+2},
that is given as an input, from the matching 𝑀0 of 𝐺 as

𝑋0 ≔ ∅, 𝑋𝑖 ≔ {𝑎𝑖 , 𝑎𝑖 , 𝑏𝑖 } for each 𝑖 ∈ [𝑛], 𝑋𝑛+1 ≔ {𝑟1, 𝑟2},
and 𝑋𝑛+2 ≔ {𝑟3, 𝑟4}.
• We define the valuations as follows:

𝑣0 (𝑆) ≔



1 if 𝑆 =
{
𝑎𝑖 , 𝑎𝑖 , 𝑏 𝑗

}
∀𝑖, 𝑗 ∈ [𝑛],

1 if 𝑆 ⊊
{
𝑎𝑖 , 𝑎𝑖 , 𝑏 𝑗

}
, with |𝑆 | = 2,

∀𝑖 ∈ [𝑛], ∀𝑗 ∈ [𝑛] \ 𝜋 (𝑖),
0 if 𝑆 =

{
𝑎𝑖/𝑎𝑖 , 𝑏𝜋 (𝑖 )

}
, ∀𝑖 ∈ [𝑛],

0 otherwise.

For each agent 𝑖 ∈ [𝑛], we have 𝑋𝑖 = {𝑎𝑖 , 𝑎𝑖 , 𝑏𝑖 } in 𝑋 . We

define the valuation for agent 𝑖 ∈ [𝑛] as

𝑣𝑖 (𝑆) ≔



1 if 𝑆 =
{
𝑎𝑖 , 𝑎𝑖 , 𝑏 𝑗

}
∀𝑖 ∈ [𝑛],∀𝑏 𝑗 ∈ 𝑁 (𝑎𝑖 ),

0 if 𝑆 ⊊
{
𝑎𝑖 , 𝑎𝑖 , 𝑏 𝑗

}
∀𝑖 ∈ [𝑛],∀𝑏 𝑗 ∈ 𝑁 (𝑎𝑖 ),

1 if 𝑆 = {𝑟3} or 𝑆 = {𝑟4} ,
0 if 𝑆 =

{
𝑎𝑖/𝑎𝑖 , 𝑏 𝑗 , 𝑐

}
,∀𝑐 ∈ {𝑏𝑘 , 𝑎𝑘 , 𝑎𝑘 , 𝑟1, 𝑟2} ,

∀𝑖, 𝑘 ∈ [𝑛],∀𝑏 𝑗 ∈ 𝑁 (𝑎𝑖 ),
0 otherwise.

The valuation of agent 𝑛 + 1, where 𝑋𝑛+1 = {𝑟1, 𝑟2} in 𝑋 , is
defined below.
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𝑣𝑛+1 (𝑆) ≔



1 if 𝑆 = {𝑟1, 𝑟2} ,
0 if 𝑆 = {𝑟1} or 𝑆 = {𝑟2} ,
0 if 𝑆 = {𝑟1/𝑟2, 𝑐} ,∀𝑐 ∈ {𝑟3, 𝑟4, 𝑏𝑖 } , ∀𝑖 ∈ [𝑛],
1 if 𝑆 ⊊

{
𝑎𝑖 , 𝑎𝑖 , 𝑏 𝑗

}
, with |𝑆 | = 2,

∀𝑖 ∈ [𝑛], ∀𝑗 ∈ [𝑛] \ 𝜋 (𝑖),
0 if 𝑆 =

{
𝑎𝑖/𝑎𝑖 , 𝑏𝜋 (𝑖 )

}
,

0 otherwise.

We define the valuation of agent 𝑛 + 2 as follows, who holds

the bundle 𝑋𝑛+2 = {𝑟3, 𝑟4} in 𝑋 .

𝑣𝑛+2 (𝑆) ≔



1 if 𝑆 = {𝑟3, 𝑟4} ,
0 if 𝑆 = {𝑟3} or 𝑆 = {𝑟4} ,
1 if 𝑆 = {𝑟1} or 𝑆 = {𝑟2} ,
0 if 𝑆 = {𝑟3/𝑟4, 𝑐} ,∀𝑐 ∈ {𝑎𝑖 , 𝑎𝑖 , 𝑏𝑖 } , ∀𝑖 ∈ [𝑛],
0 otherwise.

Note that the valuations are listed above explicitly for a polyno-

mial number of sets. We extend the valuations to other non-listed

subsets monotonically. Clearly, this instance of EF1-Restoration
can be constructed in polynomial time.

Properties of 𝑋 : Note that in the initial allocation 𝑋 , agent 0 has

EF1-envy towards all the agents 𝑖 ∈ [𝑛] for whom 𝑏𝑖 ≠ 𝑏𝜋 (𝑖 ) .
Agent 0 is the unhappy agent in all of the near-EF1 allocations in
our instance. Observe that the initial allocation 𝑋 is near-EF1, as
no agent apart from agent 0 has EF1-envy towards any other agent.

The goal is to perform a sequence of operations, i.e., valid transfers

or exchanges, and finally reach some EF1 allocation.
Note that there is only one EF1 allocation 𝑍 in our instance,

where 𝑍𝑖 = {𝑎𝑖 , 𝑎𝑖 , 𝑏𝜋 (𝑖 ) } for each 𝑖 ∈ [𝑛], 𝑍0 = ∅, 𝑍𝑛+1 =

𝑋𝑛+1, and 𝑍𝑛+2 = 𝑋𝑛+2. These bundles correspond to 𝑀∗ in the

Perfect Matching Reconfiguration problem.

The valuations forbid the following types of operations:

• No agent 𝑖 ∈ N can transfer an item from her bundle, because
she would then EF1-envy either agent 𝑛 + 2 (if 𝑖 ≠ 𝑛 + 2), or

agent 𝑛 + 1 (if 𝑖 = 𝑛 + 2).

• No agent 𝑖 ∈ [𝑛] can exchange an item with agent 𝑛 + 1. If
agent 𝑖 gives away 𝑎𝑖 or 𝑎𝑖 in exchange of 𝑟1 or 𝑟2, then she

EF1-envies agent 𝑛 + 2. Also, if 𝑏 𝑗 ∈ 𝑋𝑖 is exchanged with

agent 𝑛 + 1 for 𝑟1 or 𝑟2, then the value of agent 𝑛 + 1’s bundle

drops to 0 and she EF1-envies each agent 𝑗 ∈ [𝑛] who does

not possess 𝑏𝜋 ( 𝑗 ) .
• No agent 𝑖 ∈ [𝑛] can exchange the 𝑎𝑖 or 𝑎𝑖 in their bundle,
with any agent 𝑗 because agent 𝑖 would then EF1-envy agent
𝑛 + 2.

• No agent 𝑖 ∈ [𝑛] can exchange any pair of items with agent
𝑛 + 2, since agent 𝑛 + 2 would then EF1-envy agent 𝑛 + 1.

• No agent 𝑖 ∈ [𝑛] can exchange the 𝑏 𝑗 in their current bundle
with some other 𝑏 𝑗 ′ , if 𝑏 𝑗 ′ ∉ 𝑁 (𝑎𝑖 ), for agent 𝑖 would then

EF1-envy agent 𝑛 + 2.

• Agent 𝑛 + 1 can not exchange any pair of items with agent
𝑛+2, for agent 𝑛+1 would then EF1-envy each agent 𝑖 ∈ [𝑛]
who does not possess 𝑏𝜋 (𝑖 ) .

• Agent 0 cannot receive any item. This is because agent 0 does

not value the items 𝑟1, 𝑟2, 𝑟3, 𝑟4, and agent 𝑖 ∈ [𝑛] cannot
transfer an item as stated above.

Therefore, the only valid operation is an exchange of the 𝑏-type
items between a pair of agents 𝑖, 𝑗 . More precisely, let the near-

EF1 allocation at some point be 𝑌 , such that 𝑌𝑖 = {𝑎𝑖 , 𝑎𝑖 , 𝑏𝑘 } and
𝑌𝑗 = {𝑎 𝑗 , 𝑎 𝑗 , 𝑏ℓ }. The only valid operation is an exchange of 𝑏𝑘 and

𝑏ℓ between agents 𝑖, 𝑗 .

Suppose, at some point, we have an allocation 𝑌 where 𝑌𝑖 =

{𝑎𝑖 , 𝑎𝑖 , 𝑏𝑘 } and 𝑌𝑗 =
{
𝑎 𝑗 , 𝑎 𝑗 , 𝑏ℓ

}
for some 𝑖, 𝑗 ∈ [𝑛]. This repre-

sents (a part of) a perfect matching 𝑀′ in the graph 𝐺 , where

(𝑎𝑖 , 𝑏𝑘 ), (𝑎 𝑗 , 𝑏ℓ ) ∈ 𝑀′. An exchange of the items 𝑏𝑘 and 𝑏ℓ between

agents 𝑖 and 𝑗 corresponds to a flip of the perfect matching𝑀′ so
that the edges (𝑎𝑖 , 𝑏𝑘 ), (𝑎 𝑗 , 𝑏ℓ ) are replaced by (𝑎𝑖 , 𝑏ℓ ) and (𝑎 𝑗 , 𝑏𝑘 )
in the new perfect matching𝑀′′. Therefore, every valid operation

in our instance corresponds to a flip in the perfect matching in the

given instance. Moreover, for any intermediate near-EF1 allocation
𝑌 , we may simply obtain the corresponding perfect matching as

follows - vertex 𝑎𝑖 is matched to vertex 𝑏 𝑗 if 𝑏 𝑗 ∈ 𝑌𝑖 for 𝑖 ∈ [𝑛].
Over the course of these valid operations, the unhappy agent

0 will receive no item, and continue to hold an empty bundle.

Therefore, the only way to make agent 0 lose their EF1-envy is

to reach an allocation 𝑋 ∗ in which each agent 𝑖 ∈ [𝑛] holds the
bundle 𝑋 ∗

𝑖
=

{
𝑎𝑖 , 𝑎𝑖 , 𝑏𝜋 (𝑖 )

}
. Observe that such an allocation 𝑋 ∗

corresponds to the perfect matching where there exists an edge

between vertices 𝑎𝑖 and 𝑏𝜋 (𝑖 ) for each 𝑖 ∈ [𝑛]. This is precisely the

target perfect matching𝑀∗.
Thus, there is a sequence of adjacent perfect matchings from𝑀0

to𝑀∗ in𝐺 if and only if there is a sequence of valid operations that

transforms 𝑋 to the unique EF1 allocation 𝑍 . This completes the

reduction. □

7 FUTURE DIRECTIONS
The meta-question raised by this work is the following: what is/are

the “least complicated valid operation(s)” that one has to permit to

reach a fair allocation by never breaking the near-fair guarantees?
This leads to several natural open directions that one might explore,

and we mention a few.

(1) Tractability of EF1-Restoration for additive binary valua-

tions, and EF1-Restoration in the case of orientations under

additive/monotone binary valuations - can we remove our

additional requirement of the valuations being graphical?

(2) Analogs of EF1-Restoration for other notions of fairness,

and valuation classes - EF1 for mixed manna, EFX for identi-

cal/ordered valuations, PROP1, etc.
(3) A variant of the problem in which the valuations change as

a part of the changing environment.
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