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ABSTRACT
The success of deep reinforcement learning (DRL) relies on the

availability and quality of training data, often requiring extensive

interactions with specific environments. In many real-world scenar-

ios, where data collection is costly and risky, offline reinforcement

learning (RL) offers a solution by utilizing data collected by do-

main experts and searching for a batch-constrained optimal policy.

This approach is further augmented by incorporating external data

sources, expanding the range and diversity of data collection possi-

bilities. However, existing offline RL methods often struggle with

challenges posed by non-matching data from these external sources.

In this work, we specifically address the problem of source-target

domain mismatch in scenarios involving mixed datasets, character-

ized by a predominance of source data generated from random or

suboptimal policies and a limited amount of target data generated

from higher-quality policies. To tackle this problem, we introduce

Transition Scoring (TS), a novel method that assigns scores to tran-

sitions based on their similarity to the target domain, and propose

Curriculum Learning-Based Trajectory Valuation (CLTV), which ef-

fectively leverages these transition scores to identify and prioritize

high-quality trajectories through a curriculum learning approach.

Our extensive experiments across various offline RL methods and

MuJoCo environments, complemented by rigorous theoretical anal-

ysis, demonstrate that CLTV enhances the overall performance and

transferability of policies learned by offline RL algorithms.
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1 INTRODUCTION
Offline Reinforcement Learning (RL) is a class of RL methods that

requires the agent to learn from a dataset of pre-collected experi-

ences without further environment interaction [25]. This learning

paradigm decouples exploration from exploitation, rendering it

particularly advantageous in scenarios where the process of data

collection is costly, time-consuming, or risky [10, 18].

By utilizing pre-collected datasets, offline RL can bypass the

technical challenges that are associated with online data collection,

and has potential benefits for a number of real environments, such

as human-robot collaboration and autonomous systems [2, 39].

However, this task is challenging, as offline RL methods suffer

from the extrapolation error [10, 23]. This issue arises when offline

deep RL methods are trained under one distribution but evaluated

on a different one. More specifically, value functions implemented

by a function approximator have a tendency to predict unrealistic

values for unseen state-action pairs for standard off-policy deep RL

algorithms such as BCQ [10], TD3+BC [9], CQL [24] and IQL [22].

This highlights the necessity for approaches that restrict the action

space, forcing the agent to learn a behavior that is closely aligned

with on-policy with respect to a subset of the source data [10].

In recent years, there have been a number of efforts within the

paradigm of supervised learning for overcoming the source-target
domain mismatch problem valuating data, including data Shap-
ley [12] and data valuation using reinforcement learning (DVRL) [46].
Such methods have shown promising results on several application

scenarios such as robust learning and domain adaptation [46].

Despite the success of such methods in the supervised learning

setting, adapting them to the offline reinforcement learning (RL)

setting presents several challenges. One major issue is the non-i.i.d.

nature of the data. In supervised learning, data samples are typically

assumed to be independent and identically distributed (i.i.d.), but

this assumption is violated in offline RL since the data is generated

by an agent interacting with an environment [26]. The presence of

correlated and non-i.i.d. data samples complicates the valuation of

these transitions and hinders generalization to the target domain.

Additionally, the data distribution in offline RL often changes due to

the agent’s evolving policy or the environment’s dynamics, leading

to distributional shifts that aggravate the valuation of transitions,

as their value may fluctuate with changing dynamics [23, 24].

Furthermore, unlike supervised learning, where the objective is

to optimize a loss function given input-output pairs, the objective
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in RL is to maximize cumulative rewards by learning a policy that

maps states to actions [38]. Therefore, designing a reward function

that accounts for distributional similarities between transition items

from different domains is essential for effective policy learning.

These challenges highlight the complexities involved in adapting

supervised learning methods to the offline RL setting and under-

score the need for novel approaches to handle these challenges.

However, a recent work [3] introduced CUORL, a curriculum

learning-based approach aimed at enhancing the performance of

offline RL methods by strategically selecting valuable transition

items. The limitation of CUORL is that only the current policy is

considered to valuate trajectories, which lacks consideration of the

information in the target dataset, making it challenging for the

agent to adapt to different environments.

Another recent work [15] introduced Harness, which addresses

a major challenge in offline RL involving mixed datasets, where the

prevalence of low-return trajectories can limit the effectiveness of

advanced algorithms, preventing them from fully exploiting high-

return trajectories. Harness tackles this problem by re-weighting

the dataset sampling process to create an artificial dataset that re-

sults in a behavior policy with a higher overall return, enabling

RL algorithms to better utilize high-performing trajectories. By

optimizing the sampling strategy, Harness enhances the perfor-

mance of offline RL algorithms in environments characterized by

mixed-return datasets. However, by re-weighting the dataset sam-

pling process, Harness introduces a bias in favor of high-return

trajectories, potentially neglecting important and high-quality tran-

sition items from low-return trajectories that could enhance the

robustness of the policy.

In this work, we introduce a transition scoring (TS) method,

which assigns a score to each transition in a trajectory, and a cur-

riculum learning-based trajectory valuation method (CLTV) that

operates based on the scores computed by TS to enable the agent

to identify and select the most promising trajectories. Unlike exist-

ing methods, our approach leverages high-quality transitions from

different trajectories generated by various policies.

Our results, using existing methods (CUORL and Harness) and

two base offline RL algorithms (CQL and IQL) in four MuJoCo

environments, show that our CLTV method improves the perfor-

mance and transferability of offline RL policies. We also provide a

theoretical analysis to demonstrate the efficacy of our approach.

2 BACKGROUND
Reinforcement Learning. The RL problem is typically modeled by

aMarkov decision process (MDP), formulated as a tuple (X,U, 𝑝, 𝑟, 𝛾 ),

with a state space X, an action spaceU, and transition dynamics 𝑝 .

At each discrete time step, the agent performs an action 𝑢 ∈ U
in a state 𝑥 ∈ X, transitions to a new state 𝑥 ′ ∈ X based on the tran-

sition dynamics 𝑝(𝑥 ′ | 𝑥,𝑢), and receives a reward 𝑟 (𝑥,𝑢, 𝑥 ′). The
agent’s goal is to maximize the expectation of the sum of discounted

rewards, also known as the return 𝑅𝑡 =

∑∞
𝑖=𝑡+1

𝛾𝑖𝑟 (𝑥𝑖 , 𝑢𝑖 , 𝑥𝑖+1),

which weights future rewards with respect to the discount fac-

tor 𝛾 ∈ [0, 1), determining the effective horizon. The agent makes

decisions based on the policy 𝜋 : X → P(U), which maps a given

state 𝑥 to a probability distribution over the action spaceU. For a

given policy 𝜋 , the value function is defined as the expected return

of an agent starting from state 𝑥 , performing action𝑢, and following

the policy 𝑄𝜋
(𝑥,𝑢) = E𝜋 [𝑅𝑡 | 𝑥,𝑢]. The state-action value function

can be computed through the Bellman equation for the Q function:

𝑄𝜋
(𝑥,𝑢) = E𝑠′∼𝑝

[
𝑟
(
𝑥,𝑢, 𝑥 ′

)
+ 𝛾E𝑢′∼𝜋𝑄𝜋

(𝑥 ′, 𝑢′)
]
. (1)

Given 𝑄𝜋
, the optimal policy 𝜋∗ = max𝑢 𝑄

∗
(𝑥,𝑢), can be obtained

by greedy selection over the optimal value function 𝑄∗(𝑥,𝑢) =

max𝜋 𝑄
𝜋

(𝑥,𝑢). For environments confronting agents with the curse

of dimensionality, the value can be estimated with a differentiable

function approximator 𝑄𝜃 (𝑥,𝑢), with parameters 𝜃 . Offline Re-

inforcement Learning. Standard off-policy deep RL algorithms

such as deep Q-learning (DQN) [30] and deep deterministic policy

gradient (DDPG) [27] are applicable in batch RL as they are based

on more fundamental batch RL algorithms [8].

However, they suffer from a phenomenon, known as extrapola-
tion error, which occurs when there is a mismatch between the given

fixed batch of data and true state-action visitation of the current

policy [10]. This is problematic as incorrect values of state-action

pairs, not contained in the batch, are propagated through temporal

difference updates of most off-policy algorithms [37], resulting in

poor performance of the model [40].

In offline RL, the goal is to learn a policy based on a previously

collected dataset of transition items, optimizing decision-making

without any additional interaction with the environment.

3 PROBLEM DESCRIPTION
We assume the availability of a source dataset DS = {(𝑥S

𝑖
, 𝑢S

𝑖
, 𝑥 ′

𝑖
S,

𝑟S
𝑖

)}𝑁
𝑖=1
∼ PS and a target datasetDT = {(𝑥T

𝑖
, 𝑢T

𝑖
, 𝑥 ′

𝑖
T , 𝑟 T

𝑖
)}𝑀
𝑖=1
∼ PT , where

𝑥 ∈ R𝑚 is a state; 𝑢 ∈ R𝑛
is the action that the agent performs at

the state 𝑥 ; 𝑟 ∈ R is the reward that the agent gets by performing

the action 𝑢 in the state 𝑥 ; and 𝑥 ′ ∈ R𝑚 is the state that the agent

transitions to (i.e., next state). We also assume that the target dataset

DT is much smaller than the the source dataset DS , therefore
𝑁 ≫ 𝑀 . Furthermore, the source distribution PS can be different

from the target distribution PT (i.e. PS ̸= PT ), confronting the

agent with the source-target domain mismatch problem.

Moreover, while intrinsic reward functions may be the same

across source and target domains (i.e., 𝑟S = 𝑟 T ), modifications to

the reward functions in either domain can lead to effective differ-

ences (i.e., 𝑟S ̸= 𝑟 T ). We assume that the reward functions can

potentially be different across the domains. These potential differ-

ences in reward functions could exacerbate the domain mismatch

and introduce additional challenges for effective knowledge trans-

fer. Each trajectory 𝜏S
𝑘

inDS is defined as a sequence of transitions

𝜏S
𝑘

= {(𝑥𝑘,S
𝑖

, 𝑢
𝑘,S
𝑖

, 𝑥 ′
𝑖
𝑘,S, 𝑟𝑘,S

𝑖
)}𝐿
S
𝑘

𝑖=1
, where 𝐿S

𝑘
denotes the length of 𝑘-th

trajectory. The degree of similarity between these transitions and

those in the target dataset DT varies.

The goal is to identify high-quality trajectories by quantifying

the similarity of each trajectory 𝜏S
𝑘

from the source dataset to the

target dataset DT , aggregating the similarities of the individual

transitions within 𝜏S
𝑘

to those in DT , and selecting trajectories

most relevant for effective knowledge transfer.
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4 RELATEDWORK
Offline RL. The RL literature contains numerous techniques for

dealing with the source-target domain mismatch problem. DARLA

[14], a zero-shot transfer learning method that learns disentan-

gled representations that are robust against domain shifts; and

SAFER [35], which accelerates policy learning on complex control

tasks by considering safety constraints. Meanwhile, the literature

on off-policy RL includes principled experience replay memory

sampling techniques. Prioritized Experience Replay (PER) [33] (e.g.,

[16, 17, 19]) attempts to sample transitions that contribute the most

toward learning. However, most of the work to date on offline RL

is focused on preventing the training policy from being too disjoint

with the behavior policy [10, 20, 24].

Batch-Constrained deep Q-learning (BCQ) [10] is an offline RL

method for continuous control, restricting the action space, thereby

eliminating actions that are unlikely to be selected by the behavior

policy and therefore rarely observed in the batch.

Conservative Q-Learning (CQL) [24] prevents the training policy

from overestimating the Q-values by utilizing a penalized empirical

RL objective. More precisely, CQL optimizes the value function

not only to minimize the temporal difference error based on the

interactions seen in the dataset but also minimizes the value of

actions that the currently trained policy takes, while at the same

time maximizing the value of actions taken by the behavior policy

during data generation.

To increase the generalization capability of offline RL methods,

[22] propose in-sample Q-learning (IQL), approximating the policy

improvement step by considering the state value function as a

random variable with some randomness determined by the action,

and then taking a state-conditional expectile of this random variable

to estimate the value of the best actions in that state. [15] introduce

Harness, which addresses a challenge in offline RL involving mixed

datasets. The prevalence of low-return trajectories in these datasets

can limit the effectiveness of algorithms, preventing them from fully

exploiting high-return trajectories. Harness tackles this problem

by re-weighting the dataset sampling process to create an artificial

dataset that results in a behavior policy with a higher return. This

enables RL algorithms to better utilize high-performing trajectories.

Curriculum Learning in RL. In reinforcement learning, curricu-

lum learning (CL) sequences tasks in a strategic manner, enhancing

agent performance and accelerating training, especially for complex

challenges [28, 31, 32, 43]. CL has shown promising performance

in real-world applications [5, 29, 45], helping agents solve complex

problems and transfer knowledge across different tasks [21, 31].

Among the works on curriculum learning and transition valua-

tion in RL, themost relevant to ours is CUORL [3]. CUORL enhances

offline RL methods by training agents on pertinent trajectories but

struggles with non-deterministic policy properties. Additionally,

CUORL only considers the current policy to evaluate trajectories,

neglecting information from the target dataset, which hinders the

agent’s adaptability to different environments.

Our method addresses these issues by using KL divergence to

capture non-deterministic properties and by identifying and select-

ing high-quality transition items from different trajectories.

5 METHODS
Our proposed method includes two key components: Transition

Scoring (TS) and Curriculum Learning-Based Trajectory Valuation

(CLTV). TS assigns scores to transitions based on their relevance

to the target domain, helping to identify high-quality transitions.

CLTV leverages TS scores to prioritize high-quality trajectories

through curriculum learning, guiding the agent’s development in a

structured manner. These components are discussed below.

Transition Scoring (TS). Inspired by DVRL [46], we adopt the

REINFORCE algorithm [44] and use a DNN 𝑣𝜙 as the transition

scoring method. The goal is to find the parameters 𝜙∗ of the DNN
so that the network returns the optimal probability distribution

over the set of all possible transitions.

The TS model 𝑣𝜙 : X ×U × X′ → [0, 1] is optimized to output

scores corresponding to the similarity of transitions in the source

dataset to the target domain. We formulate the corresponding opti-

mization problem as:

max𝜙 𝐽

(
𝜋𝜙

)
= E(𝑥S ,𝑢S ,𝑥 ′S)∼𝑃S

[
𝑟𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)]
, (2)

where

𝑟𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)
= 2 ·

𝑟 ′
𝜙

(
𝑥S ,𝑢S ,𝑥 ′S ,∆𝜃

)
−𝑟 ′

min

𝑟 ′
max

−𝑟 ′
min

− 1. (3)

Equation 3 represents the normalized reward, keeping the re-

wards in the range [−1, 1], where 𝑟 ′
𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)
is the unnormal-

ized reward and defined as follows:

𝑟 ′
𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)
= 𝛿 ·

∑︁
(𝑥S ,𝑢S ,𝑥 ′S)∈B

𝑣𝜙

(
𝑥S, 𝑢S, 𝑥 ′S

)
· ∆𝜃

(
𝑥S, 𝑢S, 𝑥 ′S

)
+ (1 − 𝛿) ·

∑︁
(𝑥S ,𝑢S ,𝑥 ′S)∈B

𝑣𝜙

(
𝑥S, 𝑢S, 𝑥 ′S

)
.

(4)

In Equation 4, the term
∑
(𝑥S ,𝑢S ,𝑥 ′S)∈B 𝑣𝜙

(
𝑥S, 𝑢S, 𝑥 ′S

)
regularizes

the unnormalized reward and prevents assigning low scores to the

majority of transitions. ∆𝜃 represents the dynamics factor, quan-

tified by the classifiers 𝑞𝑥𝑢 = 𝑝𝜃𝑥𝑢 (𝑦 | 𝑥,𝑢) and 𝑞𝑥𝑢𝑥 ′ = 𝑝𝜃𝑥𝑢𝑥 ′ (𝑦 |
𝑥,𝑢, 𝑥 ′), where 𝑦 ∈ {source, target}.

The optimization problem involves adjusting 𝜙 to maximize the

expected reward by aligning transition dynamics with the target

domain. The classifiers, parameterized by 𝜃 , remain fixed during

the optimization of 𝜙 . These classifiers are implemented as fully

connected multi-layer neural networks, similar to those used in

DARC [6]. They measure the likelihood of transitions belonging

to either the source or target domains. By applying Bayes’ rule,

the classifier probabilities are related to transition probabilities,

enabling the expression of posterior probabilities in terms of likeli-

hoods and prior probabilities.

The classifier 𝑞𝑥𝑢 is defined as follows:

𝑞𝑥𝑢 = 𝑝𝜃𝑥𝑢

(
𝑦 | 𝑥S, 𝑢S

)
=

𝑝

(
𝑥S ,𝑢S |𝑦

)
𝑝(𝑦)

𝑝 (𝑥S ,𝑢S) . (5)

Similarly, the classifier 𝑞𝑥𝑢𝑥 ′ is defined as follows:

𝑞𝑥𝑢𝑥 ′ = 𝑝𝜃𝑥𝑢𝑥 ′

(
𝑦 | 𝑥S, 𝑢S, 𝑥 ′S

)
=

𝑝

(
𝑥S ,𝑢S ,𝑥 ′S |𝑦

)
𝑝(𝑦)

𝑝 (𝑥S ,𝑢S ,𝑥 ′S) . (6)
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We train the classifiers 𝑞𝑥𝑢𝑥 ′ and 𝑞𝑥𝑢 to minimize the standard

cross-entropy loss. The loss function for the classifier 𝑞𝑥𝑢 is pre-

sented in Equation 7.

L𝑥𝑢 (𝜃𝑥𝑢 ) = − EDtarget

[
log𝑞𝜃𝑥𝑢

(
target | 𝑥S, 𝑢S

)]
− EDsource

[
log𝑞𝜃𝑥𝑢

(
source | 𝑥S, 𝑢S

)]
.

(7)

Similarly, the loss function for the classifier 𝑞𝑥𝑢𝑥 ′ is presented

in Equation 8.

L𝑥𝑢𝑥 ′ (𝜃𝑥𝑢𝑥 ′ ) = − EDtarget

[
log𝑞𝜃𝑥𝑢𝑥 ′

(
target | 𝑥S, 𝑢S, 𝑥 ′S

)]
− EDsource

[
log𝑞𝜃𝑥𝑢𝑥 ′

(
source | 𝑥S, 𝑢S, 𝑥 ′S

)] (8)

The dynamics factor ∆ (as defined in [6]) measures the discrep-

ancy between the distribution of the source and target datasets and

is defined as follows:

∆𝜃

(
𝑥S, 𝑢S, 𝑥 ′S

)
= log𝑞𝜃𝑥𝑢𝑥 ′

(
target | 𝑥S, 𝑢S, 𝑥 ′S

)
− log𝑞𝜃𝑥𝑢

(
target | 𝑥S, 𝑢S

)
− log𝑞𝜃𝑥𝑢𝑥 ′

(
source | 𝑥S, 𝑢S, 𝑥 ′S

)
+ log𝑞𝜃𝑥𝑢

(
source | 𝑥S, 𝑢S

)
.

(9)

Optimizing ∆ enables the identification of transitions with lower

distribution discrepancies.𝑤 is the sum of selection probabilities,

reflecting the likelihood of each transition to be selected. This

factor prevents the TS model from selecting only a limited number

of transitions. The parameters 𝛿 and 1−𝛿 serve as balancing factors

for 𝑣𝜙∆ and 𝑣𝜙 , respectively, in the calculation of 𝑟 ′
𝜙
.

For training the TS, all transition items in the source buffer

DS are divided into batches. Each batch 𝐷S
𝐵

=

(
𝑡 𝑗
)𝐵𝑠

𝑗=1
∼ DS is

provided as input to the TS, with shared parameters across the batch.

Let 𝑤 𝑗 = 𝑣𝜙

(
𝑥S
𝑗
, 𝑢S

𝑗
, 𝑥 ′S

𝑗

)
denote the probability that transition

item 𝑗 from the source buffer is selected for training the offline RL

model. The sampling step 𝑥 𝑗 ∼ Bernoulli(𝑤 𝑗 ) is then used to choose

transition items based on their importance scores𝑤 𝑗 , following the

approach in [46].

This method prioritizes high-quality transitions by sampling

them with higher probability, effectively focusing on those that

contribute most to the performance of the RL agent.

Our adopted version of the REINFORCE algorithm has the fol-

lowing objective function for the policy 𝜋𝜙 :

𝐽

(
𝜋𝜙

)
= E

(𝑥S ,𝑢S ,𝑥 ′S )∼𝑃S
𝑤∼𝜋𝜙 (DS ,·)

[
𝑟𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)]
=

∫
𝑃S

(
(𝑥S, 𝑢S, 𝑥 ′S )

) ∑︁
𝑤∈[0,1]

𝑁

𝜋𝜙 (DS,𝑤 )

·
[
𝑟𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)]
𝑑

(
(𝑥S, 𝑢S, 𝑥 ′S )

)
.

(10)

In the above equation, 𝜋𝜙 (DS,𝑤 ) represents the probability of

the selection probability vector 𝑤 occurring. The policy uses the

scores output by the TS. This contrasts with DVRL [46], which em-

ploys a binary selection vector s =

(
𝑠1, . . . , 𝑠𝐵𝑠

)
, where 𝑠𝐵𝑠

denotes

the batch size, 𝑠𝑖 ∈ {0, 1}, and 𝑃 (𝑠𝑖 = 1) = 𝑤𝑖 . Thus, in our training,

the TS does not control exploration, but instead provides scores for

the transition items and is tuned accordingly.

We calculate the gradient of the above objective function (Equa-

tion 10) as follows:

∇𝜙 𝐽
(
𝜋𝜙

)
= E

(𝑥S ,𝑢S ,𝑥 ′S )∼𝑃S
𝑤∼𝜋𝜙 (DS ,·)

[
𝑟𝜙

(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

)
· ∇𝜙 log𝜋𝜙 (DS,𝑤 )

+ ∇𝜙𝑟𝜙
(
𝑥S, 𝑢S, 𝑥 ′S,∆𝜃

) ]
.

(11)

Then, the parameters 𝜙 of 𝐽

(
𝜋𝜙

)
are updated using the calcu-

lated gradient ∇𝜙 𝐽
(
𝜋𝜙

)
as follows:

𝜙 ← 𝜙 + 𝑘

(
𝑟𝜙 · ∇𝜙 log𝜋𝜙 (𝐷S

𝐵
, (𝑥1, . . . , 𝑥𝐵S )) + ∇𝜙𝑟𝜙

)
, (12)

where 𝑘 is the learning rate and 𝑟𝜙 denotes the normalized reward.

The complete derivation of Equation 11 is provided in Appendix

A. Our transition scoring approach is presented in Algorithm 1.

Algorithm 1 Transition Scoring (TS)

1: Input: Source dataset DS , target dataset DT ;
2: classifiers 𝑞𝑥𝑢 and 𝑞𝑥𝑢𝑥 ′ ;

3: ratio of transition similarity to reward 𝛿 ;

4: learning rate 𝑘

5: Output: TS model 𝑣𝜙
6: Train TS 𝑣𝜙 (𝑡 𝑗 ) with transition item 𝑡 𝑗 = (𝑥 𝑗 , 𝑢 𝑗 , 𝑥 𝑗

′
)

7: while not converged do
8: Sample a mini-batch: 𝐷S

𝐵
= (𝑡 𝑗 )

𝐵S
𝑗=1
∼ DS

9: Initialize weighted sumV𝜙 = 0

10: Initialize selection probability sumW𝜙 = 0

11: for 𝑗 = 1, . . . , 𝐵S do
12: 𝑤 𝑗 = 𝑣𝜙 (𝑡 𝑗 )

13: 𝑥 𝑗 ∼ Bernoulli(𝑤 𝑗 )

14: ∆𝑗 = log

𝑞𝑥𝑢𝑥 ′ (target |𝑥 𝑗 ,𝑢 𝑗 ,𝑥 𝑗
′
)

𝑞𝑥𝑢𝑥 ′ (source |𝑥 𝑗 ,𝑢 𝑗 ,𝑥 𝑗
′
)
− log

𝑞𝑥𝑢 (target |𝑥 𝑗 ,𝑢 𝑗 )

𝑞𝑥𝑢 (source |𝑥 𝑗 ,𝑢 𝑗 )

15: V𝜙 ←V𝜙 +𝑤 𝑗 · ∆𝑗

16: W𝜙 ←W𝜙 +𝑤 𝑗

17: 𝑟 ′
𝜙

= 𝛿 · V𝜙 + (1 − 𝛿) · W𝜙

18: 𝑟𝜙 = 2 ·
𝑟 ′
𝜙
−𝑟 ′

min

𝑟 ′
max
−𝑟 ′

min

− 1

19: 𝜙 ← 𝜙 + 𝑘 · 𝑟𝜙 · ∇𝜙 log𝜋𝜙 (𝐷S
𝐵
, (𝑥1, . . . , 𝑥𝐵S ))

Curriculum Learning-based Trajectory Valuation (CLTV).
Building upon the transition scoring (TS) mechanism, CLTV focuses

on enhancing policy learning by prioritizing valuable trajectories.

CLTV employs curriculum learning to present the agent with the

most valuable trajectories at different stages of learning.

CLTV uses two distinct sets of actor-critic networks: one for

the source domain

(
𝑄S𝜔1

, 𝜋S
𝜃1

)
and another for the target domain(

𝑄T𝜔2

, 𝜋T
𝜃2

)
. By maintaining separate networks, CLTV tailors the

learning process to the unique dynamics and reward structures of

each domain, facilitating effective policy transfer.
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CLTV integrates the TS method by training classifiers 𝑞𝑥𝑢𝑥 ′ and

𝑞𝑥𝑢 to adjust the rewards, helping to address the distributional shift

between the source and target domains in offline RL.

Each trajectory 𝜏S
𝑘

in the source dataset DS is defined as a

sequence of transitions 𝜏S
𝑘

=

(
𝑥
𝑘,S
𝑖

, 𝑢
𝑘,S
𝑖

, 𝑥
′,𝑘,S
𝑖

, 𝑟
𝑘,S
𝑖

)𝐿S
𝑘

𝑖=1

, where

𝐿S
𝑘

denotes the length of the 𝑘-th trajectory.

The degree of similarity between these transitions in DS and

those in the target dataset DT varies. When the source data does

not perfectly align with the target environment, relying solely on

the original rewards can cause the agent to learn policies that are

suboptimal or misaligned with the target setting.

Moreover, not all transitionswithin a trajectory contribute equally

to learning; only a subset of transitions contributes to improving the

policy. By assigning a relevance score to each transition based on its

similarity to the target domain dynamics, we effectively re-weight

the rewards associated with these transitions.

This approach increases the influence of transitions that are

more representative of the target environment, guiding the agent

to focus on the most valuable experiences. As a result, the agent

learns policies that are better aligned with the target domain, en-

hancing overall performance. This method is especially beneficial

in scenarios with sparse or noisy reward signals, as it helps the

model identify and leverage valuable experiences.

During the curriculum learning process, the value of the trajec-

tory 𝑖 in the source dataset is computed as follows:

𝑣𝑖 = exp

(
−𝐷KL(𝜋T

𝜃2

(𝑢𝑡 |𝑥𝑡 ) ∥ 𝜋S
𝜃1

(𝑢𝑡 |𝑥𝑡 ))

)
·∑𝑇

𝑡=1
𝛾𝑡−1𝑟𝑡 . (13)

This valuation formula uses the KL divergence between the tar-

get policy 𝜋T
𝜃2

and the policy we need to train 𝜋S
𝜃1

, along with dis-

counted rewards, to valuate trajectories. It includes two main com-

ponents: the similarity component exp

(
−𝐷KL(𝜋T

𝜃2

(𝑢𝑡 |𝑥𝑡 ) ∥ 𝜋S
𝜃1

(𝑢𝑡 |𝑥𝑡 ))

)
,

which measures the similarity between policies, and the return com-
ponent ∑𝑇

𝑡=1
𝛾𝑡−1𝑟𝑡 , representing the discounted sum of rewards.

This approach effectively guides the agent toward states with

higher expected value by considering both policy similarity and

trajectory returns, ensuring that the trajectories closely resemble

those in the target dataset while leveraging information from both

the source and target domains. After obtaining the trajectory values,

we sort all trajectories in decreasing order based on these values.

We then sample the top𝑚 trajectories, where𝑚 is a hyperpa-

rameter that can be adjusted according to the quality of the dataset.

Since these selected trajectories are the most valuable ones in terms

of similarity to the target dataset, we merge them with the target

dataset and use the combined data to update the critic and actor

networks. Our CLTV approach is detailed in Algorithm 2.

To show the effectiveness of our approach, we first present The-

orem 1, which provides a formal justification for TS by establishing

bounds on the policy’s performance in the target domain, and then

present Theorem 2, which demonstrates how CLTV ensures value

alignment with the target domain through policy improvement.

Both theorems are discussed in detail in Section 5.1.

Algorithm 2 Curriculum Learning-Based Trajectory Valuation

1: Input: Critic networks 𝑄S𝜔1

, 𝑄T𝜔2

, actor networks 𝜋S
𝜃1

, 𝜋T
𝜃2

;

2: offline RL algorithm A;

3: source dataset DS , target dataset DT ;
4: epoch size 𝐸;

5: training steps 𝑆 ;

6: the ratio of transition score to transition reward 𝜆

7: Output: Critic network 𝑄S𝜔1

, actor network 𝜋S
𝜃1

8: Initialization:
9: Train classifiers 𝑞𝑥𝑢 and 𝑞𝑥𝑢𝑥 ′

10: Train TS model 𝑣𝜙 (𝑡 𝑗 )

// Modify rewards in the source dataset

11: for 𝑗 = 1, . . . , |DS | do
12: 𝑤 𝑗 = 𝑣𝜙 (𝑡 𝑗 )

13: 𝑟 𝑗 ← (1 − 𝜆) · 𝑟 𝑗 + 𝜆 ·𝑤 𝑗

// Curriculum learning loop

14: for 𝑒 = 1 to 𝐸 do
15: D ← DS

// Compute values for each trajectory in the source dataset

16: for each trajectory 𝜏𝑖 = {(𝑥𝑖
𝑗
, 𝑢𝑖

𝑗
, 𝑟 𝑖

𝑗
)}𝑇

𝑗=1
in D do

17: 𝑣𝑖 = exp

(
−𝐷KL(𝜋T

𝜃2

(𝑢𝑡 |𝑥𝑡 ) ∥ 𝜋S
𝜃1

(𝑢𝑡 |𝑥𝑡 ))

)
·∑𝑇

𝑡=1
𝛾𝑡−1𝑟𝑡

// Sort trajectories by 𝑣𝑖 in decreasing order

18: for 𝑠 = 1 to 𝑆 do
// Sample𝑚 trajectories {𝜏𝑖 }𝑚𝑖=1

from D
19: D𝑡𝑟𝑎𝑖𝑛

= {𝜏𝑖 }𝑚𝑖=1
∪ DT

20: Update 𝜔1, 𝜃1 with A(D𝑡𝑟𝑎𝑖𝑛, 𝑄S𝜔1

, 𝜋S
𝜃1

)

5.1 Theoretical Analysis
In this section, we present the foundational theoretical aspects of

our offline RL approach, focusing on the integration of behavior

policies and the critical role of KL divergence in policy optimization.

We begin by applying several lemmas—namely, the performance
difference lemma [1], the state value estimation error [25], the total
variance and KL divergence relation [4], and the total variance and
𝐿1 norm relation [42]—which set the foundation for our analysis.

Lemma 1. Let 𝜋 ′ and 𝜋̃ denote any two policies, and let 𝑑𝜋 ′ be the
discounted state distribution induced by policy 𝜋 ′ over the state space
X. The following inequality holds:

(1 − 𝛾 )

(
𝑉 𝜋 ′ −𝑉 𝜋̃

)
= E𝑥∼𝑑𝜋 ′ ,𝑢∼𝜋 ′(· |𝑥 )

[𝐴𝜋̃ (𝑥,𝑢)]

≤ 2

1 − 𝛾 E𝑥∼𝑑𝜋 ′


𝜋 ′(· | 𝑥 ) − 𝜋̃ (· | 𝑥 )




1
.

(14)

Lemma 2. Let 𝑉 𝜋 be the value function for any policy 𝜋 , and
let 𝑉 𝜋 be an estimate of 𝑉 𝜋 . Let 𝑟 and 𝑟 be the true reward and its
estimate, respectively, both bounded in [0, 1]. Similarly, let 𝑝 and 𝑝 be
the true and estimated transition probabilities. Then, for any discount
factor 𝛾 ∈ [0, 1), the following inequality holds:

𝑉 𝜋 −𝑉 𝜋




∞ ≤

1

1 − 𝛾

(
∥𝑟 − 𝑟 ∥∞+

𝛾

1 − 𝛾 ∥𝑝 − 𝑝 ∥∞
)
. (15)

Lemma 3. For any two probability distributions 𝑃 and 𝑄 , their
total variance and KL divergence are bounded as follows, according
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to Pinsker’s inequality:

𝐷TV(𝑃,𝑄) ≤
√︂

1

2

𝐷KL(𝑃 ∥ 𝑄). (16)

Lemma 4. The total variance between any two probability distri-
butions 𝑃 and 𝑄 is equal to half the norm of the difference of 𝑃 and
𝑄 :

1

2

∥𝑃 −𝑄 ∥1= 𝐷TV(𝑃,𝑄). (17)

Corollary 1. Let 𝑝S and 𝑝T represent the transition probability
distributions of the source and target domains, respectively, and let 𝜋
be the policy we aim to train. The following inequality holds:


𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T





∞
≤ 𝛾

(1 − 𝛾 )
2

√︂
1

2

𝐷KL(𝑝S ∥ 𝑝T ). (18)

Proof. We begin by applying the result from Lemma 2, noting

that the source and target domains share the same reward function.

Thus, we have:


𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T





∞
≤ 𝛾

(1 − 𝛾 )
2




𝑝S − 𝑝T



∞
. (19)

To further refine this bound, we apply Pinsker’s inequality (Lemma 3)

which provides:


𝑝S − 𝑝T



∞
≤
√︂

1

2

𝐷KL(𝑝S ∥ 𝑝T ). (20)

Substituting the result from Pinsker’s inequality into the inequality

from Lemma 2, we obtain:


𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T





∞
≤ 𝛾

(1 − 𝛾 )
2

√︂
1

2

𝐷KL(𝑝S ∥ 𝑝T ). (21)

□

Theorem 1. Let 𝑑(𝑠) be a distribution over states. If the condition

E𝑠∼𝑑(𝑠)

[√︃
1

2
𝐷KL(𝑝S ∥ 𝑝T )

]
≤ 𝜖 is satisfied, the expected value of

the policy 𝜋 in the target domain can be bounded below by:

E𝑠∼𝑑(𝑠)

[
𝑉 𝜋

𝑝T

]
≥ E𝑠∼𝑑(𝑠)

[
𝑉 𝜋

𝑝S

]
− 𝛾𝜖

(1 − 𝛾 )
2
. (22)

Proof. We begin by applying the expectation operator to Corol-

lary 1, which provides:

E𝑠∼𝑑(𝑠)

[


𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T





∞

]
≤ 𝛾

(1−𝛾 )
2
E𝑠∼𝑑(𝑠)

[√︃
1

2
𝐷KL(𝑝S ∥ 𝑝T )

]
. (23)

By the non-negativity of expectations, we have:

E𝑠∼𝑑(𝑠)

[
𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T

]
≤ E𝑠∼𝑑(𝑠)

[


𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T





∞

]
. (24)

Substituting the condition into Equation 23, we obtain:

E𝑠∼𝑑(𝑠)

[
𝑉 𝜋

𝑝S
−𝑉 𝜋

𝑝T

]
≤ 𝛾𝜖

(1 − 𝛾 )
2
. (25)

Consequently, this yields the lower bound:

E𝑠∼𝑑(𝑠)

[
𝑉 𝜋

𝑝T

]
≥ E𝑠∼𝑑(𝑠)

[
𝑉 𝜋

𝑝S

]
− 𝛾𝜖

(1 − 𝛾 )
2
. (26)

□

Corollary 2. Let 𝜋𝑏 denote the behavior policy, which induces a
distribution 𝑑𝜋𝑏 over the state space X. For the current policy 𝜋𝑖 , and
the policy in the next episode 𝜋𝑖+1, the following relationship is valid:

E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
− 2

1 − 𝛾 E𝑥∼𝑑𝜋𝑏𝐷TV

(
𝜋
𝑏

(· | 𝑥 ), 𝜋𝑖+1(· | 𝑥 )

)
≤ (1 − 𝛾 )

(
𝑉 𝜋𝑖+1 −𝑉 𝜋𝑖

)
.

(27)

Proof. By substituting 𝜋∗ with 𝜋𝑏 and 𝜋̃ with 𝜋𝑖+1 in Equa-

tion 14, we obtain the first part of the inequality.

(1 − 𝛾 )(𝑉 𝜋𝑏 −𝑉 𝜋𝑖+1
) ≤ 1

1−𝛾 E𝑥∼𝑑𝜋𝑏 ∥𝜋𝑏 (· | 𝑥 ) − 𝜋𝑖+1(· | 𝑥 )∥1 (28)

Similarly, by substituting 𝜋∗ with 𝜋𝑏 and 𝜋̃ with 𝜋𝑖 in Equation 14,

we derive Equation 29, which represents the second part of the

inequality in Equation 14.

(1 − 𝛾 )(𝑉 𝜋𝑏 −𝑉 𝜋𝑖
) = E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
(29)

By applying Equation 28 and Equation 29, we derive:

(1 − 𝛾 )(𝑉 𝜋𝑖+1 −𝑉 𝜋𝑖
) ≥ E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
− 1

1 − 𝛾 E𝑥∼𝑑𝜋𝑏 ∥𝜋𝑏 (· | 𝑥 ) − 𝜋𝑖+1(· | 𝑥 )∥1
(30)

Utilizing Lemma 4, we derive:

(1 − 𝛾 )(𝑉 𝜋𝑖+1 −𝑉 𝜋𝑖
) ≥ E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
− 2

1 − 𝛾 E𝑥∼𝑑𝜋𝑏𝐷TV

(
𝜋
𝑏

(· | 𝑥 ), 𝜋𝑖+1(· | 𝑥 )

) (31)

□

Theorem 2. The KL divergence between the behavior policy 𝜋𝑏
and the policy in the subsequent episode 𝜋𝑖+1 establishes a lower
bound for policy improvement:

(1 − 𝛾 )

(
𝑉 𝜋𝑖+1 −𝑉 𝜋𝑖

)
≥ E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
−
√

2

1 − 𝛾 E𝑥∼𝑑𝜋𝑏
√︁
𝐷KL(𝜋𝑏 (· | 𝑥 ) ∥ 𝜋𝑖+1(· | 𝑥 )).

(32)

Proof. In Corollary 2, we derived bounds for policy improve-

ment by introducing the total variation distance. To relate total

variation to KL divergence, we utilize Lemma 3, which gives us

Pinsker’s inequality:

𝐷TV(𝑃,𝑄) ≤
√︂

1

2

𝐷KL(𝑃 ∥ 𝑄). (33)

Next, we substitute the total variation distance in Equation 31

with the KL divergence bound using Equation 33:
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(1 − 𝛾 )(𝑉 𝜋𝑖+1 −𝑉 𝜋𝑖
) ≥ E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
− 2

1 − 𝛾 E𝑥∼𝑑𝜋𝑏𝐷TV (𝜋𝑏 (· | 𝑥 ), 𝜋𝑖+1(· | 𝑥 ))

≥ E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
− 2

1 − 𝛾 E𝑥∼𝑑𝜋𝑏

√︂
1

2

𝐷KL(𝜋𝑏 (· | 𝑥 ) ∥ 𝜋𝑖+1(· | 𝑥 ))

= E𝑥∼𝑑𝜋𝑏 ,𝑢∼𝜋𝑏 (· |𝑥 )

[
𝐴𝜋𝑖

(𝑥,𝑢)

]
−
√

2

1 − 𝛾 E𝑥∼𝑑𝜋𝑏
√︁
𝐷KL(𝜋𝑏 (· | 𝑥 ) ∥ 𝜋𝑖+1(· | 𝑥 )).

(34)

□

6 EXPERIMENTS
Datasets.We used D4RL [7] datasets to create three mixed datasets

for each of the considered MuJoCo [41] domains: Ant, HalfCheetah,

Hopper, and Walker2d. These datasets were created by mixing 90%

of transition items from the source datasets with 10% from the target

datasets. In D4RL, the medium dataset is generated by first training

a policy online using Soft Actor-Critic (SAC) [13], early-stopping

the training, and collecting 1M transition items from this partially

trained policy. The random datasets are generated by unrolling a

randomly initialized policy in these domains. Similarly, the expert
datasets are generated by an expert policy [7].

Baselines. We use CQL [24] and IQL [22] as our base offline RL

algorithms as they are the most widely used offline RL algorithms

and have demonstrated good results in tasks similar to ours, making

them reliable benchmarks [11, 34, 36].

We consider Vanilla (the base algorithm without any additional

methods applied), CUORL [3], and Harness [15] as our baselines,
applied on top of the base offline RL algorithms (CQL and IQL).

Performance Metric. We measure the performance of offline RL

algorithms using a normalized score, as introduced in D4RL [7]. The

score is calculated as: 100 × score−random score

expert score−random score
. This formula

is used to normalize the scores for each domain, roughly scaling

them to a range between 0 and 100. A normalized score of 0 corre-

sponds to the average returns (over 100 episodes, with each episode

containing 5,000 steps) of an agent that takes actions uniformly

at random across the action space. A score of 100 corresponds to

the average returns of a domain expert. Scores below 0 indicate

performance worse than random, while scores above 100 indicate

performance surpassing expert level.

Ablation Study. The choice of reward function and the impact of

similarity-reward trade-off parameters of our method (𝜆 and 𝛿) are

discussed in Appendix B.2 and Appendix B.3, respectively.

Implementation and Parameter Tuning. The implementation

details and hyperparameter tuning are presented in Appendix C
1
.

Our code is available at https://github.com/amir-abolfazli/CLTV.

1
The Appendix is available at https://www.arxiv.org/abs/2502.00601.

6.1 Performance of Offline RL Methods
Table 1 provides a comprehensive evaluation of three methods

(CUORL, Harness, and CLTV) alongside the Vanilla version, us-

ing two popular offline RL algorithms (CQL and IQL). The eval-

uation reports their performance, measured by normalized score,

and standard deviations over 100 episodes and 5 seeds on mixed

D4RL datasets. The highest performing scores are highlighted in

blue, and the total scores of the second best performing method

are marked in bold. Additionally, the percentage increase (PI) in

score of CLTV, compared to the second best performing method, is

reported. The runtime analysis is presented in Appendix B.1.

The results show that CLTV consistently outperforms the other

methods (Vanilla, CUORL and Harness) across all domains and

algorithms. For example, in the Ant domain using CQL, CLTV

achieves a total score of 238.18, which is 95% higher than the

second-best method (Harness) with a score of 120.97. Similarly,

in the IQL variant for the Walker2d domain, CLTV surpasses the

second-best method by 28%, scoring 268.62 against 208.80. Across

the HalfCheetah and Hopper domains, CLTV demonstrates sig-

nificant improvements, with percentage increases of 43% and 62%

respectively, underscoring its superior performance as reflected by

the relatively low standard deviations. Moreover, CLTV often high-

lights the highest individual dataset scores, indicating its robustness

across different datasets within each domain.

Table 1: Average normalized score along with standard devi-
ation over 100 episodes and 5 seeds on mixed D4RL datasets.

Domain
RL

Algorithm Method Dataset Total PI

random-medium random-expert medium-expert

A
n
t

CQL

Vanilla 51.99 ± 22.32 49.81 ± 25.85 -6.25 ± 14.12 95.55

CUORL -8.37 ± 2.59 -7.81 ± 4.61 6.32 ± 23.51 -9.86

Harness 67.19 ± 6.47 38.30 ± 38.32 15.48 ± 22.20 120.97

CLTV 97.48 ± 3.63 115.86 ± 6.82 24.84 ± 13.70 238.18 ↑ 95%

IQL

Vanilla 83.75 ± 7.18 82.96 ± 9.07 117.20 ± 4.39 283.91

CUORL 4.60 ± 1.18 4.66 ± 0.49 116.23 ± 2.50 125.49

Harness 74.45 ± 6.52 82.56 ± 8.26 110.57 ± 2.56 267.58

CLTV 78.67 ± 8.26 88.26 ± 4.67 117.00 ± 7.28 283.93 ↑ 0%

H
a
l
f
C
h
e
e
t
a
h

CQL

Vanilla 35.15 ± 2.78 -0.09 ± 0.75 29.17 ± 18.12 64.23

CUORL -3.42 ± 0.46 -3.47 ± 0.30 36.89 ± 16.87 30.00

Harness 34.79 ± 4.12 0.53 ± 1.41 44.19 ± 10.86 79.51

CLTV 44.13 ± 3.47 10.37 ± 2.51 59.88 ± 7.91 114.38 ↑ 43%

IQL

Vanilla 37.78 ± 1.51 6.97 ± 2.33 58.05 ± 3.48 102.80

CUORL 2.97 ± 1.50 2.55 ± 1.40 60.53 ± 4.25 66.05

Harness 36.55 ± 2.78 8.37 ± 2.80 55.90 ± 3.22 100.82

CLTV 41.83 ± 0.63 16.28 ± 7.22 77.10 ± 5.16 135.21 ↑ 31%

H
o
p
p
e
r

CQL

Vanilla 18.93 ± 12.57 22.47 ± 23.90 75.90 ± 11.12 117.30

CUORL 0.83 ± 0.23 0.73 ± 0.15 71.36 ± 40.45 72.90

Harness 12.90 ± 14.26 22.63 ± 7.59 65.33 ± 29.68 100.86

CLTV 51.04 ± 3.21 56.23 ± 15.14 83.44 ± 16.95 190.71 ↑ 62%

IQL

Vanilla 53.29 ± 2.71 28.30 ± 6.21 25.63 ± 16.76 107.22

CUORL 6.70 ± 3.80 14.91 ± 12.51 12.59 ± 10.06 34.20

Harness 55.17 ± 3.55 32.05 ± 9.78 24.79 ± 12.61 112.01

CLTV 55.79 ± 4.44 39.56 ± 2.78 70.73 ± 4.11 166.08 ↑ 48%

W
a
l
k
e
r
2
d

CQL

Vanilla 27.55 ± 20.29 83.81 ± 19.68 2.94 ± 3.80 114.30

CUORL -0.01 ± 0.09 -0.03 ± 0.07 8.22 ± 9.01 8.18

Harness 23.70 ± 15.89 87.04 ± 17.11 1.77 ± 1.35 112.51

CLTV 70.45 ± 8.72 97.43 ± 7.74 30.23 ± 41.25 198.11 ↑ 73%

IQL

Vanilla 63.98 ± 5.90 45.67 ± 10.30 96.65 ± 5.87 206.30

CUORL 5.05 ± 1.94 3.58 ± 0.72 88.71 ± 5.00 97.34

Harness 68.20 ± 3.17 45.12 ± 14.86 95.48 ± 3.81 208.80

CLTV 68.37 ± 4.12 89.51 ± 9.03 110.74 ± 0.66 268.62 ↑ 28%
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6.2 Impact of CL on Performance of CLTV

Figure 1: Performance of TS method, compared with CLTV.
The curves are averaged over 5 seeds, with the shaded areas
showing the confidence interval across seeds.

Our method consists of two key components: Transition Scoring

(TS) and Curriculum Learning-Based Trajectory Valuation (CLTV).

TS assigns scores to transitions and adjusts rewards, enabling the

agent to focus on the transitions most relevant to the target domain.

Building upon TS, CLTV integrates curriculum learning (CL) to

prioritize high-quality trajectories during training.

Figure 1 illustrates the impact of CL on the performance of

CLTV. The results demonstrate that while TS provides a strong

foundation for improving agent performance, CLTV consistently

achieves better results across various environments, including faster

convergence and higher normalized scores. For example, in the

Ant domain, CLTV achieves scores approaching or exceeding 100

in the random-medium and random-expert datasets, whereas TS

reaches around 50. Similarly, inHalfCheetah, Hopper, andWalker2d,

CLTV builds on the framework of TS to deliver competitive results,

especially in the random-medium and medium-expert datasets.

Additionally, CLTV tends to reduce variance and improve stability

in some environments, as evidenced by the smoother learning

curves for Walker2d and Ant.

Although performance improvements in HalfCheetah and Hop-

per are less pronounced, CLTV consistently surpasses TS in most

cases, highlighting its robustness across a wide range of conditions.

In general, CLTV improves the learning performance of TS, par-

ticularly in settings with diverse data distributions. By prioritizing

high-value trajectories, CLTV enables the agent to focus on rele-

vant experiences, resulting in more efficient learning and better

adaptability to variations in data quality.

In general, CLTV improves TS by prioritizing high-value tra-

jectories, leading to faster convergence and improved stability. Its

adaptability across diverse environmentsmakes it a robust approach

for optimizing trajectory valuation in offline RL.

7 CONCLUSION
In this work, we introduced Curriculum Learning-Based Trajec-

tory Valuation (CLTV) to enhance the performance of offline RL

algorithms when dealing with mixed datasets, characterized by a

predominance of source data generated from random or suboptimal

policies and a limited amount of target data from higher-quality

policies. Our approach employs Transition Scoring (TS) to evaluate

transition items based on their relevance to the target domain. By

leveraging these scores, CLTV prioritizes high-quality trajectories

through curriculum learning, enabling the agent to utilize valuable

transitions from datasets generated by diverse policies. Experimen-

tal results across various algorithms and MuJoCo environments

demonstrated that CLTV significantly improves performance and

accelerates convergence. CLTV is particularly effective in batch-

constrained scenarios, operating efficiently with limited data to

ensure robust learning even when data is scarce. Furthermore, our

theoretical analysis validated the effectiveness of our approach.
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