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ABSTRACT
Existing Retrieval-Augmented Generation (RAG) systems primar-

ily depend on static knowledge vectorstores which combine se-

mantic similarity algorithms with reranking. This often leads to

outdated information and retrieval errors. In this paper, we pro-

pose SCMRAG, a Self-Corrective Multihop Retrieval Augmented

Generation system for LLM agents. We introduce an LLM-assisted

dynamic knowledge graph creation step to enhance information re-

trieval and mitigate hallucinations. Unlike traditional RAG systems,

SCMRAG includes a self-corrective agent driven mechanism that

autonomously identifies and retrieves missing information from

external web sources. Furthermore, SCMRAG’s internal reasoning

agent determines whether the knowledge graph provides sufficient

information or if a corrective step is needed. It further improves

retrieval accuracy and efficiency. We benchmark the effectiveness

of SCMRAG on five datasets - MultiHop-RAG, ARC AI2, PopQA,

PubHealth, and WikiBio; showing significant improvements in re-

trieval precision and hallucination reduction across diverse tasks.

Our results highlight SCMRAG’s potential to redefine how LLM

agents interact with knowledge bases, offering a more adaptable

and reliable solution for a wide range of applications.
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1 INTRODUCTION
The large-scale adoption of Large Language Models (LLMs) has rev-

olutionized almost every industry. These can range from healthcare

[14] and education [10] to even cyber-security [24] and software de-

velopment [17]. While LLMs demonstrate impressive capabilities in

natural language understanding and generation, their dependabil-

ity and trustworthiness still face significant challenges [7]. Open

weights LLMs constantly struggle in delivering accurate and up-to-

date information. This issue is magnified when LLMs rely solely

on their internal knowledge, leading to a phenomenon known as

‘hallucinations’ [22].

‘Hallucinations’ occur when the LLM generates incorrect or

fabricated information with unwarranted confidence. The output is

often presented in a way that appears credible, with no indication of

uncertainty or error. As a result, there is an urgent need for reliable,

contextually aware and dynamically updated retrieval systems to

ensure LLMs can perform effectively in real-world applications

[13].

Retrieval-Augmented Generation (RAG) systems have emerged

as a powerful solution to address the limitations of LLMs [25]. By

integrating external knowledge bases, RAG models can retrieve

relevant information during inference. This enables LLMs to handle

tasks beyond their static training data. RAG systems are especially

useful in reducing hallucinations and improving accuracy, particu-

larly in fields like healthcare and education that require accurate

and current information [25]. However, traditional RAG systems

often rely on ranking algorithms to improve semantic similarity

based search results [21]. This involves retrieving a large number

of documents from a knowledge base which are then scored on a

relevance metric for selecting top-n relevant documents [25].

Though traditional RAG systems reduce ‘hallucinations’, they

have significant limitations. The main disadvantage is that they

are static, unable to adapt to evolving knowledge or contexts, and

frequently returns outdated or incomplete information [22]. More-

over, such systems cannot autonomously correct errors or fill gaps

in the retrieved content, especially when complex multihop queries

are involved [19]. The retrieval process itself can introduce errors

by fetching irrelevant or tangential information. Furthermore, doc-

ument semantic similarity based the top-n retrieval algorithms are

susceptible to retrieving texts that misrepresent the query context

when the knowledge base becomes too large or complex [2].
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In this paper, we propose SCMRAG: a Self-Corrective Multihop

Retrieval Augmented Generation system for LLM agents. SCMRAG

introduces a novel paradigm that moves beyond the static retrieval

methods of traditional RAG systems by integrating a dynamic, LLM-

assisted knowledge graph for information retrieval. This knowledge

graph evolves with the system, updating and refining itself based

on the SCMRAG’s agent driven interactions and query-answer

pair generations. Crucially, SCMRAG also includes a self-corrective

mechanism, enabling it to identify when information is missing or

inadequate and autonomously retrieves it from external sources

(e.g. web, enterprise information sources, or any other available

information resources) by generating a new retrieval query without

relying on predefined algorithms. This self-corrective step ensures

that up-to-date and accurate information is always accessible.

Another key feature of SCMRAG is its LLM agent driven internal

reasoning agent. It gives the system the decision-making capability

to determine whether the knowledge graph contains sufficient

information to answer a query or whether a corrective step is

necessary to enhance the retrieval process. It enables SCMRAG

to adapt to a wide range of tasks and domains while minimizing

hallucinations.

SCMRAG ensures that only the most relevant content is retrieved

from available data sources, even when the knowledge base is

incomplete or outdated. The key contributions of our proposed

method are as follows:

1. We introduce a novel RAG paradigm that employs a dynamic,

self-updating knowledge graph to guide multihop retrieval,

allowing for more context-aware and accurate information

retrieval.

2. We propose a self-corrective, agent-driven mechanism that

enables SCMRAG to autonomously update missing or out-

dated information by fetching data from external sources.

3. We achieve state-of-the-art performance on four datasets,

even when using a quantized LLM with significantly fewer

parameters. Notably, these results are obtained without any

LLM fine-tuning.

4. We demonstrate that SCMRAG’s advanced reasoning capa-

bilities significantly reduce hallucinations by ensuring that

only the most relevant and accurate information is provided

to the LLM for generation.

The paper is organized as follows: Related Work reviews the

existing literature in this domain. SCMRAG Framework outlines

the problem and introduces our proposed solution. Methodology
explains each module of the framework in detail. Experimental
Setup describes the datasets and evaluation methodology. Evalua-
tion presents and analyzes the experimental results, including an

ablation study to assess the impact of different components. Con-
clusion and Future Work summarizes our findings and outlines

future research directions.

2 RELATEDWORK
The concept of augmenting generative models with external re-

trieval systems gained prominencewith earlywork on open-domain

question answering, where LLMs were found to suffer from hallu-

cinations—generating factually incorrect or fabricated information.

[13] This was true even for foundational models with large-scale

pretraining with vast amounts of knowledge.

2.1 Initial Work
Works such as the RAG model proposed by Lewis et al. [13] were

instrumental in showing that augmenting a generation model with

a retrieval step could greatly improve the factual correctness of AI-

generated text. Lewis et al. introduced the two-stage RAG process,

where a retriever is responsible for fetching relevant documents

based on a query, and a generator produces text conditioned on

these retrieved documents. This approach was proven to outper-

form purely generative or purely extractive models in tasks such

as knowledge-based QA and passage generation. This dual system

ensures that the model’s output is grounded in real-world data.

It highlighted the importance of coupling retrieval systems with

LLMs to enhance performance in open-domain tasks.

2.2 Advances in RAG Architecture
Several models have introduced further innovations to improve

the efficiency and accuracy of retrieval mechanisms. Karpukhin et

al. developed Dense Passage Retrieval (DPR) [9], a technique that

leverages dense vector representations for more accurate retrieval

of semantically relevant passages. DPR became foundational in im-

proving the retriever’s ability to return highly relevant documents

from vast corpora.

Later advancements in RAG systems sought to optimize both the

retrieval and generation phases. Fusion-in-Decoder [8] integrated

multiple retrieved documents simultaneously within the decoder,

allowing the model to generate answers that more holistically syn-

thesized information from various sources. This method allowed for

more contextual outputs, and was effective in handling multi-hop

questions requiring reasoning across multiple documents.

A critical issue with these approaches is the reliance on static

retrieval corpora, which limits the system’s ability to access up-to-

date information, leading to outdated or incomplete responses in

rapidly evolving domains. Moreover, the retriever and generator

components in transformer based RAGmodels are generally trained

separately. This often leads to mismatches between retrieved docu-

ments and generated content.

2.3 Dynamic RAG Paradigms
Recent work improves retrieval and generation through more dy-

namic systems that adapt their context based on some of a feedback

loop [25]. One notable direction is the integration of self-corrective

mechanism, wherein models continually adjust and refine their

outputs based on externally retrieved information from the web

[22].

Other dynamic RAG models that adapt their retrieval strategies

mid-generation are part of a newer wave of research aimed at

improving both the relevance and accuracy of information retrieval

during the text generation process. REALM [5] is one such method

which jointly trained retriever and generator allow retrieval updates

during generation. RETRO [3] improves efficiency by chunking

long documents into segments and retrieving relevant text chunks

dynamically. Various recurrent RAGmechanisms explore iteratively

refining the retrieval process as the generation progresses [25].
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Figure 1: Overview of SCMRAG

A recent method, GRAG [6], includes the use of knowledge

graphs to guide dynamic retrieval in real time. While GRAG im-

proves multi-hop reasoning and reduces hallucinations, it is com-

putationally complex as it relies on creating dynamic k-hop ego-

graphs from a main static textual graph, which then undergo a

soft pruning process to filter out irrelevant nodes and edges. It also

cannot adapt to a growing knowledge base or incomplete/missing

information.

3 SCMRAG FRAMEWORK
3.1 Task Formulation
The problem of solving the standard Retrieval-Augmented Genera-

tion (RAG) task can be described as follows: Given an input query

𝑋 and a corpus of vectorized documents 𝐶 = {𝑑1, 𝑑2, 𝑑3, . . . , 𝑑𝑛},
the goal is to generate an answer 𝑌 by retrieving a subset of the

corpus, denoted as 𝐷 = {𝑑𝑟1 , 𝑑𝑟2 , . . . , 𝑑𝑟𝑘 }, where 𝐷 ⊆ 𝐶 and 𝑘 is

the number of top-ranked relevant documents. The RAG task is

divided into two sub-tasks:

1. Retrieval task: Performed by the retriever 𝑅, where the objec-

tive is to retrieve the top 𝑘 most relevant documents from𝐶 for the

given query 𝑋 . Mathematically, this can be represented as:

𝐷 = 𝑅(𝑋,𝐶) (1)

where 𝑅 is the retrieval function and 𝐷 is the set of retrieved docu-

ments.

2. Generation task: Performed by the generator 𝐺 , where the ob-

jective is to generate the output𝑌 based on the retrieved documents

Algorithm 1 Multihop Graph Retrieval Process G
Require: Query 𝑋 , Knowledge Graph 𝐾 , Threshold 𝜏 , Number of

Results 𝑛, Number of Nodes𝑚

Ensure: Final set of relevant information chunks

1: Step 1: Query Representation
2: Prompt LLM to generate query topic 𝑇𝑞 and query entities 𝑇𝑒
3: Step 2: Edge Evaluation
4: Evaluate similarity between query topic and bridge topics

5: Step 3: Identify sub-graph G’, for top-m results
6: Step 4: Top-𝑛 Retrieval
7: Recursively identify the top-n claims for context �̂�

8: Graph Retriever(Graph 𝐺 ′
, Node 𝑣)

9: Step 5: Completeness Check and Recursive Replacement
10: ∀𝑣

match
|𝑇𝑒 ∈ 𝐺 ′

, do Graph Retriever(𝐺 ′, 𝑣
match

)

𝐷 and the input query 𝑋 . This is represented as:

𝑌 = 𝐺 (𝑋, 𝐷) (2)

where 𝐺 is the generation function that produces the final answer

𝑌 using both the query 𝑋 and the subset of documents 𝐷 .

Thus, the standard RAG task involves optimizing both the re-

triever 𝑅 and the generator 𝐺 to ensure that the generated answer

𝑌 is both relevant and accurate based on the information present in

the corpus 𝐶 . As previously discussed, the standard RAG approach

has limitations in retrieving up-to-date information. It also cannot

comprehensively address multihop queries and hallucinations. To

overcome these issues, we introduce modifications to the retriever

by integrating a graph retriever G and a self-corrective agent S
without the need to fine-tune the generator 𝐺 .

3.2 Overview of SCMRAG
We implement a novel graph retriever G that generates a subgraph

from a dynamic knowledge graph 𝐾 , where 𝐾 = F (𝐶) and F maps

the corpus 𝐶 into a structured knowledge graph 𝐾 . G retrieves the

top 𝑛 documents, denoted as �̂� , using a graph retrieval algorithm

(detailed in section 4.2). The self-corrective agent S further refines

this retrieval by taking the input query 𝑋 and the documents �̂� ,

producing a new set of documents 𝑆 (described in section 4.3). This

two-stage retrieval ensures more accurate and relevant information.

The final generation task is then modified to generate the output 𝑌

based on the query 𝑋 and the set of refined documents, ensuring

higher precision in the generated answers. The graph retrieval and

generation tasks can be described mathematically as:

�̂� = G(𝑋,𝐾), 𝑆 = S(𝑋, �̂�), 𝑌 = 𝐺 (𝑋, �̂� ∪ 𝑆) (3)

4 METHODOLOGY
4.1 Knowledge Graph Construction
We construct a knowledge graph 𝐾 from the document corpus

𝐶 , which can also be dynamically updated with new documents

sourced by the self-corrective agent. Each document in 𝐶 is sub-

divided into smaller information chunks. A binary classification

model, adapted from [26], is employed to evaluate whether a given

chunk is factual. This step ensures that only factual information
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Algorithm 2 Self-Corrective Mechanism S

Require: Query 𝑋 , Retrieved Context �̂� , Maximum Iterations 𝑐

Ensure: Final Answer 𝑌 , Updated �̂�

1: Step 1: Initial Answer Generation
2: The LLM agent generates an initial answer Y

3: Step 2: Evaluate Support Level 𝐿 of 𝑌
4: Step 3: Web Scraping for Additional Evidence
5: if Answer is not fully supported then
6: Agent generates a retrieval query 𝑋 .

7: The agent scrapes the web for query 𝑋 as 𝑉 .

8: Extract top-𝑛 chunks 𝑆 from 𝑉 .

9: end if
10: Step 4: Update context �̂� and Answer 𝑌
11: Step 5: Final Answer and Knowledge Base Update
12: Once the answer 𝑌 is fully supported, append 𝑆 to 𝐾

Figure 2: Execution Graph for Self Corrective Mechanism.

is retained, thereby preventing the knowledge graph from being

cluttered with irrelevant or uninformative content.

For each factual chunk, we prompt a large language model (LLM)

to generate a ‘claim’. A ‘claim’ is defined as a statement or assertion

that expresses a belief, opinion, or fact, devoid of ambiguous refer-

ences to entities such as persons, places, or things. Claims serve as

the foundational elements of the knowledge graph.

Additionally, for each claim, we generate a ‘bridge target’ and

a ‘bridge topic’, which form the nodes and edges of the graph,

respectively. The ‘bridge target’ is the specific individual, group, or-

ganization or concept that the statement or assertion within a text

is directed towards or about which it is making a case. The ‘bridge

topic’ is a phrase representing the claim’s central argument or con-

cept. These bridge topics and targets link similar claims, creating

the interconnected structure of the knowledge graph. The knowl-

edge graph construction process can be expressed mathematically

as follows:

1. Chunking the Corpus: Let 𝐶 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} represent the
corpus of documents. Each document 𝑑𝑖 is subdivided into a set of

chunks {𝑐1, 𝑐2, . . . , 𝑐𝑚}.
2. Fact Classification: We define a binary classification model

𝑓
class

that determines whether a chunk 𝑐 𝑗 is factual. The set of

factual chunks 𝐹 can be written as:

𝐹 = {𝑐 𝑗 ∈ 𝑑𝑖 | 𝑓class (𝑐 𝑗 ) = 1} (4)

3. Claim Generation: For each factual chunk 𝑐 𝑗 ∈ 𝐹 , we use

an LLM to generate a claim given an instruction prompt claim𝑝 ,

resulting in a set of claims Claims:

Claims = {LLM(𝑐 𝑗 , claim𝑝 ) | 𝑐 𝑗 ∈ 𝐹 } (5)

4. Bridge Topics andBridge Targets connect similar claims. They

are generated by instructing an LLM with a bridge topic BT𝑝 and a

bridge target BTG𝑝 prompt respectively. The nodes and edges of

the knowledge graph 𝐾 = (𝑉 , 𝐸) are constructed as:

𝑉 = {LLM(𝑐 𝑗 , claim𝑝 )} (6)

𝐸 = {(LLM(𝑐 𝑗 , BT𝑝 ), LLM(𝑐 𝑗 , BTG𝑝 ))} (7)

Thus, the knowledge graph 𝐾 is built from the claims as nodes

and the relationships between them (bridge topics and targets) as

edges, ensuring that the graph is concise, factual, and dynamically

expandable as new information becomes available.

4.2 Multihop Graph Retrieval Process
We design a novel knowledge graph search algorithm to retrieve

the relevant information chunks. The retrieval process begins with

an input query𝑋 , for which we generate a ‘query topic’ and a set of

‘query entities’ using a large language model (LLM). Here, a ‘query

entity’ refers to the specific individual, group, or organization that

the query or statement is directed towards or references.

The retrieval process leverages the structure of the knowledge

graph by performing a multihop search. This search involves eval-

uating edges between nodes (claims) using a vectorization-based

semantic similarity score between the ‘query topic’ and the ‘bridge

topics’. An edge is deemed relevant only if the ‘bridge target’ of an

edge aligns with an entity from the set of ‘query entities’.

Once a subgraph containing𝑚 nodes is identified, we retrieve the

top 𝑛 results by calculating the semantic similarity score between

the ‘query’ and the ‘claim’ vectors associated with each node in the

subgraph. To ensure completeness, the set of retrieved documents

must cover all ‘query entities’. If any query entity is missing from

the retrieved set but is present within the subgraph, we recursively

replace the weakest retrieved result with the closest matching node

that has the missing query entity. top𝑚 and top 𝑛 are empirically

set to 32 and 6 respectively.

Finally, the original chunks from which each finalized claim was

generated are retrieved, providing the relevant information needed
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to answer the query. This multihop graph retrieval algorithm en-

sures that the most relevant, complete, and contextually accurate

information is retrieved from the knowledge graph, improving the

overall precision and relevance of the results.

4.3 Self-Corrective Mechanism
We introduce a fully automated, LLM agent-driven algorithm de-

signed to determine whether an answer 𝑌 is supported by the

information in the retrieved context �̂� , without the need for model

fine-tuning or the use of special tokens for self-correction [2]. This

is achieved through a zero-shot ReACT [23] reasoning chain, where

the agent is equipped with tools to scrape the web, store retrieved

documents in a vectorstore [22], retrieve relevant documents as

evidence by generating a new query, generate an answer for the

original prompt based on this evidence, and assess whether the

generated answer is supported by the evidence.

The agent is initially tasked with answering the query 𝑋 using

the context �̂� . After generating an answer, it evaluates the support

level based on the following criteria:

1. Fully supported: The answer is entirely consistent with the

evidence, or it mirrors extractions from the evidence. This applies

when the generated output closely matches the information in the

retrieved context.

2. Partially supported: The answer is somewhat supported by the

evidence, but significant portions of the output are not addressed in

the evidence. For example, if a query involves two concepts and the

evidence only discusses one, the answer is classified as "Partially

supported."

3. No support: The answer either ignores the evidence or is unre-
lated to it. This also applies when the provided evidence is irrelevant

to the query.

4. Contradictory: The answer directly contradicts the evidence.

If the agent determines that the answer is not fully supported,

it can autonomously make use of the web scraping tool to search

for additional information. New documents are then stored in a

temporary knowledge base and indexed using a vectorstore. The

agent can retrieve top 𝑛 new documents based on a query to bet-

ter support the existing answer. The original answer is updated

using the new context and this process is repeated iteratively for

a maximum of 𝑐 ≤ 5 number of steps or until the answer to the

original query is fully supported by the updated evidence. The new

information chunks in the final evidence set are then appended to

the knowledge base and the knowledge graph is updated with the

new information (as described in section 4.1).

5 EXPERIMENTAL SETUP
We conducted extensive experiments to demonstrate SCMRAG’s su-

perior performance and generalizability across a variety of Retrieval-

Augmented Generation (RAG) tasks. Our evaluation spanned five

datasets, encompassing both short-form and long-form generation

tasks. In this section, we briefly describe the datasets, tasks, and

baseline methods used to benchmark SCMRAG.

1∗ values are taken from [22]; † values are taken from [19]

2+ custom implementation of FactScore using LLaMA 3.1

5.1 RAG Datasets, Tasks and Metrics
We evaluate the performance of SCMRAG on the following datasets:

MultiHop-RAG (MRAG) [19]: A dataset designed to test multi-

hop reasoning, where models are required to retrieve and combine

information from multiple sources to answer complex multihop

queries that cannot be answered from a single document.

ARC AI2 [4]: A challenging question-answering dataset that

contains science-based multiple-choice questions, designed to test

the reasoning and knowledge retrieval capabilities of AI models.

PopQA [15]: A dataset of factoid questions about pop culture,

covering a wide range of topics, including movies, music, and

celebrities. It is used to evaluate the model’s ability to retrieve

and generate factual knowledge in a trivia-style format.

PubHealth [11]: A dataset focused on fact-checking health-

related claims using true-or-false questions. It is used to test the

model’s ability to retrieve accurate and trustworthy medical infor-

mation and generate reliable responses based on scientific literature.

WikiBio [12]: A dataset for long-form generation tasks, con-

sisting of Wikipedia biography entries. The model is expected to

generate coherent, factual summaries of people based on structured

biographical data.

Following previous work, FactScore [16] was adopted as the

evaluation metric for WikiBio. We reimplemeted FactScore using

LLaMA 3.1 (8b) [20] as the original python implementation has

deprecatedmodules. Accuracy was adopted as the evaluationmetric

forMultiHop-RAG, PopQA, PubHealth, and Arc AI2.We use LLaMA

3.1 (8B) 8-bit Instruct [1] model for evaluating SCMRAG generated

answers.

5.2 Language Models and Baseline Methods
To assess the effectiveness of SCMRAG, we utilized the open-weight

LLaMA 3.1 (8B) 8-bit model as the LLM generator. The use of 8-bit

quantization was employed to improve generation efficiency and

evaluate SCMRAG’s generalizability across various RAG datasets.

By using an 8-bit quantized model with 8 billion parameters, we

focused on the actual enhancements in retrieval performance, rather

than depending on the inherent capabilities of an LLM with a large

number of parameters. This is further supported by comparing the

performance of LLaMA 3.1 (8B) 8-bit with GPT-3.5 Turbo [18] in

Table 2, where we evaluate both models on the selected datasets

without incorporating RAG.

We tested SCMRAG in two configurations: with web-search

based self-correction (SCMRAG) and without web-search based

self-correction (SMRAG). This allowed us to isolate the impact of

SCMRAG’s knowledge graph-based retriever without additional

web documents. Furthermore, SCMRAG was benchmarked against

state-of-the-art RAG methods in Table 1, including CRAG [22],

Self-RAG [2], and Self-CRAG [22], which are known for their ad-

vancements in retrieval-augmented generation. These comparisons

highlight SCMRAG’s competitiveness and generalisability in both

retrieval performance across diverse datasets and the quality of

generated responses.

Our focus on LLaMA 3.1 (8B) 8 bit model was intentional, as we

wanted to ensure that any improvements observed were attributed

to our RAG approach, rather than the underlying LLM. GPT-3.5

Turbo, though a common benchmark in prior works, is deprecated
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Table 1: Comparison of SCMRAG with baseline methods across five datasets. 1 2

Model PopQA WikiBio PubHealth ARC AI2 MRAG

RAG (GPT 3.5 Turbo) 50.8
∗

78.0
∗

69.2
∗ 75.3∗ 0.56

†

CRAG [22] 59.3 74.1 75.6 54.8 -

Self-RAG [2] 54.9 81.2 72.4 67.3 -

Self-CRAG [22] 61.8 86.2 74.8 67.2 -

SMRAG (Ours) 60.2 83.9
+

75.3 74.5 67.1

SCMRAG (Ours) 76.6 87.4+ 87.7 73.2 67.6

Table 2: LLM performance on evaluated datasets.

Dataset Number of
Queries

LLaMA 3.1
(8B) 8-bit GPT-3.5 Turbo

PopQA 14267 23.7 29.3

WikiBio 1000 63.6 71.8

PubHealth 985 65.0 70.1

ARC AI2 1172 77.2 75.3

MRAG 2556 30.2 44.0

Figure 3: Comparison of Retrieval Performance and Genera-
tion Accuracy between RAG and SMRAG.

and not freely accessible. Therefore, it was essential to first establish

that LLaMA 3.1 is either on par with or weaker than GPT-3.5 Turbo,

as described in Section 5.2, ensuring that our method’s improve-

ments were not reliant on a more powerful LLM. This approach

mirrors the experiment design used for Corrective RAG evalua-

tion [22], where GPT-3.5 Turbo was used for comparison but not

integrated into their own RAG approach.

6 EVALUATION
6.1 Performance Comparison with Baseline

Methods
Table 1 demonstrates that SCMRAG consistently outperforms base-

line RAG methods, especially on datasets that require complex

retrieval and reasoning. For PopQA, SCMRAG achieved 76.6%, sur-

passing the previous best method, Self-CRAG (61.8%) by a large mar-

gin of almost 15%. This result especially highlights the effectiveness

of our agent based corrective step for scraping factual information

Figure 4: RAG vs SMRAG Accuracy on different query types.

about various topics from the internet. On the long-form WikiBio

dataset, SCMRAG’s dynamic knowledge graph integration led to a

FactScore of 87.4, exceeding Self-CRAG’s 86.2. SCMRAG also ex-

celled in PubHealth, reaching 87.7%, significantly outperforming

other models, thus highlighting its ability to retrieve accurate and

trustworthy medical information.

For ARC AI2, while SCMRAG performed competitively with a

score of 73.2%, it was slightly lower than RAG’s 75.3%. However,

both SMRAG and No RAG outperformed SCMRAG with 74.5% and

77.2% accuracy respectively, suggesting that scientific reasoning

tasks may depend more on the LLM’s internal knowledge and are

prone to hallucinations when additional context is introduced. To

understand this behaviour, we performed a qualitative analysis

of these results in Section 6.3. Nonetheless, for MultiHop-RAG

(MRAG), SCMRAG led with 67.6%, showcasing its strength in mul-

tihop reasoning. This significant improvement over RAG (56%) is

a testament to SCMRAG’s graph-based retrieval approach, which

excels in synthesizing information from multiple sources.

Table 2 provides a baseline comparison between LLaMA 3.1

(8B) 8-bit and GPT-3.5 Turbo across the same datasets without

retrieval augmentation. While GPT-3.5 Turbo generally outper-

formed LLaMA 3.1 on most datasets, LLaMA 3.1 (8B) 8-bit showed

comparable performance on ARC AI2, suggesting it is on par with

GPT-3.5 Turbo for scientific reasoning tasks. Although the under-

lying LLaMA 3.1 (8B) 8-bit performs significantly worse on some

datasets, SCMRAG substantially enhances performance in more

complex, retrieval-intensive scenarios, particularly in datasets like

PubHealth and MRAG. In these cases, SCMRAG’s ability to dynami-

cally retrieve, synthesize, and correct information offers substantial

improvements over baseline RAG methods.
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Table 3: Qualitative evaluation of incorrect SCMRAG responses for ARC AI2.

Question Answer Options GT

The morning temperature in a city is

41°F. If a sunny, mild day is forecast,

which temperature is most likely for

2:00 p.m.?

Based on the given knowledge base, the

most likely temperature for 2:00 p.m.

on a sunny, mild day in a city with a

morning temperature of 41°F is around

55-65°F (13-18°C).

A: 32°F

B: 41°F

C: 78°F

D: 98°F

C

Which natural event occurs with the

most frequency?

Based on the provided knowledge base,

the natural event that occurs with the

most frequency is floods

A: sunrise

B: equinox

C: full moon

D: solar eclipse

A

Which statement is true about the solar

system?

Based on the provided knowledge base,

the Solar System has evolved consider-

ably since its initial formation.

A: The gas planets are closer to the Sun.

B: The solid planets are closer to the Sun.

C: The planets are arranged in order of

increasing size.

D: The solid planets are much larger than

the gas planets.

B

Table 4: Ablation study for effect of each proposed module
on SCMRAG’s generation performance.

Configuration MRAG PopQA

SCMRAG 67.6 76.6

w/o Self Correction 67.1 60.2

w/o Knowledge Graph 45.4 59.7

w/o RAG 30.2 23.7

SCMRAG’s integration of a dynamic knowledge graph and self-

correction mechanisms allows it to outperform not only the base

LLM models but also other state-of-the-art retrieval-augmented

generation systems. This demonstrates its strong potential for real-

world applications that require precise and comprehensive infor-

mation retrieval. SCMRAG excels in scenarios where advanced

reasoning and multihop retrieval of weakly connected information

are critical, highlighting its ability to effectively manage complex

queries and deliver accurate, context-aware results.

6.2 Retrieval Analysis
We evaluated SCMRAG’s ability to retrieve accurate documents and

generate high-quality answers using only its dynamic knowledge

graph and reasoning capabilities. Specifically, we compared the

performance of SMRAG (SCMRAG with LLaMA 3.1 (8B) 8-bit with-

out web-based self-correction) against a traditional RAG system

across multiple top-n retrieval settings on MultiHop-RAG dataset,

which demonstrated the highest improvement in generation accu-

racy compared to using no RAG (67.6% vs. 30.2%). We also analyzed

SCMRAG’s performance across different query types described in

the Multihop-RAG dataset.

In Figure 3, we present the retrieval accuracy of SMRAG and

standard RAG across varying numbers of top-n retrievals. SMRAG

consistently outperformed RAG in document retrieval accuracy,

with its performance improving more significantly over time. While

the initial gains were modest at top-2 retrievals (60.7% for RAG

vs. 61.6% for SMRAG), SMRAG’s accuracy steadily increased over

further top-n, reaching 71.5% at top-14, compared to RAG’s 65.6%,

66.7%, at top-14 and top-16 respectively. This pattern supports

our hypothesis that semantic similarity-based RAG scales worse

with fewer top-n documents, while SMRAG’s graph-based retrieval

scales more effectively with increasing knowledge base size and

complexity. This highlights SMRAG’s strength in multihop retrieval,

where it excels at retrieving information distributed across multiple

documents.

We also evaluated SMRAG’s top-6 retrieval performance on three

different MRAG query types: Inference, Comparison, and Temporal

queries. Figure 4 displays the accuracy results for each query type

and compares it with the GPT-4 and Mistral 8x7b based RAG sys-

tems proposed in [19]. For Inference Queries, which constituted

36.20% of the dataset and requires complex reasoning over multi-

ple retrieved documents, GPT-4 RAG [19] outperformed SMRAG,

achieving an accuracy of 88% compared to SMRAG’s 82%. This

is likely because of the lower reasoning capability of LLaMA 3.1

(8B) 8bit compared to GPT-4 due to its smaller parameter size and

quantisation.

In contrast, Comparison Queries and Temporal Queries,
which made up 37.98% and 25.82% of the dataset respectively, re-

vealed SCMRAG’s significant advantages. For comparison queries,

SMRAG achieved 64% accuracy, far surpassing GPT-4 RAG’s 35%.

Similarly, for temporal queries, SMRAG reached 58% accuracy, com-

pared to GPT-4 RAG’s 20%. These types of queries require more

advanced retrieval and benefit from SCMRAG’s knowledge graph,

which can analyze document relationships and connect temporal

sequences more effectively, enabling it to reason across multiple

documents and pinpoint the most relevant information.

These results demonstrate that SCMRAG can independently re-

trieve and generate high-quality answers, making it highly effective

for tasks that require complex reasoning. The dynamic knowledge
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graph used as the core retrieval mechanism allows SCMRAG to

reduce reliance on external resources for self-correction while main-

taining high retrieval accuracy. Without relying on external web-

based corrective searches, SCMRAGwas able to synthesize complex

information from the knowledge graph and generate accurate an-

swers, particularly for intricate queries that involve evaluating

relationships over multiple documents.

6.3 Qualitative Analysis
We conducted an analysis of the performance drop on the ARC

AI2 dataset when using SCMRAG by validating the results for 158

queries where SCMRAG provided incorrect answers, but the base

LLM produced correct answers without retrieval. This evaluation

helps us determine whether the additional context from the knowl-

edge base and web-scraped documents negatively influenced the

LLM’s answer generation. The LLM was specifically instructed

to generate answers for the multiple-choice options based on the

retrieved context, which could have introduced conflicting or mis-

leading information. A few notable examples of such queries are

presented in Table 3.

Our analysis revealed that the main issue was a combination of

incorrect retrieval and the design of the question prompt itself. The

questions were highly contextual to themultiple-choice options, but

since the retrieval process was based solely on the question and not

the options, the system often retrieved irrelevant or overly generic

documents that matched the question semantically but failed to

account for the specificity of the options. A potential solution would

be to modify the retrieval process by including the options in the

query and instructing the LLM to first generate a refined question

that incorporates the context of the options before building the

knowledge graph based on the revised question.

We also conducted an LLM-assisted qualitative evaluation of

SCMRAG’s long-form generation for WikiBio prompts, focusing on

two key metrics: specificity (whether the biography was generated

for the correct person) and completeness (whether all key facts

from the ground truth were included in the generated text). If

either of these conditions was unmet, the answer was marked as

incorrect. This was performed in parallel to FactScore evaluations,

as the FactScore process took a considerable amount of time to

complete and showed high variance across multiple runs with our

specific configuration. SMRAG had a 92% accuracy, while SCMRAG

achieved 96% accuracy for both specificity and completeness. These

findings further validate SCMRAG’s potential for high-quality long-

form generation tasks where integrate relevant information from

both the knowledge graph and web documents is crucial.

6.4 Ablation Study
The ablation study in Table 4 highlights the contribution of each key

module in SCMRAG by evaluating its performance on the MRAG

and PopQA datasets with certain components removed. When the

self-correction mechanism was disabled, there was a small but

noticeable decline in performance, particularly on PopQA, where

the accuracy dropped from 76.6% to 60.2%. This indicates that self-

correction based web document retrieval plays a significant role in

improving factoid-based retrieval tasks by enhancing the system’s

ability to gather and refine information through our dynamic agent.

OnMRAG, the drop was less severe, from 67.6% to 67.1%, suggesting

that the multihop reasoning tasks in MRAG are less dependent on

self-correction.

The removal of the dynamic knowledge graph had amuch greater

impact on MRAG, with score plummeting from 67.6% to 45.4%,

showcasing the knowledge graph’s critical role in enabling mul-

tihop reasoning across documents. On PopQA, performance also

fell to 59.7% without the knowledge graph. This indicates though

the answers for PopQA queries benefit from the knowlege graph

based retrieval, they are simpler to tackle when compared to multi-

hop queries . Finally, the removal of the entire retrieval-augmented

generation (RAG) framework caused the most substantial drop in

accuracy, with MRAG falling to 30.2% and PopQA to 23.7%, clearly

illustrating the necessity of RAG for improving LLM generation

performance. These results demonstrate that the dynamic knowl-

edge graph and self-corrective agent framework are particularly

vital in handling complex queries and ensuring accurate retrieval.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduced SCMRAG, a Self-Corrective Multihop

Retrieval-Augmented Generation system for LLM agents. SCMRAG

presents a novel paradigm in the retrieval-augmented generation

landscape by leveraging a dynamic, LLM-assisted knowledge graph

combined with a self-corrective mechanism. This approach allows

the system to autonomously decide when additional information is

required, retrieve missing or incomplete data from external sources,

and iteratively refine its responses.

Through extensive experimentation across multiple datasets and

RAG tasks, SCMRAG demonstrated superior performance over tra-

ditional RAG systems, as well as state-of-the-art models like CRAG,

Self-RAG, and Self-CRAG. Our comparison with both open-weight

models like LLaMA 3.1 (8B) and closed-source foundational models

like GPT-3.5 Turbo and GPT-4 further showcased SCMRAG’s capa-

bilities, especially in maintaining factual consistency and achieving

retrieval accuracy in both short-form and long-form generation

tasks. SCMRAG significantly reduces hallucinations and generates

answers that are more accurate and contextually relevant.

Looking forward, SCMRAG opens up new possibilities for de-

ploying more robust and adaptable LLM agents in real-world ap-

plications, such as customer service, healthcare, and knowledge-

intensive domains. Future work could explore scaling SCMRAG

to handle larger knowledge graphs, further optimizing the self-

corrective mechanism, and extending its use across additional do-

mains to enhance the generalizability and efficiency of LLM-driven

systems. Ultimately, SCMRAG represents a critical step towards

more reliable, adaptable, and precise LLM agents, capable of dy-

namically updating their knowledge and continuously improving

their performance.
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