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ABSTRACT
The Connected Budgeted maximum Coverage problem (CBC) is a
combinatorial optimization problem that finds applications in path

planning, wireless sensor networks, logistics, and bioinformatics.

In CBC, we are given a collection of subsets S, defined over a

ground set 𝑋 , and an undirected graph 𝐺 = (𝑉 , 𝐸), where each

node is associated with a set of S. Each set in S has a different cost

and each element of 𝑋 gives a different prize. The goal is to find a

subcollection S′ ⊆ S such that S′
induces a connected subgraph

in 𝐺 , the total cost of the sets in S′
does not exceed a budget 𝐵,

and the total prize of the elements covered by S′
(i.e.,

⋃
𝑆∈S′ 𝑆)

is maximized. The Directed rooted Connected Budgeted maximum
Coverage problem (DCBC) is a generalization of CBC where the

underlying graph 𝐺 is directed and in the subgraph induced by S′

in 𝐺 there must be a path from a specific node called root to any

other node.

These 𝑁𝑃-hard problems have been widely studied from the

approximation point of view. Still, the current best algorithms

achieve approximation ratios that are linear in the size of the un-

derlying graph or depend on 𝐵. In this paper, we provide two al-

gorithms for CBC and DCBC that guarantee approximation ra-

tios of 𝑂

(
log ( |𝑉 |+|𝑋 | ) log |𝑋 |

𝜖2

)
and 𝑂

(√
|𝑉 | log2 |𝑋 |

𝜖2

)
, respectively,

at the cost of a violation in the budget constraint of a factor 1 + 𝜖 ,

where 𝜖 ∈ (0, 1]. We also improve the approximation factor for

the directed budgeted rooted out-tree maximization problem, a par-

ticular case of DCBC where the prize function is additive, from

𝑂

(
1

𝜖2
|𝑉 |2/3 log |𝑉 |

)
to 𝑂

(
1

𝜖2
|𝑉 |1/2 log2 |𝑉 |

)
, for any 𝜖 ∈ (0, 1].
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1 INTRODUCTION
In the budgeted maximum coverage problem, we are given a ground

set 𝑋 of elements with associated prizes, a collection S of subsets

of 𝑋 with associated costs, and a budget 𝐵. The aim is to find a

subcollection S′ ⊆ S such that the total cost of the sets in S′
does

not exceed 𝐵 and the total prize of the elements covered by S′
(i.e.,⋃

𝑆∈S′ 𝑆) is maximized [16]. The Connected Budgeted maximum
Coverage problem (CBC) is a generalization of the budgeted maxi-

mum coverage problem in which the sets in S are associated with

the nodes of a graph 𝐺 = (𝑉 ,𝐴) and the subcollection S′
must

induce a connected subgraph 𝑇 in 𝐺 .

The CBC problem is motivated by several applications in multi-

agent path planning, wireless sensor networks, and bioinformat-

ics. Consider, for example, the exploration of an area through an

Unmanned Aerial Vehicle that can take pictures of an area close

to its current location. In this scenario, the areas to be explored

correspond to the elements in 𝑋 , and the nodes of the graph cor-

respond to the locations that the vehicle can reach. Finding a con-

nected maximum coverage corresponds to finding a small set of

connected locations that allow the exploration of the largest possi-

ble area [4, 30]. Another application is the deployment of wireless

sensor networks in a scenario where each sensor is able to detect

a set of target points in its sensing range, and one wants to find a

bounded set of connected sensors that detects the largest number

of target points [31]. Here, the sensor network corresponds to the

graph𝐺 , and the target points to the elements 𝑋 . Vandin et al. [29]

studied CBC motivated by the detection of driver mutations in

protein-to-protein interaction networks. In these networks, a node

represents a protein, and an edge represents an interaction between

two proteins. Each protein is associated with a gene mutation and

a set of cancer patients who are affected by such mutation. It is

widely believed that cancer is associated with a connected series

of mutations in these networks, called pathways [14]. Therefore,

finding a connected set of 𝐵 nodes with maximum coverage corre-

sponds to finding the 𝐵 connected mutations that affect the largest

number of cancer patients. Variants of CBC find application in

network surveillance [23] and recovery of power networks [13].

TheDirected rooted Connected Budgeted maximumCoverage prob-
lem (DCBC) is a generalization of CBC to directed graphs, where

the aim is to find a rooted out-tree maximizing the prizes of cov-

ered elements and respecting a budget constraint. Besides the same

applications as CBC in the cases where the underlying network is

directed, theDCBC problem has specificmotivating application sce-

narios in facility location, epidemiology, and computational social

choice. Consider a large warehouse from which goods are delivered

through a road network to smaller warehouses or retail shops that

serve a set of customers. Here, the graph models the (directed) road

network; the ground set represents the set of customers; and shops,

represented as nodes in the graph, are associated with the set of

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

538

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


customers that they may serve. In order to maximize the number

of customers that can be served at a given delivery cost, one needs

to compute an out-tree, rooted at the node representing the ware-

house, that maximizes the overall number of covered customers

and satisfies the budget constraint. The connectivity is required

by how the goods are distributed from the main warehouse to the

opened shops through a directed road network. Vehicles departing

from the warehouse (root) reach the retail shops (selected nodes)

by means of directed paths. Other applications require computing

rooted out-trees in directed graphs in order to reconstruct epidemic

outbreaks [24, 28] or to maximize the voting power of a voter in

liquid democracy [7].

Problems CBC and DCBC have already been studied under the

lens of approximation algorithms. However, the state-of-the-art

algorithms achieve approximation ratios that are, in the worst case,

linear in |𝑉 | [15, 26, 29] or depend on the budget 𝐵 [6, 15], and, in

some cases, only work under specific assumptions [15, 26, 29]. In

this paper, we improve our knowledge on the approximabilty of

CBC and DCBC by providing the first polynomial-time bicriteria

approximation algorithm with sublinear approximation ratios. We

now give more details on the state-of-the-art approximation algo-

rithms for CBC andDCBC and then specify our results, comparing

them with previous work. Vandin et al. [29] considered the special

case of CBCwhere the cost is equal for all nodes and provided a 𝑐𝜌-

approximation, where 𝑐 = (2𝑒 − 1)/(𝑒 − 1) and 𝜌 is the radius of the

connected subgraph induced by an optimal solution. Hochbaum and

Rao [15] improved this bound tomin{((1− 1/𝑒) (1/𝜌 − 1/𝐵))−1, 𝐵}.
This latter result holds also in the more general case in which the

prize function is a monotone submodular function of the set of

nodes in the graph. Still, the cost function is assumed to be constant

for all nodes. Ran et al. [26] considered CBC without restrictions

on the cost function but under the assumption that if two sets in S
have a non-empty intersection, then the corresponding nodes in

𝐺 must be adjacent. In this setting, they provided an 𝑂 (Δ log |𝑉 |)-
approximation algorithm, where Δ is the maximum degree of 𝐺 .

D’Angelo et al. [6] improved this result to 𝑂 (log |𝑉 |) under the
same assumption. Moreover, they gave an 𝑂 (

√
𝐵)-approximation

algorithm forDCBC. In the worst case, 𝜌 = Ω( |𝑉 |) and Δ = Ω( |𝑉 |),
and thus the approximation ratio of algorithms in [15, 26, 29] are

linear in |𝑉 |. Moreover, 𝐵 can be exponential in |𝑉 | for general cost
functions.

The results of this paper are summarized in the following:

• For DCBC, we provide a bicriteria approximation algorithm

that, for any 𝜖 ∈ (0, 1], guarantees an approximation ratio

of 𝑂

(√
|𝑉 | log2 |𝑋 |

𝜖2

)
at the cost of a violation in the budget

constraint of a factor at most 1 + 𝜖 . We observe that the

approximation ratio of our algorithm is sublinear in |𝑉 |,
while the previous bound [6] depends on the budget 𝐵, which

might be exponential in |𝑉 |. However, the algorithm in [6]

works for any monotone submodular prize function.

• For CBC, we observe that our algorithm for DCBC can also

be used for the undirected case, achieving the same bound.

However, we show that a slight modification of it signifi-

cantly improves the approximation to𝑂

(
log ( |𝑉 |+|𝑋 | ) log |𝑋 |

𝜖2

)
,

again with a budget violation of 1 + 𝜖 , for any 𝜖 ∈ (0, 1].

Compared to previous work, we achieve an approximation

ratio which depends logarithmic on |𝑉 |, whereas the pre-
vious bounds are linear in |𝑉 | (see [15, 26, 29]) or depend
on the budget 𝐵 (see [6, 15]), or only work under specific

assumptions on the input (papers [15, 29] consider constant

cost functions, while papers [6, 26] assumes a connection

between adjacent nodes and intersecting sets, see discussion

above).

• Our algorithm for DCBC uses, as a subroutine, an algo-

rithm for the node-weighted Steiner tree problem in directed

graphs (DST). In particular, our algorithm requires that such

a subroutine computes a tree whose cost is within a bounded

factor from the optimum of the standard flow-based linear
programming relaxation of DST. Previous algorithms for

DST only focus on the approximation factor with respect to

the optimum of DST but do not ensure a bounded factor over

the optimum of its relaxation [3]. Therefore, we introduce

a new algorithm for DST that guarantees this factor to be

𝑂 (
√︁
|𝑉 | log |𝑉 |). Besides its usage as a subroutine in the al-

gorithm for DCBC, we believe that this result is interesting
on its own.

• As a consequence of our result for DCBC, we improve the

approximation ratio for the Directed Budgeted rooted Out-
tree Maximization problem (DBOM), a particular case of

DCBC in which both costs and prizes are associated with

the nodes of a directed graph and the goal is to find an

out-tree rooted at a specific node that satisfies a budget con-

straint on the sum of costs and maximizes the sum of prizes

of the nodes. For DBOM, D’Angelo and Delfaraz [5] gave

an 𝑂

(
1

𝜖2
|𝑉 |2/3 log |𝑉 |

)
-approximation algorithm which vio-

lates the budget constraint by a factor of at most 1+𝜖 , for any
𝜖 ∈ (0, 1]. Our algorithm for DCBC improves this bound to

𝑂

(
1

𝜖2
|𝑉 |1/2 log2 |𝑉 |

)
, with the same budget violation.

• The Budgeted Node-weighted Steiner problem (BNS) is the
DBOM problem restricted to undirected graphs and can

be seen as a particular case of CBC with additive prize

function. Our algorithm for CBC can be used also for BNS

and achieves an approximation factor of 𝑂

(
log

2 |𝑉 |
𝜖2

)
with a

budget violation of 1 + 𝜖 , for any 𝜖 ∈ (0, 1]. Our algorithm
almost matches (up to an 𝑂 (log |𝑉 |) factor) the current best
algorithm for this problem, which achieved an𝑂 ( 1

𝜖2
log |𝑉 |)

approximation factor with a budget violation of 1 + 𝜖 , for

any 𝜖 ∈ (0, 1], see [1].

Related work. The generalization of CBC in which the prize

function is a monotone submodular function on the set of nodes in

the graph and the cost function on nodes is defined over positive

integers has been studied by Kuo et al. [20], who gave an 𝑂 (Δ
√
𝐵)-

approximation algorithm. For the same problem, D’Angelo et al. [6]

gave an 𝑂 (
√
𝐵)-approximation algorithm, which also applies to

the directed case with the same bound. They also considered the

rooted variant of the same problem in which a specific root node

is required to belong to the solution and provided an 𝑂 ( 1

𝜖3

√
𝐵)-

approximation algorithm, if a budget violation of a factor 1 + 𝜖 , for

some 𝜖 ∈ (0, 1], is allowed. Ghuge and Nagarajan [11] provided a
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tight quasi-polynomial time 𝑂 ( log𝑛′

log log𝑛′ )-approximation algorithm

for the directed case, where 𝑛′ is the number of nodes in an optimal

solution.

The BNS problem can be seen as a particular case of CBC in

which both costs and prizes are associated with the nodes of an

undirected graph, and the goal is to find a tree that satisfies a budget

constraint on the sum of costs and maximizes the sum of prizes

of the nodes. For this problem, Guha et al. [13] gave a polyno-

mial time 𝑂 (log2 |𝑉 |)-approximation algorithm that violates the

budget constraint by a factor of at most 2. Moss and Rabani [25]

improved the approximation factor to 𝑂 (log |𝑉 |), with the same

budget violation. Later, Bateni et al. [1] proposed an 𝑂 ( 1

𝜖2
log |𝑉 |)-

approximation algorithm which requires a budget violation of only

1 + 𝜖 , for any 𝜖 ∈ (0, 1]. Kortsarz and Nutov [19] showed that this

problem admits no 𝑜 (log log |𝑉 |)-approximation algorithm, unless

𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 (𝑛polylog(𝑛) ), even if the algorithm is allowed to vio-

late the budget constraint by a factor equal to a universal constant.

Bateni et al. [1] showed that the integrality gap of the standard

flow-based LP relaxation for the budgeted node-weighted Steiner is

unbounded if no budget violation is allowed. CBC also generalizes

the well-known budgeted connected dominating set problem [17] for

which there exists a constant factor approximation algorithm [21].

2 NOTATION AND PROBLEM STATEMENT
For an integer 𝑖 , let [𝑖] := {1, . . . , 𝑖}. Let 𝐺 = (𝑉 ,𝐴) be a directed
graph and 𝑐 : 𝑉 → R≥0 be a nonnegative cost function on nodes.

A path is a directed graph made of a sequence of distinct nodes

(𝑣1, . . . , 𝑣𝑠 ) and a sequence of directed arcs (𝑣𝑖 , 𝑣𝑖+1), 𝑖 ∈ [𝑠 −1]. An
out-tree (a.k.a. out-arborescence) is a directed graph in which there

is exactly one directed path from a specific node 𝑟 , called root, to
each other node. If a subgraph𝑇 of a directed graph𝐺 is an out-tree,

then we say that𝑇 is an out-tree of𝐺 . For simplicity of reading, we

will refer to out-trees simply as trees when it is clear that we are in

the context of directed graphs. Given two nodes 𝑢, 𝑣 ∈ 𝑉 , the cost

of a path from 𝑢 to 𝑣 in𝐺 is the sum of the cost of its nodes. A path

from 𝑢 to 𝑣 with the minimum cost is called a shortest path and its

cost, denoted by 𝑑𝑖𝑠𝑡 (𝑢, 𝑣), is called the distance from 𝑢 to 𝑣 in𝐺 . A

graph 𝐺 is called 𝐵-proper for the node 𝑟 if 𝑑𝑖𝑠𝑡 (𝑟, 𝑣) ≤ 𝐵 for any 𝑣

in𝑉 . For any subgraph𝐺 ′
of𝐺 , we denote by𝑉 (𝐺 ′) and𝐴(𝐺 ′) the

set of nodes and arcs in 𝐺 ′
, respectively. Given a subset of nodes

𝑉 ′ ⊆ 𝑉 ,𝐺 [𝑉 ′] denotes the subgraph of𝐺 induced by nodes𝑉 ′
, i.e.,

𝑉 (𝐺 [𝑉 ′]) = 𝑉 ′
and 𝐴(𝐺 [𝑉 ′]) = {(𝑢, 𝑣) ∈ 𝐴 : 𝑢, 𝑣 ∈ 𝑉 ′}).

Let 𝑋 be a ground set of elements, S ⊆ 2
𝑋
be a collection of

subsets of𝑋 , and 𝑝 : 𝑋 → R≥0 be a prize function over the elements

of 𝑋 . In the Directed rooted Connected Budgeted maximum Coverage
(DCBC), each node 𝑣 of a directed graph 𝐺 is associated with a

set 𝑆𝑣 of S and the goal is to find a rooted out-tree 𝑇 of 𝐺 with

bounded cost that maximizes the overall prize of the union of the

sets associated with the nodes in 𝑇 . Formally, in DCBC we are

given as input a ground set 𝑋 , a collection S ⊆ 2
𝑋
of subsets of 𝑋 ,

a directed graph 𝐺 = (𝑉 ,𝐴), where each node 𝑣 ∈ 𝑉 is associated

with a set 𝑆𝑣 of S, a root node 𝑟 ∈ 𝑉 , a cost function 𝑐 : 𝑉 → R≥0
on the nodes of𝐺 , a prize function 𝑝 : 𝑋 → R≥0 on the ground set

𝑋 , and a budget 𝐵 ∈ R+. The goal is to find an out-tree𝑇 of𝐺 rooted

at 𝑟 , such that 𝑐 (𝑇 ) = ∑
𝑣∈𝑉 (𝑇 ) 𝑐 (𝑣) ≤ 𝐵 and 𝑝 (𝑇 ) = ∑

𝑥∈𝑋𝑇
𝑝 (𝑥)

is maximum, where 𝑋𝑇 =
⋃

𝑣∈𝑉 (𝑇 ) 𝑆𝑣 .

TheCBC problem is a restriction of DCBC to undirected graphs.

We consider a rooted version of CBC, which is more general from

an approximation point of view because one can guess a node in

an optimal solution of CBC and use it as a root. The Undirected
rooted Connected Budgeted maximum Coverage (UCBC) is defined
as follows. As input, we are given a ground set 𝑋 , a collection

S ⊆ 2
𝑋
of subsets of 𝑋 , an undirected graph 𝐺 = (𝑉 ,𝐴), where

each node 𝑣 ∈ 𝑉 is associated with a set 𝑆𝑣 of S, a root node 𝑟 ∈ 𝑉 ,

a cost function 𝑐 : 𝑉 → R≥0 on the nodes of 𝐺 , a prize function

𝑝 : 𝑋 → R≥0 on the ground set𝑋 , and a budget 𝐵 ∈ R+. The goal is
to find a tree 𝑇 of 𝐺 such that 𝑟 ∈ 𝑉 (𝑇 ), 𝑐 (𝑇 ) = ∑

𝑣∈𝑉 (𝑇 ) 𝑐 (𝑣) ≤ 𝐵,

and 𝑝 (𝑇 ) = ∑
𝑥∈𝑋𝑇

𝑝 (𝑥) is maximum, where 𝑋𝑇 =
⋃

𝑣∈𝑉 (𝑇 ) 𝑆𝑣 .
Problems DCBC and UCBC generalize several well-known 𝑁𝑃-

hard problems, including the budgeted maximum coverage prob-

lem [16], which is the particular case where the input graph is a

(bidirected) clique; the Directed Budgeted rooted Out-tree Maximiza-
tion (DBOM) problem [1, 5], which is the particular case in which

each node of the graph is associated with a distinct singleton set and

hence |𝑋 | = |𝑉 |; and the Budgeted Node-weighted Steiner problem
(BNS), which is the undirected version of DBOM. Therefore, both

DCBC and UCBC problems are 𝑁𝑃-hard to approximate within a

factor 1 − 1/𝑒 like the budgeted maximum coverage problem [9].

Moreover, like BNS, they admit no 𝑜 (log log |𝑉 |)-approximation

algorithm, unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 (𝑛polylog(𝑛) ), even if the algorithm

is allowed to violate the budget constraint by a factor equal to a

universal constant [19].

In order to provide a bicriteria approximation algorithm for

DCBC, we will use as a subroutine a polynomial time approxima-

tion algorithm for the node-weighted Directed Steiner tree problem
(DST), defined as follows. We are given as input a directed graph

𝐺 = (𝑉 ,𝐴), a root node 𝑟 ∈ 𝑉 , a set of terminal nodes 𝑅 ⊆ 𝑉 , and a

cost function 𝑐 : 𝑉 → R≥0 defined on the nodes of 𝐺 . The goal is

to find an out-tree of𝐺 rooted at 𝑟 and spanning all nodes in 𝑅, i.e.,

𝑅 ⊆ 𝑉 (𝑇 ), such that 𝑐 (𝑇 ) = ∑
𝑣∈𝑉 (𝑇 ) 𝑐 (𝑣) is minimum.

Our algorithms will provide a solution with a bounded approx-

imation ratio and a bounded violation of the budget constraint.

A polynomial time algorithm is a bicriteria (𝛽, 𝛼)-approximation

algorithm if it achieves an approximation ratio of 𝛼 > 1 and a

budget violation factor of at most 𝛽 > 1, that is, for any instance

𝐼 of DCBC, it returns a solution 𝑇 such that 𝑝 (𝑇 ) ≥ 𝑝 (𝑇 ∗
𝐵
)

𝛼 and

𝑐 (𝑇 ) ≤ 𝛽𝐵, where 𝑝 (𝑇 ∗
𝐵
) is the optimum for 𝐼 and 𝐵 is the budget

in 𝐼 .

3 APPROXIMATION ALGORITHMS FOR CBC,
DCBC, AND DBOM

In this section, we introduce our approximation algorithms. We

start with the polynomial-time bicriteria

(
1 + 𝜖,𝑂

(√
|𝑉 | log2 |𝑋 |

𝜖2

))
-

approximation algorithm for DCBC, where 𝜖 is an arbitrary num-

ber in (0, 1]. We then observe that this algorithm provides a bi-

criteria

(
1 + 𝜖,𝑂

(
1

𝜖2
|𝑉 |1/2 log2 |𝑉 |

))
for DBOM, for 𝜖 ∈ (0, 1]. Fi-

nally, we show how to modify the algorithm and its analysis in

the particular case of undirected graphs to achieve a bicriteria(
1 + 𝜖,𝑂

(
log ( |𝑉 |+|𝑋 | ) log |𝑋 |

𝜖2

))
-approximation for UCBC, for any

𝜖 ∈ (0, 1].
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Let 𝐼 =< 𝑋,S,𝐺 = (𝑉 ,𝐴), 𝑐, 𝑝, 𝑟, 𝐵 > be an instance of DCBC.
We denote by 𝑇 ∗

𝐵
an optimal solution for 𝐼 .

Our algorithm for DCBC can be summarized in the following

three steps:

(1) We first define a linear program, denoted as (LP-DCBC),

whose optimum 𝑂𝑃𝑇 is an upper bound on the optimum

prize 𝑝 (𝑇 ∗
𝐵
) of 𝐼 .

(2) We give a polynomial-time algorithm that, starting from

an optimal solution for (LP-DCBC), computes a tree 𝑇 for

which 𝑝 (𝑇 ) = Ω(𝑂𝑃𝑇 ) and the ratio between prize and cost

is 𝛾 =
𝑝 (𝑇 )
𝑐 (𝑇 ) = Ω

(
𝑂𝑃𝑇

𝐵
√
|𝑉 | log2 |𝑋 |

)
.

(3) The cost of 𝑇 can exceed the budget 𝐵 but, since the prize-

to-cost ratio of 𝑇 is bounded, we can apply to it a variant of

the trimming process given in [1] to obtain another tree 𝑇

with cost
𝜖
2
𝐵 ≤ 𝑐 (𝑇 ) ≤ (1+𝜖)𝐵, for any 𝜖 ∈ (0, 1], and prize-

to-cost ratio
𝑝 (𝑇 )
𝑐 (𝑇 ) ≥ 𝜖𝛾

4
. Therefore, the prize accrued by 𝑇

is 𝑝 (𝑇 ) ≥ 𝜖𝛾
4
𝑐 (𝑇 ) = Ω

(
𝜖2√

|𝑉 | log2 |𝑋 |
𝑂𝑃𝑇

)
, which implies

an approximation ratio of 𝑂

(√
|𝑉 | log2 |𝑋 |

𝜖2

)
with a budget

violation factor of at most 1 + 𝜖 .

Recall that a directed graph 𝐺 = (𝑉 ,𝐴) is 𝐵-proper for a node 𝑟
if, for every 𝑣 ∈ 𝑉 , it holds 𝑑𝑖𝑠𝑡 (𝑟, 𝑣) ≤ 𝐵. Initially, we remove from

the input graph all the nodes 𝑣 having a distance more than 𝐵 from

𝑟 , making 𝐺 a 𝐵-proper graph for 𝑟 .

Upper Bound on the Optimal Prize
We now provide a linear program whose optimum𝑂𝑃𝑇 is an upper

bound to the optimum 𝑝 (𝑇 ∗
𝐵
) of 𝐼 , i.e., 𝑝 (𝑇 ∗

𝐵
) ≤ 𝑂𝑃𝑇 .

We create a directed graph 𝐺 ′
in which each node is associated

with a cost function 𝑐′ : 𝑉 → R≥0 and a prize function 𝑝′ : 𝑉 →
R≥0. Graph 𝐺 ′

is created from 𝐺 by adding, for each element 𝑥

of 𝑋 , a node 𝑤𝑥 with cost 0 and prize 𝑝 (𝑥) and, for each node

𝑣 ∈ 𝑉 and each element 𝑥 that belongs to 𝑆𝑣 , a directed arc from

𝑣 to 𝑤𝑥 . Formally, we let 𝐺 ′ = (𝑉 ′, 𝐴′), where 𝑉 ′ = 𝑉 ∪𝑊 with

𝑊 = {𝑤𝑥 : 𝑥 ∈ 𝑋 } and 𝐴′ = 𝐴 ∪ {(𝑣,𝑤𝑥 ) : 𝑣 ∈ 𝑉 , 𝑥 ∈ 𝑆𝑣}. For each
𝑣 ∈ 𝑉 , we let 𝑐′ (𝑣) = 𝑐 (𝑣) and 𝑝′ (𝑣) = 0, and, for each 𝑤𝑥 ∈ 𝑊 ,

we let 𝑐′ (𝑤𝑥 ) = 0 and 𝑝′ (𝑤𝑥 ) = 𝑝 (𝑥). For each 𝑣 ∈ 𝑉 ′
, we use

shortcuts 𝑐𝑣 = 𝑐′ (𝑣) and 𝑝𝑣 = 𝑝′ (𝑣).
For every 𝑣 ∈ 𝑉 ′

, we let P𝑣 be the set of simple paths in𝐺 ′
from

𝑟 to 𝑣 . Our linear program (LP-DCBC) is defined as follows.

maximize

∑
𝑣∈𝑉 ′ 𝑦𝑣𝑝𝑣 (LP-DCBC)

subject to

∑
𝑣∈𝑉 ′ 𝑦𝑣𝑐𝑣 ≤ 𝐵 (1)∑
𝑃∈P𝑣

𝑓 𝑣
𝑃
= 𝑦𝑣, ∀𝑣 ∈ 𝑉 ′ \ {𝑟 } (2)∑

𝑃∈P𝑣 :𝑧∈𝑃 𝑓 𝑣
𝑃
≤ 𝑦𝑧 , ∀𝑧, 𝑣 ∈ 𝑉 ′ \ {𝑟 } (3)

0 ≤𝑦𝑣 ≤ 1, ∀𝑣 ∈ 𝑉 ′

0 ≤𝑓 𝑣𝑃 ≤ 1, ∀𝑣 ∈ 𝑉 ′, 𝑃 ∈ P𝑣 .

We use variables 𝑓 𝑣
𝑃
and 𝑦𝑣 , for each 𝑣 ∈ 𝑉 ′

and 𝑃 ∈ P𝑣 , where

𝑓 𝑣
𝑃
is the amount of flow sent from 𝑟 to 𝑣 using path 𝑃 and 𝑦𝑣 is

the capacity of node 𝑣 and the overall amount of flow sent from 𝑟

to 𝑣 . Variables 𝑦𝑣 , for 𝑣 ∈ 𝑉 ′
, are called capacity variables, while

variables 𝑓 𝑣
𝑃
for 𝑣 ∈ 𝑉 ′

and 𝑃 ∈ P𝑣 are called flow variables.

The constraints in (LP-DCBC) are as follows. Constraint (1) en-

sures that the (fractional) solution to the LP costs at most 𝐵. Con-

straints (2) and (3) formulate the connectivity constraint through a

standard flow encoding, that is they ensure that the nodes 𝑣 with

𝑦𝑣 > 0 induce a subgraph in which all nodes are reachable from 𝑟 .

In particular, Constraint (2) ensures that the amount of flow that

is sent from 𝑟 to a node 𝑣 is equal to 𝑦𝑣 and Constraint (3) ensures

that the total flow from 𝑟 to 𝑣 passing through a node 𝑧 does not

exceed 𝑦𝑧 .

Note that the number of flow variables is exponential in the size

of the input. However, (LP-DCBC) can be solved in polynomial time

since, given an assignment of capacity variables, we need to find,

independently for any 𝑣 ∈ 𝑉 ′ \ {𝑟 }, a flow from 𝑟 to 𝑣 of overall

value 𝑦𝑣 that satisfies the capacities of nodes 𝑧 ∈ 𝑉 ′ \ {𝑟, 𝑣} (see
e.g. [12]).

We now show that the optimum𝑂𝑃𝑇 of (LP-DCBC) is an upper

bound to the optimum of 𝐼 . In particular, the next lemma shows

that, for any feasible solution 𝑇𝐵 for 𝐼 , we can compute a feasible

solution {𝑦𝑣}𝑣∈𝑉 ′ for (LP-DCBC) such that 𝑝 (𝑇𝐵) =
∑

𝑣∈𝑉 ′ 𝑦𝑣𝑝𝑣 .

Lemma 3.1. Given an instance 𝐼 =< 𝑋,S,𝐺 = (𝑉 ,𝐴), 𝑐, 𝑝, 𝑟, 𝐵 >

of DCBC, for any feasible solution 𝑇𝐵 for 𝐼 there exists a feasi-
ble solution {𝑦𝑣, 𝑓 𝑣𝑃 }𝑣∈𝑉 ′,𝑃 ∈P𝑣

for (LP-DCBC) such that 𝑝 (𝑇𝐵) =∑
𝑣∈𝑉 ′ 𝑦𝑣𝑝𝑣 .

Proof. Let 𝑋𝑇𝐵 =
⋃

𝑣∈𝑉 (𝑇𝐵 ) 𝑆𝑣 . We define a solution to the

linear program (LP-DCBC) in which for all 𝑣 ∈ 𝑉 (𝑇𝐵) and 𝑥 ∈ 𝑋𝑇𝐵 ,

we set 𝑦𝑣 = 1 and 𝑦𝑤𝑥
= 1, while we set 𝑦𝑢 = 0 for any other node

𝑢 of𝑉 ′
. Since 𝑐𝑤 = 0, for all𝑤 ∈𝑊 , and 𝑐 (𝑇𝐵) =

∑
𝑣∈𝑉 (𝑇𝐵 ) 𝑐𝑣 ≤ 𝐵,

then

∑
𝑣∈𝑉 ′ 𝑦𝑣𝑐𝑣 =

∑
𝑣∈𝑉 𝑦𝑣𝑐𝑣 +

∑
𝑤∈𝑊 𝑦𝑤𝑐𝑤 =

∑
𝑣∈𝑉 (𝑇𝐵 ) 𝑦𝑣𝑐𝑣 ≤

𝐵 and the budget Constraint (1) is satisfied.

Since 𝑇𝐵 is an out-tree, then there exists exactly one path from

𝑟 to 𝑣 in 𝑇𝐵 , for each 𝑣 ∈ 𝑉 (𝑇𝐵). Let us denote this path by 𝑃𝑣 .

For each 𝑥 ∈ 𝑋𝑇𝐵 , let us select an arbitrary 𝑣 ∈ 𝑉 (𝑇𝐵) such that

𝑥 ∈ 𝑆𝑣 and let 𝑃𝑥 be the path 𝑃𝑣 ∪ {(𝑣,𝑤𝑥 )}. For each 𝑣 ∈ 𝑉 (𝑇𝐵)
and 𝑥 ∈ 𝑋𝑇𝐵 , we set 𝑓

𝑣
𝑃𝑣

= 1 and 𝑓
𝑤𝑥

𝑃𝑥
= 1, while any other flow

variable is set to 0. Then, Constraints (2) and (3) are satisfied.

Given the definition of 𝑦 and since 𝑝𝑣 = 0, for all 𝑣 ∈ 𝑉 , then∑
𝑣∈𝑉 ′ 𝑦𝑣𝑝𝑣 =

∑
𝑣∈𝑉 (𝑇𝐵 ) 𝑦𝑣𝑝𝑣 +

∑
𝑥∈𝑋𝑇𝐵

𝑦𝑤𝑥
𝑝𝑤𝑥

=
∑
𝑥∈𝑋𝑇𝐵

𝑝𝑤𝑥
=

𝑝 (𝑇𝐵). This concludes the proof. □

A Tree with a Good Ratio between Prize and Cost
Here, we give a polynomial time algorithm that computes an out-

tree 𝑇 of 𝐺 ′
rooted at 𝑟 , whose prize is Ω(𝑂𝑃𝑇 ) and whose ratio

between prize and cost is Ω

(
𝑂𝑃𝑇

𝐵
√
|𝑉 | log2 |𝑋 |

)
. Note, however, that

the cost of 𝑇 can exceed the budget 𝐵 by an unbounded factor. We

will show in the next section how to trim 𝑇 in order to bound its

cost and, at the same time, retain a good prize. Here we show the

following theorem.

Theorem 3.2. There exists a polynomial time algorithm that com-
putes an out-tree𝑇 of𝐺 ′ rooted at 𝑟 such that 𝑝′ (𝑇 ) = ∑

𝑣∈𝑉 (𝑇 ) 𝑝
′ (𝑣)

= Ω(𝑂𝑃𝑇 ) and the ratio between prize and cost of 𝑇 is

𝑝′ (𝑇 )
𝑐′ (𝑇 ) = Ω

(
𝑂𝑃𝑇

𝐵
√︁
|𝑉 | log2 |𝑋 |

)
,

where 𝑂𝑃𝑇 is the optimum of (LP-DCBC).
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To prove the theorem, we start by introducing a polynomial time

algorithm that computes an out-tree spanning a given set of nodes,

called terminals. The cost of this out-tree is bounded by a function

of a lower bound on the amount of flow received by each terminal

in an optimal solution for (LP-DCBC). Formally, we prove the next

lemma. The algorithm in Theorem 3.2, carefully chooses suitable

terminal sets that guarantee a lower bound on the obtained prize

and on the received flow.

Lemma 3.3. Let {𝑦𝑣, 𝑓 𝑣𝑃 }𝑣∈𝑉 ′,𝑃 ∈P𝑣
be an optimal solution for lin-

ear program (LP-DCBC), 𝛿 ≥ 1 be a real number, and 𝑅 ⊆𝑊 be a set
of nodes such that 𝑦𝑤 ≥ 1/𝛿 , for each𝑤 ∈ 𝑅. Then there exists a poly-
nomial time algorithm that computes an out-tree 𝑇 of 𝐺 ′ rooted at 𝑟
that spans all the nodes in 𝑅 and costs 𝑐′ (𝑇 ) = 𝑂 (𝛿𝐵

√︁
|𝑉 | log |𝑅 |).

Proof. The proof is summarized as follows. We consider the set

of nodes in 𝑅 as the set of terminals in an instance of the node-

weighted Directed Steiner tree problem (DST) where 𝑟 is the root
node. By using solution {𝑦𝑣, 𝑓 𝑣𝑃 }𝑣∈𝑉 ′,𝑃∈P𝑣

and the definition of

𝑅, we show that the optimum for a fractional relaxation of this

instance of DST is at most 𝛿𝐵. Then, we apply the approximation

algorithm for DST that we will give in Section 4, which computes

a tree whose cost is a factor 𝑂 (
√︁
|𝑉 | log |𝑅 |) from the optimum of

the same fractional relaxation. Therefore, we obtain an out-tree

that is rooted at 𝑟 , spans all nodes in 𝑅, and costs𝑂 (𝛿𝐵
√︁
|𝑉 | log |𝑅 |),

proving the theorem.

We now give the details of the proof. We first problem DST
and its linear relaxation. In DST, we are given a directed graph

𝐺 ′′ = (𝑉 ′′, 𝐴′′) with nonnegative costs assigned to its nodes and

a set of terminals 𝑅 ⊆ 𝑉 ′′
, and the goal is to find an out-tree of

𝐺 ′′
rooted at the given root node spanning 𝑅 such that the total

cost on its nodes is minimum. We consider the standard flow-based

linear programming relaxation of DST (called FDST) in which we

need to assign capacities to nodes in such a way that the total flow

sent from the root node to any terminal is 1 and the sum of node

capacities multiplied by their cost is minimized. Formally, given a

directed graph 𝐺 ′′ = (𝑉 ′′, 𝐴′′), a root node 𝑟 ∈ 𝑉 ′′
, a nonnegative

node-cost function 𝑐′′ : 𝑉 ′′ → R≥0, and a set of terminals 𝑅 ⊆ 𝑉 ′′
,

FDST requires to solve the following linear program.

minimize

∑
𝑣∈𝑉 ′′ 𝑥𝑣𝑐𝑣 (LP-DST)

subject to

∑
𝑃∈P𝑡

𝑔𝑡
𝑃
= 1, ∀𝑡 ∈ 𝑅 (4)∑

𝑃∈P𝑡 :𝑣∈𝑃 𝑔
𝑡
𝑃
≤ 𝑥𝑣, ∀𝑣 ∈ 𝑉 ′′, 𝑡 ∈ 𝑅 (5)

0 ≤𝑥𝑣 ≤ 1, ∀𝑣 ∈ 𝑉 ′′

0 ≤𝑔𝑡𝑃 ≤ 1, ∀𝑡 ∈ 𝑅, 𝑃 ∈ P𝑡 ,

where P𝑡 is the set of all simple paths from 𝑟 to 𝑡 in𝐺 ′′
, for each 𝑡 ∈

𝑅, and 𝑐𝑣 = 𝑐′′ (𝑣), for each 𝑣 ∈ 𝑉 ′′
. Similarly to (LP-DCBC), we use

variables 𝑥𝑣 and 𝑔
𝑡
𝑃
as capacity and flow variables, respectively, for

each 𝑣 ∈ 𝑉 ′′
, 𝑡 ∈ 𝑅, and 𝑃 ∈ P𝑡 . As for (LP-DCBC), Constraints (4)

and (5) ensure connectivity, but, differently from (LP-DCBC), we

require that all terminals receive an amount of flow from 𝑟 equal to

1, while the other nodes do not need to receive a predefined amount

of flow.

From𝐺 ′ = (𝑉 ′, 𝐴′) and 𝑅, we define an instance 𝐼𝐷𝑆𝑇 of DST as

follows. We create a directed graph𝐺 ′′ = (𝑉 ′′, 𝐴′′) as the subgraph
of𝐺 ′

induced by𝑉 ′′ = 𝑉 ∪𝑅. The set of terminals in 𝐼𝐷𝑆𝑇 is 𝑅, the

root node is 𝑟 and the node costs are defined as 𝑐′, i.e., 𝑐′′ (𝑣) = 𝑐′ (𝑣),
for each 𝑣 ∈ 𝑉 ′′

. Let 𝐼𝐹𝐷𝑆𝑇 be the instance of FDST induced by

𝐼𝐷𝑆𝑇 as in (LP-DST) and let 𝑂𝑃𝑇𝐹𝐷𝑆𝑇 be the optimum for 𝐼𝐹𝐷𝑆𝑇 .

We now argue that the optimum 𝑂𝑃𝑇𝐹𝐷𝑆𝑇 for 𝐼𝐹𝐷𝑆𝑇 is at most

𝛿𝐵. Starting from the solution {𝑦𝑣, 𝑓 𝑣𝑃 }𝑣∈𝑉 ′,𝑃∈P𝑣
for (LP-DCBC),

we define a solution {𝑥𝑣, 𝑔𝑡𝑃 }𝑣∈𝑉 ′′,𝑡 ∈𝑅,𝑃∈P𝑡
for (LP-DST) as fol-

lows: 𝑥𝑡 = 1, for each 𝑡 ∈ 𝑅; 𝑔𝑡
𝑃

= 𝑓 𝑡
𝑃
/𝑦𝑡 , for each 𝑡 ∈ 𝑅 and

𝑃 ∈ P𝑡 ; and 𝑥𝑣 = max𝑡 ∈𝑅{
∑
𝑃∈P𝑡 :𝑣∈𝑃 𝑔

𝑡
𝑃
}, for each 𝑣 ∈ 𝑉 ′′ \𝑅. We

show that the defined solution is feasible for (LP-DST) and its cost

is at most 𝛿𝐵, which implies that 𝑂𝑃𝑇𝐹𝐷𝑆𝑇 ≤ 𝛿𝐵. Constraint (4) is

satisfied as, by Constraint (2) of (LP-DCBC), we have that, for each

𝑡 ∈ 𝑅,
∑
𝑃∈P𝑡

𝑓 𝑡
𝑃

= 𝑦𝑡 and hence

∑
𝑃∈P𝑡

𝑔𝑡
𝑃
=

∑
𝑃∈P𝑡

𝑓 𝑡
𝑃
/𝑦𝑡 = 1.

Constraint (5) is satisfied, as by definition of 𝑥𝑣 , it holds 𝑥𝑣 ≥∑
𝑃∈P𝑡 :𝑣∈𝑃 𝑔

𝑡
𝑃
, for each 𝑣 ∈ 𝑉 ′′

and 𝑡 ∈ 𝑅. The last two constraints

are satisfied by definition of {𝑥𝑣, 𝑔𝑡𝑃 }𝑣∈𝑉 ′′,𝑡 ∈𝑅,𝑃∈P𝑡
and by Con-

straint (4). The cost of {𝑥𝑣}𝑣∈𝑉 ′′ is equal to
∑

𝑣∈𝑉 ′′ 𝑥𝑣𝑐𝑣 . For each

𝑣 ∈ 𝑉 ′′ \ 𝑅, let 𝑡𝑣 be the terminal that attains the maximum in the

definition of 𝑥𝑣 , i.e., 𝑡𝑣 := argmax𝑡 ∈𝑅{
∑
𝑃∈P𝑡 :𝑣∈𝑃 𝑔

𝑡
𝑃
}, then

𝑥𝑣 =
∑︁

𝑃∈P𝑡𝑣 :𝑣∈𝑃
𝑔
𝑡𝑣
𝑃

=
∑︁

𝑃∈P𝑡𝑣 :𝑣∈𝑃
𝑓
𝑡𝑣
𝑃
/𝑦𝑡𝑣 ≤ 𝑦𝑣/𝑦𝑡𝑣 ≤ 𝛿𝑦𝑣,

where the first inequality is due to Constraint (3) of (LP-DCBC) and

the last inequality is due to 𝑦𝑡 ≥ 1/𝛿 for each node 𝑡 ∈ 𝑅. Moreover,

𝑐𝑡 = 0 for each 𝑡 ∈ 𝑅, because 𝑅 ⊆𝑊 . It follows that

∑
𝑣∈𝑉 ′′ 𝑥𝑣𝑐𝑣 =∑

𝑣∈𝑉 ′′\𝑅 𝑥𝑣𝑐𝑣 ≤ 𝛿
∑

𝑣∈𝑉 ′′\𝑅 𝑦𝑣𝑐𝑣 ≤ 𝛿
∑

𝑣∈𝑉 ′\𝑅 𝑦𝑣𝑐𝑣 ≤ 𝛿𝐵, by Con-

straint (1) of (LP-DCBC).

Finally, we apply the algorithm in Section 4. This algorithm is a

polynomial time𝑂 (
√︁
|𝑉 ′′ \ 𝑅 | log |𝑅 |)-approximation algorithm for

DST that, starting from an optimal solution to (LP-DST), computes

a tree𝑇𝐷𝑆𝑇 rooted at 𝑟 spanning all the terminals. Moreover, the cost

of𝑇𝐷𝑆𝑇 is at most a factor𝑂 (
√︁
|𝑉 ′′ \ 𝑅 | log |𝑅 |) from the fractional

optimum 𝑂𝑃𝑇𝐹𝐷𝑆𝑇 , that is

𝑐′′ (𝑇𝐷𝑆𝑇 ) =
∑︁

𝑣∈𝑉 (𝑇𝐷𝑆𝑇 )
𝑐′′ (𝑣) = 𝑂 (

√︁
|𝑉 ′′ \ 𝑅 | log |𝑅 |)𝑂𝑃𝑇𝐹𝐷𝑆𝑇 ,

see Theorem 4.1.
1
By applying this algorithm to our instance 𝐼𝐷𝑆𝑇

of DST, we obtain a tree 𝑇𝐷𝑆𝑇 that is rooted at 𝑟 and spans all the

nodes in 𝑅. The costs of 𝑇𝐷𝑆𝑇 is

𝑐′′ (𝑇𝐷𝑆𝑇 ) = 𝑂 (
√︁
|𝑉 ′′ \ 𝑅 | log |𝑅 |)𝑂𝑃𝑇𝐹𝐷𝑆𝑇

= 𝑂 (
√︁
|𝑉 | log |𝑅 |)𝑂𝑃𝑇𝐹𝐷𝑆𝑇

= 𝑂 (𝛿𝐵
√︁
|𝑉 | log |𝑅 |),

as 𝑉 ′′ \ 𝑅 = 𝑉 and 𝑂𝑃𝑇𝐹𝐷𝑆𝑇 ≤ 𝛿𝐵. This concludes the proof. □

We now prove Theorem 3.2.

Proof of Theorem 3.2. We first compute an optimal solution

{𝑦𝑣, 𝑓 𝑣𝑃 }𝑣∈𝑉 ′,𝑃 ∈P𝑣
for the Linear Program (LP-DCBC). Let 𝑍 ⊆𝑊

be the set of nodes in𝑊 that in solution {𝑦𝑣, 𝑓 𝑣𝑃 }𝑣∈𝑉 ′,𝑃 ∈P𝑣
receive

at least
1

|𝑋 |2 amount of flow from 𝑟 , i.e., for any𝑤 ∈ 𝑍,𝑦𝑤 ≥ 1

|𝑋 |2 .

1
Here we ignore the term 𝐹 = max𝑣∈𝑉 𝑑𝑖𝑠𝑡 (𝑟, 𝑣) because𝐺 is 𝐵-proper and hence

𝐹 ≤ 𝐵.
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The overall prize accrued by all nodes in 𝑍 is∑︁
𝑤∈𝑍

𝑝𝑤 ≥
∑︁
𝑤∈𝑍

𝑦𝑤𝑝𝑤 = 𝑂𝑃𝑇 −
∑︁

𝑤∈𝑊 \𝑍
𝑦𝑤𝑝𝑤

≥ ©­«1 −
∑︁

𝑤∈𝑊 \𝑍
𝑦𝑤

ª®¬𝑂𝑃𝑇 ≥
(
1 − |𝑋 | · 1

|𝑋 |2

)
𝑂𝑃𝑇

=

(
1 − 1

|𝑋 |

)
𝑂𝑃𝑇,

where the first inequality holds as 𝑦𝑤 ≤ 1, for each 𝑤 ∈ 𝑍 , the

second inequality holds as the prize of each node is no more than

𝑂𝑃𝑇 and the third inequality holds because each node𝑤 ∈𝑊 \ 𝑍
has 𝑦𝑤 < 1

|𝑋 |2 and |𝑊 \ 𝑍 | ≤ |𝑊 | = |𝑋 |.
From now on we only consider the prize accrued by nodes in

𝑍 , which results in losing a factor of at most 1 − 1

|𝑋 | = Θ(1) with
respect to the optimum of (LP-DCBC). To simplify the reading, we

ignore this constant factor and assume that

∑
𝑤∈𝑍 𝑦𝑤𝑝𝑤 = 𝑂𝑃𝑇 .

We partition the nodes of𝑍 into 𝑘 disjoint sets𝑍1, . . . , 𝑍𝑘 defined

as 𝑍𝑖 =

{
𝑤 ∈ 𝑍 : 𝑦𝑤 ∈

(
1

2
𝑖 ,

1

2
𝑖−1

]}
, for each 𝑖 ∈ [𝑘]. It is easy to see

that 𝑘 = 𝑂 (log |𝑋 |) such sets are enough to cover all nodes of 𝑍 . In

fact, if the smallest value of 𝑦𝑤 for a node𝑤 ∈ 𝑍 is in the interval(
1

2
𝑘 ,

1

2
𝑘−1

]
, then, since 𝑦𝑤 ≥ 1

|𝑋 |2 , we have
1

2
𝑘−1 ≥ 1

|𝑋 |2 , and hence

2
𝑘−1 ≤ |𝑋 |2 and 𝑘 ≤ 2 log |𝑋 | + 1.

We distinguish between two cases by dividing 𝑍 into two parts

𝑍𝐴 =
⋃⌊log log |𝑋 | ⌋

𝑖=1
𝑍𝑖 and 𝑍𝐵 = 𝑍 \ 𝑍𝐴 =

⋃𝑘
𝑖=⌊log log |𝑋 | ⌋+1 𝑍𝑖 .

Since

∑
𝑤∈𝑍 𝑦𝑤𝑝𝑤 = 𝑂𝑃𝑇 , we must have

∑
𝑤∈𝑍𝐴

𝑦𝑤𝑝𝑤 ≥ 𝑂𝑃𝑇
2

or∑
𝑤∈𝑍𝐵

𝑦𝑤𝑝𝑤 ≥ 𝑂𝑃𝑇
2

.

(1)

∑
𝑤∈𝑍𝐴

𝑦𝑤𝑝𝑤 ≥ 𝑂𝑃𝑇
2

. In this case, we consider the set of

nodes in 𝑍𝐴 as the set of terminals 𝑅 in Lemma 3.3. Since

𝑦𝑤 ≥ 1/2⌊log log |𝑋 | ⌋ ≥ 1/2log log |𝑋 | = 1/log |𝑋 |, for each
𝑤 ∈ 𝑍𝐴 , in Lemma 3.3 we can set 𝛿 = log |𝑋 |. Therefore,
by applying the algorithm in Lemma 3.3, we obtain a tree 𝑇

rooted at 𝑟 that spans all the nodes in 𝑍𝐴 and costs 𝑐′ (𝑇 ) =
𝑂 (𝐵

√︁
|𝑉 | log2 |𝑋 |). Moreover, as𝑇 spans all the nodes in 𝑍𝐴 ,

its prize is at least

𝑝′ (𝑇 ) =
∑︁

𝑣∈𝑉 (𝑇 )
𝑝′ (𝑣) ≥

∑︁
𝑤∈𝑍𝐴

𝑝𝑤 ≥
∑︁

𝑤∈𝑍𝐴

𝑦𝑤𝑝𝑤 ≥ 𝑂𝑃𝑇

2

,

by the case assumption and monotonicity of the prize func-

tion. Therefore, the ratio between prize and cost of 𝑇 is

𝑝′ (𝑇 )
𝑐′ (𝑇 ) = Ω

(
𝑂𝑃𝑇

𝐵
√
|𝑉 | log2 |𝑋 |

)
.

(2)

∑
𝑤∈𝑍𝐵

𝑦𝑤𝑝𝑤 ≥ 𝑂𝑃𝑇
2

. Since 𝑘 ≤ 2 log |𝑋 | + 1, there must be

an index 𝑖 between ⌊log log |𝑋 |⌋ + 1 and 2 log |𝑋 | + 1 such

that∑︁
𝑤∈𝑍𝑖

𝑦𝑤𝑝𝑤 ≥ 𝑂𝑃𝑇 /2
2 log |𝑋 | − ⌊log log |𝑋 |⌋ + 1

≥ 𝑂𝑃𝑇

4 log |𝑋 | ,

for |𝑋 | sufficiently large. Let 𝑝′ (𝑍𝑖 ) be the sum of prizes of

all the nodes in 𝑍𝑖 . Then,

𝑝′ (𝑍𝑖 ) =
∑︁
𝑤∈𝑍𝑖

𝑝𝑤 ≥ 2
𝑖−1

∑︁
𝑤∈𝑍𝑖

𝑦𝑤𝑝𝑤 ≥ 2
𝑖−1 𝑂𝑃𝑇

4 log |𝑋 | , (6)

since 𝑦𝑤 ∈
(
1

2
𝑖 ,

1

2
𝑖−1

]
, for each 𝑤 ∈ 𝑍𝑖 . Moreover, since

𝑖 ≥ ⌊log log |𝑋 |⌋ + 1 ≥ log log |𝑋 |, then

𝑝′ (𝑍𝑖 ) ≥ 2
𝑖−1 𝑂𝑃𝑇

4 log |𝑋 | ≥ 2
log log |𝑋 |−1 𝑂𝑃𝑇

4 log |𝑋 |

=
log |𝑋 |

2

𝑂𝑃𝑇

4 log |𝑋 | = Ω(𝑂𝑃𝑇 ). (7)

Similarly to the previous case, we apply the algorithm in

Lemma 3.3, considering 𝑍𝑖 as set of terminals and 𝛿 = 2
𝑖
,

since𝑦𝑤 ≥ 1/2𝑖 , for each𝑤 ∈ 𝑍𝑖 . The tree𝑇 computed by the

algorithm in the lemma has cost 𝑐′ (𝑇 ) = 𝑂 (2𝑖𝐵
√︁
|𝑉 | log |𝑋 |)

and, since it spans all the nodes in 𝑍𝑖 , has prize 𝑝′ (𝑇 ) ≥
𝑝′ (𝑍𝑖 ) ≥ 2

𝑖−1 𝑂𝑃𝑇
4 log |𝑋 | , by Inequality (6). Therefore, the prize-

to-cost ratio of 𝑇 is
𝑝′ (𝑇 )
𝑐′ (𝑇 ) = Ω

(
𝑂𝑃𝑇

𝐵
√
|𝑉 | log2 |𝑋 |

)
. Moreover,

by Inequality (7), 𝑝′ (𝑇 ) ≥ 𝑝′ (𝑍𝑖 ) = Ω(𝑂𝑃𝑇 ). □

Trimming Process
In the previous step, we computed an out-tree 𝑇 of 𝐺 ′

rooted at

𝑟 whose prize is Ω(𝑂𝑃𝑇 ). If the cost of 𝑇 satisfies the budget con-

straint, this gives a constant approximation factor. However, the

cost of 𝑇 can exceed the budget 𝐵. In this case, we can exploit

the fact that the ratio between prize and cost of 𝑇 is bounded by

𝛾 =
𝑝′ (𝑇 )
𝑐′ (𝑇 ) = Ω

(
𝑂𝑃𝑇

𝐵
√
|𝑉 | log2 |𝑋 |

)
. In fact, this property allows us

to use the trimming process introduced in the following lemma

by Bateni et al. [1] for the node-weighted budgeted problem in

undirected graphs.

Lemma 3.4 (Lemma 3 in [1]). Let𝑇 be a tree rooted at 𝑟 with prize-
to-cost ratio 𝛾 =

𝑝 (𝑇 )
𝑐 (𝑇 ) . Suppose the underlying graph is 𝐵-proper for

𝑟 and for 𝜖 ∈ (0, 1] the cost of the tree is at least 𝜖𝐵
2
. One can find

a tree 𝑇 containing 𝑟 with prize-to-cost ratio at least 𝜖𝛾
4

such that
𝜖𝐵/2 ≤ 𝑐 (𝑇 ) ≤ (1 + 𝜖)𝐵.

Note that the above lemma has been introduced for (undirected)

rooted trees, but it is easy to see that it can be extended to rooted out-

trees, see e.g. [5]. If 𝑐′ (𝑇 ) > 𝐵, we apply to 𝑇 the trimming process

of Lemma 3.4 and obtain another out-tree𝑇 of𝐺 ′
with cost between

𝜖𝐵
2
and (1+𝜖)𝐵 and prize-to-cost ratio

𝑝′ (𝑇 )
𝑐′ (𝑇 ) ≥ 𝜖𝛾

4
, for any 𝜖 ∈ (0, 1].

Tree 𝑇 violates the budget at most by a factor 1 + 𝜖 . Moreover, the

prize of 𝑇 is 𝑝′ (𝑇 ) ≥ 𝜖𝛾
4
𝑐′ (𝑇 ) = Ω

(
𝜖𝑂𝑃𝑇

𝐵
√
|𝑉 | log2 |𝑋 |

𝑐′ (𝑇 )
)
. Since

𝑐′ (𝑇 ) ≥ 𝜖𝐵/2 and 𝑂𝑃𝑇 ≥ 𝑝 (𝑇 ∗
𝐵
), then 𝑝′ (𝑇 ) = Ω

(
𝜖2𝑝 (𝑇 ∗

𝐵
)√

|𝑉 | log2 |𝑋 |

)
.

It remains to turn the tree𝑇 of𝐺 ′
into a tree of𝐺 with the same

prize and cost by taking the maximal subtree of 𝑇 containing only

nodes in 𝑉 . This results in the following theorem.

Theorem 3.5. Problem DCBC admits a polynomial time bicrite-

ria
(
1 + 𝜖,𝑂

(√
|𝑉 | log2 |𝑋 |

𝜖2

))
-approximation algorithm, for any 𝜖 ∈

(0, 1].

The following corollary follows since we can reduce any instance

of the directed budgeted rooted out-tree maximization problem
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(DBOM) to an instance of DCBC where each node of the graph is

associated with a distinct singleton set and hence |𝑋 | = |𝑉 |.

Corollary 3.6. Problem DBOM admits a polynomial time bi-

criteria
(
1 + 𝜖,𝑂

(√
|𝑉 | log2 |𝑉 |

𝜖2

))
-approximation algorithm, for any

𝜖 ∈ (0, 1].

The Case of Undirected Graphs
As UCBC is a special case of DCBC, we can use our algorithm

in Theorem 3.5 to obtain a bicriteria

(
1 + 𝜖,𝑂

(√
|𝑉 | log2 |𝑋 |

𝜖2

))
-ap-

proximation for UCBC. We can show that a small modification

of the same algorithm actually yields an improved approximation

of 𝑂

(
log ( |𝑉 |+|𝑋 | ) log |𝑋 |

𝜖2

)
, with a budget violation of 1 + 𝜖 , for any

𝜖 ∈ (0, 1]. The main difference consists in using, in the algorithm

of Lemma 3.3, the𝑂 (log( |𝑉 ′′ |))-approximation algorithm by Klein

and Ravi [18] for the node-weighted Steiner tree problem in undi-
rected graphs instead of our 𝑂 (

√︁
|𝑉 ′′ \ 𝑅 | log |𝑅 |)-approximation

algorithm for the same problem on directed graphs, where 𝑉 ′′
and

𝑅 are the set of nodes and terminals in the instance of a node-

weighted Steiner tree problem instance. The approximation ratio

can be shown using the same analysis used for DCBC, with this

difference. (see full paper for more details).

Also in the undirected case, we can reduce an instance of BNS to
an instance of UCBCwhere |𝑋 | = |𝑉 |. Therefore, our algorithm for

UCBC is a bicriteria

(
1 + 𝜖,𝑂

(
log ( |𝑉 |+|𝑋 | ) log |𝑋 |

𝜖2

))
-approximation

for BNS, for any 𝜖 ∈ (0, 1].

4 THE NODE-WEIGHTED STEINER TREE
PROBLEM IN DIRECTED GRAPHS

In this section, we present a polynomial time approximation algo-

rithm for DST with approximation ratio 𝑂 (
√︁
|𝑉 | log |𝑉 |), where

𝑉 is the set of nodes in the graph. More precisely, the cost of the

tree computed by our algorithm is a factor 𝑂 (
√︁
|𝑉 \ 𝑅 | log |𝑅 |) far

from the optimum of its standard flow-based linear programming

relaxation given in (LP-DST) plus the maximum distance from the

root to a node, where 𝑅 is the set of terminals. The algorithm is

used as a subroutine in the previous section but might be of its own

interest. Formally, we show the following theorem.

Theorem 4.1. ProblemDST admits a𝑂
(
(1 + 𝜖)

√︁
|𝑉 \ 𝑅 | log |𝑅 |

)
-

approximation algorithm whose running time is polynomial in the
input size and in 1/𝜖 , for any 𝜖 > 0. Moreover, the cost of the tree

computed by the algorithm is 𝑂
(
(𝑂𝑃𝑇 + 𝐹 )

√︁
|𝑉 \ 𝑅 | log |𝑅 |

)
, where

𝑂𝑃𝑇 is the optimum of (LP-DST) and 𝐹 = max𝑣∈𝑉 𝑑𝑖𝑠𝑡 (𝑟, 𝑣).

We prove Theorem 4.1 in what follows. Let 𝑇 ∗
be an optimal so-

lution to DST. We use the standard flow-based linear programming

relaxation for DST given in (LP-DST) in Section 3. For the sake of

completeness, we report the linear program below.
2

minimize

∑
𝑣∈𝑉 𝑥𝑣𝑐𝑣 (LP-DST)

subject to

∑
𝑃∈P𝑡

𝑔𝑡
𝑃
= 1, ∀𝑡 ∈ 𝑅 (8)∑

𝑃∈P𝑡 :𝑣∈𝑃 𝑔
𝑡
𝑃
≤ 𝑥𝑣, ∀𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑅 (9)

0 ≤𝑥𝑣 ≤ 1, ∀𝑣 ∈ 𝑉

0 ≤𝑔𝑡𝑃 ≤ 1, ∀𝑡 ∈ 𝑅, 𝑃 ∈ P𝑡 .

It is easy to see that 𝑂𝑃𝑇 , the optimum for (LP-DST), provides

a lower bound to 𝑐 (𝑇 ∗). In fact, the solution to (LP-DST) in which

𝑥𝑣 is set to 1 if 𝑣 ∈ 𝑉 (𝑇 ∗) and 0 otherwise, and 𝑔𝑡
𝑃
is set to 1 if 𝑃

is the unique path from 𝑟 to 𝑡 in 𝑇 ∗
and to 0 otherwise, is feasible

for (LP-DST) and has value

∑
𝑣∈𝑉 𝑥𝑣𝑐𝑣 = 𝑐 (𝑇 ∗).

Let {𝑥𝑣}𝑣∈𝑉 be an optimal solution for (LP-DST) and let 𝑆 ⊆ 𝑉

be the set of all nodes 𝑣 with 𝑥𝑣 > 0. Let 𝑈 ⊆ 𝑆 be the set of all

nodes with 𝑥𝑣 ≥ 1√
|𝑉 \𝑅 |

for any 𝑣 ∈ 𝑈 . Note that nodes in 𝑅 and 𝑟

belong to 𝑈 since we need to send one unit of flow from 𝑟 to any

terminal by Constraint (8). We call a terminal 𝑡 ∈ 𝑅 a cheap terminal
if there exists a path from 𝑟 to 𝑡 in 𝐺 [𝑈 ]. We call a terminal 𝑡 ∈ 𝑅

an expensive terminal otherwise. Let 𝐶𝐻 and 𝐸𝑋 be the set of all

cheap and expensive terminals in 𝑅, respectively.

We now show that we can compute in polynomial time two trees

spanning 𝐶𝐻 and 𝐸𝑋 , resp., and then we show how to merge the

two trees into a single tree with cost𝑂

(
(𝑂𝑃𝑇 + 𝐹 )

√︁
|𝑉 \ 𝑅 | log |𝑅 |

)
.

We first show how to compute a tree 𝑇𝐶𝐻
rooted at 𝑟 spanning all

the cheap terminals 𝐶𝐻 with cost 𝑐 (𝑇𝐶𝐻 ) ≤
√︁
|𝑉 \ 𝑅 | ·𝑂𝑃𝑇 . The

proof of the next lemma is given in the full version of the paper.

Lemma 4.2. There exists a polynomial time algorithm that finds a
tree 𝑇𝐶𝐻 rooted at 𝑟 spanning all the cheap terminals 𝐶𝐻 with cost
𝑐 (𝑇𝐶𝐻 ) ≤

√︁
|𝑉 \ 𝑅 | ·𝑂𝑃𝑇 .

We next show how to compute in polynomial time a tree 𝑇𝐸𝑋

rooted at 𝑟 spanning all the expensive terminals 𝐸𝑋 with cost

𝑐 (𝑇𝐸𝑋 ) = 𝑂

(
(𝑂𝑃𝑇 + 𝐹 )

√︁
|𝑉 \ 𝑅 | log |𝑅 |

)
. The algorithm to build

𝑇𝐸𝑋
can be summarized as follows. We first compute, for each

𝑡 ∈ 𝐸𝑋 , the set 𝑋𝑡 of nodes𝑤 in 𝑆 \𝑈 for which there exists a path

𝑃 from𝑤 to 𝑡 that uses only nodes in𝑈 ∪ {𝑤}, i.e.,𝑉 (𝑃) \ {𝑤} ⊆ 𝑈 .

Then, we compute a small-size hitting set 𝑋 ′
of all 𝑋𝑡 . Finally, we

connect 𝑟 to the nodes of 𝑋 ′
and the nodes of 𝑋 ′

to those in 𝐸𝑋 in

such a way that each node 𝑡 in 𝐸𝑋 is reached from one of the nodes

in 𝑋 ′
that hits 𝑋𝑡 . The bound on the cost of 𝑇𝐸𝑋

follows from the

size of 𝑋 ′
and from the cost of nodes in 𝑈 .

Lemma 4.3. There exists a polynomial time algorithm that finds a
tree 𝑇𝐸𝑋 rooted at 𝑟 spanning all the expensive terminals 𝐸𝑋 with
cost 𝑐 (𝑇𝐸𝑋 ) ≤ (𝑂𝑃𝑇 + 𝐹 )

√︁
|𝑉 \ 𝑅 | log |𝑅 |.

Proof. Let 𝑈 ′ ⊆ 𝑆 be the set of all nodes 𝑣 with 0 < 𝑥𝑣 <
1√

|𝑉 \𝑅 |
, i.e., 𝑈 ′ = 𝑆 \ 𝑈 . Recall that for any expensive terminal

𝑡 ∈ 𝐸𝑋 , we define 𝑋𝑡 as the set of nodes 𝑤 in 𝑈 ′
such that there

exists a path from𝑤 to 𝑡 in 𝐺 [𝑈 ∪ {𝑤}].
We first show a lower bound on the size of sets 𝑋𝑡 , for each

𝑡 ∈ 𝐸𝑋 , which will allow us to compute a small hitting set of all

2
Note that here the graph is denoted as𝐺 = (𝑉 ,𝐴) instead of𝐺 ′′ = (𝑉 ′′, 𝐴′′ ) .
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such sets. The proof of the next claim is given in the full version of

the paper.

Claim 4.4. |𝑋𝑡 | ≥
√︁
|𝑉 \ 𝑅 |, for each 𝑡 ∈ 𝐸𝑋 .

We use the following well-known result (see, e.g., Lemma 3.3

in [2]) to find a small set of nodes that hits all sets 𝑋𝑡 , for all 𝑡 ∈ 𝐸𝑋 .

Claim 4.5. Let 𝑉 ′ be a set of𝑀 elements and
∑

= (𝑋 ′
1
, . . . , 𝑋 ′

𝑁
)

be a collection of subsets of 𝑉 ′ such that |𝑋 ′
𝑖
| ≥ 𝐿, for each 𝑖 ∈ [𝑁 ].

There is a deterministic algorithm that runs in polynomial time in
𝑁 and 𝑀 and finds a subset 𝑋 ′ ⊆ 𝑉 ′ with |𝑋 ′ | ≤ (𝑀/𝐿) ln𝑁 and
𝑋 ′ ∩ 𝑋 ′

𝑖
≠ ∅ for all 𝑖 ∈ [𝑁 ].

Thanks to Claim 4.4, we can use the algorithm of Claim 4.5 to

find a set 𝑋 ′ ⊆ ⋃
𝑡 ∈𝐸𝑋 𝑋𝑡 such that 𝑋 ′ ∩ 𝑋𝑡 ≠ ∅, for all 𝑡 ∈ 𝐸𝑋 ,

whose size is at most |𝑋 ′ | ≤ |𝑉 \𝑅 | log |𝑅 |√
|𝑉 \𝑅 |

=
√︁
|𝑉 \ 𝑅 | log |𝑅 |, where

the parameters of Claim 4.5 are 𝐿 =
√︁
|𝑉 \ 𝑅 |, 𝑁 = |𝐸𝑋 | ≤ |𝑅 |, and

𝑀 =
�� ⋃

𝑡 ∈𝐸𝑋 𝑋𝑡

�� ≤ |𝑉 \ 𝑅 |, since 𝑥𝑡 = 1, for each 𝑡 ∈ 𝑅, and hence

no node in 𝑅 can belong to

⋃
𝑡 ∈𝐸𝑋 𝑋𝑡 ⊆ 𝑈 ′

.

Since for any 𝑡 ∈ 𝐸𝑋 and any 𝑤 ∈ 𝑋𝑡 there exists a path from

𝑤 to 𝑡 in 𝐺 [𝑈 ∪ {𝑤}] and 𝑋 ′ ∩ 𝑋𝑡 ≠ ∅, then there exists at least a

node𝑤 ∈ 𝑋 ′
for which there is a path from𝑤 to 𝑡 in 𝐺 [𝑈 ∪ {𝑤}].

Now, for each𝑤 ∈ 𝑋 ′
, we find a shortest path from 𝑟 to𝑤 in 𝐺 .

Let P1 be the set of all these shortest paths. We also select, for each

𝑡 ∈ 𝐸𝑋 , an arbitrary node𝑤 in𝑋 ′∩𝑋𝑡 and compute a shortest path

from𝑤 to 𝑡 in 𝐺 [𝑈 ∪ {𝑤}]. Let P2 be the set of all these shortest

paths. Let 𝑉 (P1) and 𝑉 (P2) denote the union of all nodes of the

paths in P1 and P2, respectively, and let𝐺
𝐸𝑋

be the graph induced

by all the nodes in 𝑉 (P1) ∪𝑉 (P2). We compute a tree 𝑇𝐸𝑋
rooted

at 𝑟 spanning 𝐺𝐸𝑋
. Note that such a tree exists as in 𝐺𝐸𝑋

we have

for each𝑤 ∈ 𝑋 ′
a path from 𝑟 to𝑤 and, for each terminal 𝑡 ∈ 𝐸𝑋 ,

at least a path from one of the nodes in 𝑋 ′
to 𝑡 .

We next move to bound the cost of 𝑇𝐸𝑋
; Indeed, we bound

the cost of all nodes in 𝐺𝐸𝑋
. Since |𝑋 ′ | ≤

√︁
|𝑉 \ 𝑅 | log |𝑅 | and

𝑑𝑖𝑠𝑡 (𝑟, 𝑣) ≤ 𝐹 for any node 𝑣 , then 𝑐 (𝑉 (P1)) ≤ 𝐹
√︁
|𝑉 \ 𝑅 | log |𝑅 |.

Since 𝑥𝑣 ≥ 1√
|𝑉 \𝑅 |

for any 𝑣 ∈ 𝑈 , and

∑
𝑣∈𝑈 𝑥𝑣𝑐𝑣 ≤ ∑

𝑣∈𝑆 𝑥𝑣𝑐𝑣 ≤

𝑂𝑃𝑇 , then 𝑐 (𝑈 ) =
∑

𝑣∈𝑈 𝑐𝑣 ≤
√︁
|𝑉 \ 𝑅 | · 𝑂𝑃𝑇 . Therefore, since

𝑉 (P2) \ 𝑋 ′ ⊆ 𝑈 , then 𝑐 (𝑉 (P2) \ 𝑋 ′) ≤ 𝑐 (𝑈 ) ≤
√︁
|𝑉 \ 𝑅 | · 𝑂𝑃𝑇 .

Overall,𝐺𝐸𝑋
costs at most (𝑂𝑃𝑇 + 𝐹 )

√︁
|𝑉 \ 𝑅 | log |𝑅 |. This finishes

the proof of Lemma 4.3. □

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Since both 𝑇𝐸𝑋
and 𝑇𝐶𝐻

are rooted at

𝑟 , we can find a tree 𝑇 rooted at 𝑟 spanning all nodes 𝑉 (𝑇𝐸𝑋 ) ∪
𝑉 (𝑇𝐶𝐻 ).

By Lemmas 4.2 and 4.3 we have that the cost of 𝑇 is 𝑐 (𝑇 ) =

𝑂

(
(𝑂𝑃𝑇 + 𝐹 )

√︁
|𝑉 \ 𝑅 | log |𝑅 |

)
. This shows the second part of the

statement.

To show the bound on the approximation ratio, we observe that

𝑂𝑃𝑇 ≤ 𝑐 (𝑇 ∗). Moreover, we can assume that 𝐹 ≤ (1+𝜖)𝑐 (𝑇 ∗) since
we can remove from the graph all the nodes 𝑣 such that 𝑑𝑖𝑠𝑡 (𝑟, 𝑣) >
(1 + 𝜖)𝑐 (𝑇 ∗) by estimating the value of 𝑐 (𝑇 ∗) using a binary search.

Therefore, the cost of 𝑇 is 𝑐 (𝑇 ) = 𝑂

(√︁
|𝑉 \ 𝑅 | log |𝑅 |

)
𝑐 (𝑇 ∗). □

5 DISCUSSION AND FUTURE RESEARCH
DCBC and CBC are basic combinatorial optimization problems

with many applications in diverse areas such as logistics, wireless

sensor networks, and bioinformatics. Besides their relevance, their

approximation properties still need to be better understood. In

this paper, we make an important step forward, providing the first

algorithms forDCBC andCBCwith sublinear approximation ratios

that significantly improve over the current best algorithms. Our

results also imply an improved approximation for the particular

case of additive prize function, DBOM.

The most interesting but very ambitious research question is

whether there is a polynomial lower bound on the approximability

of DCBC. In other words, whether it is hard to compute in polyno-

mial time a solution that is asymptotically better than a polynomial

factor from the optimum. The same question for the directed Steiner

tree problem has been open for a long time. However, it is known

that the integrality gap of the standard flow-based LP relaxation for

DCBC is unbounded if no budget violation is allowed [1] and has a

polynomial lower bound for the directed Steiner tree problem [22].

This suggests that we cannot significantly improve our approxima-

tion factors for DCBC by using the linear relaxation (LP-DCBC).

Using LP-hierarchies [10, 27] could be a promising research direc-

tion to improve our approximation factors. For the Directed Steiner

Network, it is known that the integrality gap of the Lasserre Hier-

archy has a polynomial lower bound [8]. An even harder research

question is to find a lower bound on the approximation of CBC.
The techniques introduced in this paper might be useful to ap-

proximate other more general network design problems. One inter-

esting example is the case when the prize function is a monotone

submodular set function of the nodes. In this case, the best algo-

rithm is the one in [6] that achieves an approximation factor of

𝑂 ( 1

𝜖3

√
𝐵)-approximation algorithm with a budget violation of a

factor 1 + 𝜖 , for any 𝜖 ∈ (0, 1]. Our algorithms cannot directly be

applied to this case because the linear program (LP-DCBC) does

not give an upper bound to the optimum. Therefore, the first step in

using our techniques should be to find a suitable linear relaxation.
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