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ABSTRACT
Mobile health (mHealth) programs face a critical challenge in opti-

mizing the timing of automated health information calls to benefi-

ciaries. This challenge has been formulated as a collaborative multi-

armed bandit problem, requiring online learning of a low-rank

reward matrix. Existing solutions often rely on heuristic combina-

tions of offline matrix completion and exploration strategies. In this

work, we propose a principled Bayesian approach using Thomp-

son Sampling for this collaborative bandit problem. Our method

leverages prior information through efficient Gibbs sampling for

posterior inference over the low-rankmatrix factors, enabling faster

convergence. We demonstrate significant improvements over state-

of-the-art baselines on a real-world dataset from the world’s largest

maternal mHealth program. Our approach achieves a 16% reduc-

tion in the number of calls compared to existing methods and a

47% reduction compared to the deployed random policy. This effi-

ciency gain translates to a potential increase in program capacity

by 0.5− 1.4million beneficiaries, granting them access to vital ante-

natal and post-natal care information. Furthermore, we observe a

7% and 29% improvement in beneficiary retention (an extremely

hard metric to impact) compared to state-of-the-art and deployed

baselines, respectively. Synthetic simulations further demonstrate

the superiority of our approach, particularly in low-data regimes

and in effectively utilizing prior information. We also provide a the-

oretical analysis of our algorithm in a special setting using Eluder

dimension.
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1 INTRODUCTION
Mobile health (mHealth) programs offer a powerful tool for deliver-

ing vital health information, but face a critical challenge: optimizing

the timing of automated calls to maximize engagement. This is par-

ticularly important in maternal mHealth programs, which play a

vital role in reducing maternal mortality rates - a key target within

the WHO’s Sustainable Development Goals [3]. To ensure these

programs achieve their full potential, automated calls must be strate-

gically timed to achieve high pick-up rates, leading to improved

health outcomes for mothers and infants.

This paper focuses on Kilkari [2], the world’s largest maternal

mHealth program. Implemented nationwide across India by the

Ministry of Health and FamilyWelfare in partnership with the NGO

ARMMAN [1], Kilkari delivers critical maternal and child health

information through automated voice calls throughout pregnancy

and the post child birth period. Kilkari has served over 40 million

mothers across India so far, with over 3 million active subscribers

at any given time. The importance of listening to these voice mes-

sages has been shown to have significant impact on the health

outcomes of mothers and babies [20], particularly among the most

marginalised who have the most to benefit from this program, and

have the least access to resources.

However, one major challenge faced by the program is that the

pick-up rate of the calls is very low. This is largely due to the fact

that different beneficiaries prefer to listen to these calls at differ-

ent time slots and on different days due to practical constraints

such as shared family phones, different working hours, household

responsibilities, as well as network reliability, particularly in ru-

ral districts of India [15]. To address this, the program attempts

sending the automated voice calls multiple times in a week, until

a call is answered, with almost 50% of the economically weakest

beneficiaries requiring more than 6 attempts on average [20] for a

single message in a week and on average 23% beneficiaries being

unreachable despite multiple attempts [16]. In fact, due to the scale

of the program, consistent low listenership of the calls can even

lead to beneficiaries being dropped from the program.

0
Code for experiments at https://github.com/arpandg/ts-sgld
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Optimizing call timing is therefore essential to improve engage-

ment, andmaximize the dissemination of critical health information.

Moreover, it could also help reduce critical bandwidth being spent

heavily on retries, which would then enable scaling the outreach

of the program to millions of more mothers across the country.

While individual preferences would ideally inform call scheduling,

Kilkari’s scale prohibits collecting individual time preferences, or

demographic information that could help predict those preferences.

This necessitates a robust, scalable solution to predict optimal call

times based on limited information.

To this end, we formulate the call pick-up problem as a multi-

user multi-armed bandit problem, where each time slot represents

an arm, and pulling an arm corresponds to sending a call at that

time. The reward is based on whether the call is answered. The

bandit algorithm must learn which time slot to use for each user

to maximize the probability of answering. Current state-of-the-art

technique [25] formulated this problem as collaborative bandits

with a low-rank assumption on user preferences. This low-rank

assumption is justified by the observation that groups of users ex-

hibit similar preferences in practice (Figure 1 shows an example

of the low-rank pick-up problem). This work attempted to collab-

orate across users to quickly learn their preferences. To this end,

the authors employed offline matrix factorization with Boltzmann

exploration [11]. However, this approach is heuristic, lacks theoret-

ical guarantees, and performs sub-optimal exploration, leading to

worse regret in practice. Furthermore, it falls short when there are

new users joining the program (as in the real world) as it requires

a large number of samples to learn the preferences, hence delaying

the inference of optimal slots which further increases the risk of

drop off from the program. It also lacks the ability to incorporate

any available prior information.

In this paper, we propose a Bayesian formulation for the collabo-

rative bandit problem utilizing Thompson Sampling (TS). Bayesian

solutions [9] allow the use of priors to quickly converge to a so-

lution even with limited data, which is crucial in this context, as

ineffective exploration could lead to delayed time slot inference

and increased drop-off risk. Thompson Sampling [29] is also shown

[22] to be a very effective method and can provide much tighter

bounds than the previously used Boltzmann exploration.

While TS is efficient in terms of regret, its exact implementation

is computationally expensive due to the cost of posterior sampling.

To address this, we develop a computationally efficient heuristic

based on Stochastic Gradient Langevin Dynamics (SGLD) for pos-

terior sampling in TS. Empirically, we show that our algorithm

outperforms existing techniques in both cluster and general low-

rank settings. We demonstrate its superiority using a real-world

dataset from the Kilkari program [7], showing how it can signifi-

cantly increase call engagement and pick-up rates. While we focus

on Kilkari, our methods are applicable to a wide range of mHealth

programs.

The key contributions of the paper is a novel Thompson Sam-

pling based algorithm for collaborative multi-armed bandit problem

using alternating SGLD for efficient posterior sampling to make

the algorithm scalable for potential real world deployment (Sec-

tion 4). We also provide the first (to our knowledge) Eluder dimen-
sion characterization for a special clustered setting of the low rank

bandit problem with infinite arms (Section 5) which is a subset of
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Figure 1: (Left) Example pick-up matrix-each entry such as
0.18 (top left) represents likelihood of a call being answered
by the first beneficiary in the first time slot. (Right) Matrix
decomposition into user X user type and user type X pickup
rate probability matrices.

the general low-rank case. Eluder dimension is the principal com-

plexity measure that characterizes Bayesian regret for Thompson

sampling in general [26]. Finally, we demonstrate empirically the

effectiveness of the approach on a time slot inference problem with

a simulated and a real world dataset (Section 6) from the largest

maternal mHealth program in the world.

The proposed algorithm exploits the collaborative nature of the

problem to infer the optimal time slots to send automated voice mes-

sages to beneficiaries. We show that the proposed method reduces

the number of call attempts needed to reach out to beneficiaries by

a staggering 47 percent compared to the current deployed system

and 16 percent in comparison to SOTA. Given that the program

runs on a scale of millions of beneficiaries nationwide under limited

budget constraints, a reduction of 16-47 percent implies freeing

up critical bandwidth to potentially enrol 0.5-1.4 million more
mothers, disseminating critical health information and services to

many more mothers from underprivileged communities who may

otherwise have limited to no access to resources. We show a further

9 percent reduction in attempts compared to SOTA needed to reach

future new enrolments in the program, leveraging the learnt matrix

factorization, freeing up even more bandwidth on a regular basis.

Finally, due to the scale of the program and logistic constraints,

sustained low listenership for several weeks in a row leads to ben-

eficiaries being dropped off from the program. Despite this being

an extremely hard metric to move, the proposed method is able

to reduce these drop offs by 29 percent over a period of 4 months

compared to the current deployment and by 7 percent compared to

the SOTA. On the scale of a program operating for 3 million active

subscribers currently, an improvement of even 7 percent trans-
lates to 210,000 mothers being retained in the program and

continuing to benefit from access to valuable health information.

2 RELATEDWORK
AI in Maternal Healthcare Limited resource allocation problems

in maternal healthcare have previously been solved by restless

multi-arm bandits [19, 21, 30]. The time slot selection problem

using collaborative bandits was previously studied by [25].

Collaborative Multi-armed BanditsMulti-armed bandits are a

highly studied and effective method for solving several resource

allocation problems. Several methods such as phased elimination

[17, 28], UCB [8], Thompson Sampling [4, 29] and Best-arm Identi-

fication [5, 13] have been studied in detail. The collaborative bandit
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problem has recently garnered attention due to the widespread

popularity of modern recommender systems [10, 12]. Under special

conditions, several algorithms with strong bounds have been pro-

posed [14, 24]. An algorithmwhich is applicable in approximate low

rank was proposed by [25] which is close to our problem setting.

In our work, we empirically compare against this work.

Offline Bayesian Matrix Factorization. While several methods

have been proposed for Bayesian matrix factorization [22], the

ones which utilize MCMC [27] are of particular interest to us. [6]

proposes utilizing SGLD in a distributed manner using block parti-

tioning to perform matrix factorization. While such methods have

been applied in practice [18, 32], none of these methods extend the

solution in a bandit setting that forms our focus.

Thompson Sampling & Eluder Dimension. Thompson Sam-

pling (TS) is a widely used algorithm for bandit optimization, which

maintains a prior distribution over unknown problem parameters

and updates it sequentially as new data is observed [29]. It rec-

ommends actions by sampling from the posterior distribution. In

a seminal work Agrawal and Goyal [4] showed that TS obtains

optimal regret for Multi-Arm Bandits (MAB). Russo and Van Roy

[26] further extended these results, deriving an upper bound for

TS’s Bayesian-regret in terms of Eluder dimension, for general loss

functions. Eluder dimension is a combinatorial quantity which mea-

sures the complexity of a function class. However, to the best of

our knowledge, Eluder dimension has been characterized for very

few function classes such as linear and quadratic [23].

3 PRELIMINARIES
Notation. We use R to denote the set of real numbers. R𝑑 ,R𝑑1×𝑑2

denote the sets of 𝑑-dimensional vectors, and 𝑑1 × 𝑑2 dimensional

matrices respectively. For a positive integer 𝑛, we use [𝑛] to denote
the set {1, 2 . . . 𝑛}. Δ𝑑 denotes the probability simplex in R𝑑 .

Problem Formulation. Consider a mHealth program with 𝑁 ben-

eficiaries (users),𝑀 time slots (arms) and𝑇 rounds of calling. In the

following, we interchangeably refer to the beneficiaries as users

and the time slots as arms to describe our techniques in a more

general fashion. Let Θ ∈ R𝑁×𝑀
be the (user, arm) reward matrix

which is unknown to the system. Θ𝑖 𝑗 denotes the expected reward

of pulling arm 𝑗 for user 𝑖 . We assume that Θ can be decomposed

as Θ := 𝑈𝑉 , for some latent factors 𝑈 ∈ R𝑁×𝐶 ,𝑉 ∈ R𝐶×𝑀 , and
𝐶 ≤ min{𝑀, 𝑁 }. Special cases of this model include the rank-1

setting (where𝐶 = 1), and the cluster setting (where each row of𝑈

is a one-hot encoded vector representing user cluster membership).

In each round 𝑡 ∈ [𝑇 ], a user 𝑢 (𝑡) ∈ [𝑁 ] arrives at the system
and is recommended an arm 𝑎(𝑡) ∈ [𝑀]. For ease of exposition, we
assume the users arrive in a round-robin fashion; that is,𝑢 (𝑡) = 𝑡%𝑁 .

At the end of round 𝑡 , the system receives feedback in the form of

reward from that user. Let 𝑟𝑡 ∈ [0, 1] be the observed noisy reward

which satisfies: E[𝑟𝑡 ] = Θ𝑢 (𝑡 )𝑎 (𝑡 ) . Note that 𝑎(𝑡) can depend on

the history 𝐻𝑡 = {𝑢 (𝑠), 𝑎(𝑠), 𝑟𝑠 }𝑡−1𝑠=1
. Finally, we let 𝜋 be the prior

distribution over the set of all rank 𝐶 matrices (𝜋 encodes the prior

knowledge aboutΘ). The goal of the learner is to optimize Bayesian

regret which is defined as

𝑅(𝑇 ;𝜋) =
𝑇∑︁
𝑡=1

E
[
Θ𝑢 (𝑡 )∗ − Θ𝑢 (𝑡 )𝑎 (𝑡 )

]
, (1)

where the expectation is taken over the prior distribution of Θ,
internal randomness of the system, and Θ𝑢∗ denotes the reward of

the best item for user 𝑢.

Thompson Sampling. As previously mentioned, TS is a widely

used algorithm for bandit optimization. At any time step 𝑡 , TS

maintains a posterior distribution 𝜋𝑡 over the set of all rank 𝐶

matrices, representing its belief about the unknown reward matrix.

TS samples a matrix Θ̂(𝑡 )
from this distribution and recommends

the arm with the highest predicted reward for the current user:

argmax𝑗∈[𝑀 ] Θ̂
(𝑡 )
𝑢 (𝑡 ) 𝑗 . Algorithm 1 describes this procedure.

Algorithm 1 Thompson Sampling

Input: number of rounds 𝑇 , prior 𝜋

for 𝑡 = 1 to 𝑇 do
Sample reward matrix: Θ̂(𝑡 ) ∼ 𝜋𝑡
Observe user 𝑢 (𝑡), recommend 𝑎(𝑡) := argmax𝑗∈[𝑀 ] Θ̂

(𝑡 )
𝑢 (𝑡 ) 𝑗

Observe reward 𝑟𝑡
Update posterior: 𝜋𝑡+1 (Θ′) ∝ P(Θ′ |𝐻𝑡+1)

end for

In the next section, we develop a SGLD based algorithm for efficient

posterior sampling in TS and demonstrate its superiority on a real-

world maternal mHealth application ( Section 6.3). In Section 5 we

show that TS achieves optimal Bayesian regret guarantees for a

cluster setting.

4 PROPOSED METHOD
4.1 Stochastic Gradient Langevin Dynamics

(SGLD)
SGLD [31] is a Markov Chain Monte Carlo (MCMC) method which

is used for Bayesian inference and is particularly beneficial in high-

dimensional settings. SGLD is able to perform updates in batches,

similar to SGD in optimization. The update equation is as follows

ΔΘ =
𝜖

2

(∇ log 𝑝 (Θ) + 𝑁

𝑛
Σ𝑛𝑖=1∇ log 𝑝 (𝑋𝑖 |Θ)) + 𝜂

𝜂 ∼ 𝑁 (0, 𝜖)
(2)

where, Θ are the parameters that characterize the likelihood func-

tion of 𝑋 (observed data). 𝑝 (Θ) is the Bayesian prior over these

parameters. After an initial set of updates, SGLD generates samples

from the posterior distribution of the model parameters, allowing

full Bayesian inference instead of just the point estimates.

In this section we go through the steps to apply Thompson

Sampling to the low-rank collaborative bandit problem. The basic

idea is to utilize SGLD [31] to be able to perform Bayesian Matrix

Factorization as well as posterior sampling.

4.2 Bayesian Matrix Factorization
As described in Equation (2), SGLD allows us to compute the updates

to the parameters in batches of data. In our case, we assume that the
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matrices𝑈 ,𝑉 are derived from parameters 𝑢, 𝑣 . Also, in accordance

with the assumption,𝑈𝑖,𝑐 is obtained as
𝑒𝑢𝑖,𝑐∑′

𝑐 (𝑒
𝑢𝑖,𝑐′ ) and each element

𝑉𝑐,𝑗 is filled with
1

1+𝑒𝑣𝑐,𝑗 . The parameters 𝑢𝑖,𝑐 , 𝑣𝑐,𝑗 are sampled from

the exponential distributions sampled from independent priors each

of which is an exponential distribution with pre-decided parameters

𝜆𝑖,𝑐 and 𝛼𝑐,𝑗 respectively. Note that the complete set of parameters

is Θ = {𝑢𝑖,𝑐 } ∪ {𝑣𝑐,𝑗 }.
In our setting the prior 𝑝 (Θ) from Equation (2) is:

𝑝 (Θ) = 𝑝 (𝑢, 𝑣) =
(
Π𝑖,𝑐𝜆𝑖,𝑐𝑒

𝜆𝑖,𝑐𝑢𝑖,𝑐
) (

Π𝑐,𝑗𝛼𝑐,𝑗𝑒
𝛼𝑐,𝑗 𝑣𝑐,𝑗

)
(3)

Coordinates of the gradient ∇Θ log 𝑝 (Θ) are given by:

∇𝑢𝑖,𝑐 log𝑝 (𝑢, 𝑣) = 𝜆𝑖,𝑐 , ∇𝑣𝑐,𝑗 log𝑝 (𝑢, 𝑣) = 𝛼𝑐,𝑗 (4)

Let us assume that the data𝑋 is composed of data points 𝑥 where

𝑥𝑑 = 𝑥𝑖, 𝑗 is the reward of the 𝑑
th
data point for user 𝑖 for pulling

arm 𝑗 . The likelihood (second) term of Equation (2) is composed of

the observed reward 𝑥𝑖, 𝑗 which is a mixture of Bernoulli random

variables and is calculated as

𝑄 = 𝑝 (𝑥𝑖, 𝑗 |𝑢, 𝑣) = Σ𝑐
(
𝑝 (𝑐 |𝑢𝑖 )𝑝 (𝑥𝑖, 𝑗 |𝑐, 𝑣 𝑗 )

)
𝑝 (𝑐 |𝑢) = 𝑒𝑢𝑖𝑐

Σ𝑘𝑒𝑢𝑖𝑘
, 𝑝 (𝑥𝑖, 𝑗 |𝑐, 𝑣 𝑗 ) =

𝑥𝑖, 𝑗𝑒
𝑣𝑐,𝑗

(1 + 𝑒𝑣𝑐,𝑗 ) +
(1 − 𝑥𝑖, 𝑗 )
(1 + 𝑒𝑣𝑐,𝑗 )

(5)

Here, 𝑝 (𝑐 |𝑢) and 𝑝 (𝑥𝑖, 𝑗 |𝑐, 𝑣 𝑗 ) represent the probability of sampling

archetype 𝑐 given the user parameters and the Bernoulli likelihood

of observing the Boolean reward𝑥𝑖, 𝑗 given the rank 𝑐 and the reward

parameters respectively. Coordinates of matrix ∇Θ log𝑝 (𝑥𝑖, 𝑗 |Θ) are
hence given by sum :

∇𝑢𝑖,𝑐 log𝑝 (𝑥𝑖, 𝑗 |𝑢, 𝑣) =
1

𝑄
(
𝛿𝑈𝑖,𝑐

𝛿𝑢𝑖,𝑐
) · 𝑝 (𝑥𝑖, 𝑗 |𝑐, 𝑣 𝑗 ) (6)

∇𝑣𝑐,𝑗 log𝑝 (𝑥𝑖, 𝑗 |𝑢, 𝑣) =
1

𝑃

𝑒𝑢𝑖,𝑐

Σ𝑘𝑒
𝑢𝑖,𝑘

(2𝑥𝑖, 𝑗 − 1)𝑒𝑣𝑐,𝑗
(1 + 𝑒𝑣𝑐,𝑗 )2

(7)

4.3 Thompson Sampling
Thompson Sampling [29], [22] is a popular solution for multi-armed

bandits as it provides strong theoretical guarantees. TS requires

maintaining a belief, acting according in the best possible way ac-

cording to the belief and updating it as new evidence is collected.

The most difficult step involved is the sampling step and it can be

done effectively by MCMC methods like SGLD as they converge

to the posterior distribution and generate samples from it. In our

problem, we perform the updates to the parameters 𝑢, 𝑣 and calcu-

late 𝑃 = 𝑈𝑉 to be the final matrix, from which we choose the arm

with the highest reward for each user.

4.4 Scaling the Algorithm
While SGLD is able to significantly speed up the posterior sampling

process, the algorithm is still slow. In order to speed this up, we come

up with a way to scale it in distributed settings. We observe that

the updates to 𝑢 are independent across users given 𝑣 , ie. updates

of one user 𝑢𝑖 are independent from the updates of 𝑢 𝑗 assuming 𝑣

to be fixed.

Theorem 1. The updates in parameters for one user are indepen-
dent from the other users.

𝑃 (𝑢𝑘 |𝑣,𝑢𝑙≠𝑘 , 𝑋 ) = 𝑃 (𝑢𝑘 |𝑣, 𝑋 ) (8)

Proof. Given data 𝑋 , parameters 𝑢, 𝑣 , the likelihood function is:

𝐿(𝑋,𝑢, 𝑣) =
|𝑋 |∏
𝑘=1

(
(1 − 𝑋𝑘 (𝑖, 𝑗 ) ) (1 − 𝑢𝑖𝑣 𝑗 ) + (𝑋𝑘 (𝑖, 𝑗 )𝑢𝑖𝑣 𝑗 )

)
(9)

where 𝑢𝑖 is the 𝑖th row of 𝑢 and 𝑣 𝑗 is the 𝑣th column of 𝑣 .

We want to establish that the updates of the conditional posterior

of the parameters of the 𝑘
th

user is independent of the parameters

of the other users.

𝑃 (𝑢𝑘 |𝑣,𝑢𝑙≠𝑘 , 𝑋 ) =
𝐿(𝑢𝑘 , 𝑟 , 𝜃𝑙≠𝑘 , 𝑋 )𝑝 (𝑢𝑘 )∫
𝐿(𝑢𝑘 , 𝑣,𝑢𝑙≠𝑘 , 𝑋 )𝑝 (𝑢𝑖 )𝑑𝑢

We can separate out the items in 𝑋 where user 𝑘 is involved.

𝐿(𝑢𝑖 , 𝑣,𝑢𝑙≠𝑘 , 𝑋 ) = 𝐿(𝑢, 𝑣, 𝑋 ) (10)

=

𝑁∏
𝑙=1

(
(1 − 𝑋𝑙 (𝑖, 𝑗 ) ) (1 − 𝑢𝑖𝑣 𝑗 ) + (𝑋𝑙 (𝑖, 𝑗 )𝑢𝑖𝑣 𝑗 )

)
(11)

=
(
(1 − 𝑋𝑘 ) (1 − 𝑢𝑖𝑣 𝑗 ) + (𝑋𝑘𝜃𝑖𝑣 𝑗 )

)
(12)∏(

(1 − 𝑋𝑙≠𝑘 ) (1 − 𝑢𝑖′𝑣 𝑗 ′ ) + (𝑋𝑙≠𝑘𝑢𝑖′𝑣 𝑗 ′ )
)

(13)

The second term in the product comes out in both numerator

and denominator (as it is not dependent on 𝑢𝑘 ) and cancels out.

Thus we are left with

𝑃 (𝑢𝑘 |𝑣,𝑢𝑙≠𝑘 , 𝑋 ) =
𝐿(𝑢𝑘 , 𝑣, 𝑋𝑘 )𝑝 (𝑢𝑘 )∫
𝐿(𝑢𝑘 , 𝑣, 𝑋𝑘 )𝑝 (𝑢𝑘 )𝑑𝑢

= 𝑃 (𝑢𝑘 |𝑣, 𝑋𝑘 ) (14)

Where 𝑋𝑘 is the data where 𝑘 is involved. □

Algorithm 2 and Algorithm 3 explain the full and alternating

sampling SGLD methods. The complete algorithm is described by

Algorithm 4.

Algorithm 2 SGLD with Full Sampling

Input: Batch Size 𝑛, Data 𝑋

Hyperparameters: Learning Rate 𝜖
Parameters: 𝜆, 𝛼
Initialize 𝑢 and 𝑣

repeat
Select batch 𝑥 of size 𝑛 from 𝑋 .

Calculate terms from Equation (6) and Equation (7)

Update 𝑢, 𝑣 using Equation (2).

until 𝑢, 𝑣 converge
Return 𝑢, 𝑣

Theorem 1 allows us to compute updates in batches of users

assuming 𝑣 to be constant. The batch updates to 𝑢 can be accumu-

lated and then the updates to 𝑣 can be computed. The updates to 𝑣

also follow the conditional independence property, but the limiting

factor in a majority of the cases is the number of users in 𝑢. These

alternating updates are easier to perform than those in [6] as the

recombination step is much easier.
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Algorithm 3 SGLD with Alternating Sampling

Input: Batch Size 𝑛, Data 𝑋 , User Blocks 𝑏

Hyperparameters: Learning Rate 𝜖

Parameters: 𝜆, 𝛼
Initialize 𝑢 and 𝑣

repeat
Select batch 𝑥 of size 𝑛 from 𝑋 .

for 𝑏𝑖 in b do
Calculate terms from Equation (6) for 𝑏𝑖
Update 𝑢𝑏𝑖 using Equation (2).

end for
Merge 𝑢𝑏𝑖 to get 𝑢.

Calculate terms from Equation (7)

Update 𝑣 using Equation (2).

until 𝑢, 𝑣 converge
Return 𝑢, 𝑣

Algorithm 4 Proposed Algorithm TS-SGLD

Input: Time steps 𝑇 , Samples per time step 𝑠 .

Generate data 𝑋0 from random users and time slots.

for 𝑖 = 1 to 𝑇 do
if Sampling Method == full then
𝑢, 𝑣 from Algorithm 2

else if Sampling Method = alternating then
𝑢, 𝑣 from Algorithm 3

end if
Calculate𝑈 ,𝑉

Generate 𝑋𝑖 with 𝑠 samples using TS.

end for
Return𝑈 , 𝑉

5 THEORETICAL BOUNDS - CLUSTERED LOW
RANK BANDITS

The general problem of low rank bandits in the Bayesian setup

can be specified as follows. There is a space of low rank reward

matrices that parameterized the problem given by: Ω𝐶 ⊂ R𝑁×𝐷

such that rank(𝑅) = 𝐶,∀𝑅 ∈ Ω𝐶 . Here, we have 𝑁 users and 𝐷 is

the dimension of the action space. Let the unknown reward matrix

be 𝑅. We have a prior 𝜋 (𝑅) over the space Ω.
Reward Likelihood Model: For user 𝑢 and action vector 𝑎 ∈

A ⊂ R𝐷 , the reward model given 𝑅 is given by:

𝑌 (𝑢, 𝑎) ∼ 𝑅(𝑢, :)𝑇𝑎 + 𝑁 (15)

where 𝑁 is i.i.d 1-sub-Gaussian random variable.

Bounded Parameter Space: We will assume that ∥𝑅(𝑢, :)∥2 <

𝑆,∀𝑅 ∈ Ω, ∥𝑎∥2 < 𝛾,∀𝑎 ∈ A.

BayesianRegret: Let user𝑢𝑡 arrive at time 𝑡 and 𝑎𝑡 be the action

chosen according to some bandit algorithm given previous actions

(𝑢1, 𝑎1), · · (𝑢𝑡−1, 𝑎𝑡−1) and the corresponding rewards 𝑦1 . . . 𝑦𝑡−1.
We are interested in Bayesian regret given by:

E𝑅∼𝜋,𝑦 (𝑢𝑡 ,𝑎𝑡 )∼𝑌 (𝑢𝑡 ,𝑎𝑡 ) |𝑅,𝑢𝑡 ,∼Unif [1:𝑁 ] [𝑅(𝑢𝑡 , :)𝑇𝑎𝑡 − 𝑅(𝑢𝑡 , :)𝑇𝑎∗ (𝑢𝑡 )]

Here, 𝑎∗ (𝑢𝑡 ) = arg max

𝑎∈A
𝑅(𝑢𝑡 , :)𝑇𝑎

We analyze the Bayesian Regret for the natural Thompson Sam-

pling algorithm with perfect Gibbs Sampling from the posterior at

every step.

Thompson Sampling: At every time 𝑡 , let the history of users,

actions and rewards be denoted𝐻𝑡 given user𝑢𝑡 , compute posterior

𝜋 (𝑅 |𝐻𝑡 ). Sample 𝑅 ∼ 𝜋 (𝑅 |𝐻𝑡 ). Play action 𝑎𝑡 = arg max

𝑎∈A
𝑅(𝑢𝑡 , :)𝑇𝑎.

The basis for our regret bounds is the seminal result of Russo

and Van Roy [26] which upper bounds the Bayesian regret of TS

in terms of Eluder dimension, a measure of the complexity of

a model class. Specifically, for a model class Ω𝐶 = {𝑈𝑉 : 𝑈 ∈
R𝑁×𝐶 ,𝑉 ∈ R𝐶×𝐷 }, the Eluder dimension is defined as the max-

imum length of a sequence of actions that consistently provide

new information about the underlying function. Formally, an ac-

tion 𝑢𝑡 , 𝑎𝑡 is said to be 𝜖-dependent on previous action sequence

{(𝑢1, 𝑎1), . . . (𝑢𝑡−1, 𝑎𝑡−1)} if any pair of matrices 𝑅, 𝑅′ ∈ Ω𝐶 satis-

fying

√︃∑𝑡−1
𝑠=1 ((𝑅𝑢 (𝑠 ),: − 𝑅′𝑢 (𝑠 ),:)

𝑇𝑎𝑠 )2 ≤ 𝜖 also satisfies: | (𝑅′
𝑢 (𝑡 ),: −

𝑅𝑢 (𝑡 ),:)𝑇𝑎𝑡 | ≤ 𝜖 .𝑢𝑡 , 𝑎𝑡 is 𝜖-independent of {(𝑢1, 𝑎1), . . . (𝑢𝑡−1, 𝑎𝑡−1)}
if it is not 𝜖-dependent on it.

Definition 1 (Russo andVanRoy [26]). The 𝜖-Eluder dimension
dim𝐸 (Ω𝐶 , 𝜖) is the length of longest sequence of elements in [𝐶]× [𝐷]
such that for some 𝜖′ ≥ 𝜖 , every element is 𝜖′-independent of its
predecessors.

Russo and Van Roy [26] show that the Bayesian regret of TS is

upper bounded (upto logarithmic factors) by√︃
dim𝐸 (Ω𝐶 ,𝑇 −2) log𝑁 (Ω𝐶 ,𝑇 −2, ∥ · ∥∞)𝑇,

where 𝑁 (Ω𝐶 , 𝜖, ∥ · ∥∞) is the covering number of the model class.

We see that 𝜖-Eluder dimension is the key complexity measure

that governs regret in bandit problems. Our main contribution is

characterization of 𝜖-Eluder dimension for the cluster model below

which is a special case of low rank bandits with infinite arms. We

describe the simpler model below.

Cluster Model with infinite arms: We further consider Ω𝐶
with a clustering assumption that is there are only𝐶 distinct rows in

𝑅 and every user𝑢 is mapped to a cluster using a cluster assignment

function 𝑐 : [𝑁 ] → [𝐶]. Therefore, one can reparameterize Ω𝐶 =

(𝑐, 𝑅), 𝑐 : [𝑁 ] → [𝐶], 𝑅 ∈ R𝐶×𝐷 . 𝑅(𝑢, :) = 𝑅(𝑐 (𝑢), :) for the
reward model (15).

We will show that the 𝜖− Eluder dimension for the above model

is : dim𝐸 (Ω𝐶 , 𝜖) = O(2𝐶𝐷 log(1 + 2𝑆/𝜖2) + 𝐶𝑁 ). This is our key
theoretical contribution.

While our main contribution is the 𝜖- Eluder dimension charac-

terization of the space of reward matrices for cluster model with

infinite arms, we first establish 𝜖- Eluder dimension of the finite

arms case before proceeding to the general case as this is very

insightful and simpler to understand.

Cluster Model with finite arms:We consider a simpler clus-

ter problem where the action set A = {𝑒1, 𝑒2 . . . 𝑟𝐷 } consists of
indicator vectors. We denote this as the cluster model with finite

arms.

Theorem 2. In the cluster model, for 𝐶 user-clusters with a total
of 𝑁 users and 𝐷 finite arms 𝐷 arms, the 𝜖-Eluder dimension is at
most (2𝐷 + 𝑁 )𝐶 .

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

551



Proof Sketch. We first take a specific realization of (𝑐, 𝑅) and
with respect to a sequence of actions look at the reward sequence

which is 𝜖 Eluder. For every new action, some subset of alternate

possible reward matrices get separated from this by taking a value

𝜖 far until only one is left. We argue that while separation happens

you either learn something about the assignment function 𝑐 for

some 𝑐 (𝑢) or learn something about entry in 𝑅. We then argue

that corresponding Eluder subsequences where one or the other is

learnt has lengths at most𝐶𝑁 and𝐶𝐷 respectively. Detailed formal

argument is presented in the supplement. □

Theorem 3. In the cluster model, for𝐶 user-clusters with a total of
𝑁 users and𝐷-dimensional infinite arm setA, the 𝜖-Eluder dimension
is 𝑂 (2𝐶𝐷 log(1 + 2𝑆/𝜖2) +𝐶𝑁 )).

Proof Sketch. It follows the finite arms case except that we

use a reduction to linear bandits to argue that the Eluder subse-

quence where new information about 𝑅 is learnt cannot exceed

�̃� (𝐶𝐷 log(1/𝜖)). Exact formal argument in given in the supple-

ment. □

Theorem 4. For the cluster model in the infinite arm case, we
have:

a) the log-covering number log𝑁 (Ω𝐶 , 𝜖, | |.| |∞) = 𝑂 (𝐶𝐷 log(1/𝜖)+
𝑁 log𝐶) and,

b) dim𝐸 (Ω𝐶 , 𝜖) = O(2𝐶𝐷 log(1 + 2𝑆/𝜖2) +𝐶𝑁 ) (Theorem 3)
Thus propositions 4 and 5 from [26] with 𝜖 = 𝑇 −2 yields a Bayesian

regret bound of:

�̃�
©­«𝐶𝐷

√︄
𝑇

(
1 + 𝑁

𝐷

) (
1 + log(𝐶) 𝑁

𝐶𝐷

)
log(𝑇 )ª®¬.

Proof. Theorem 3 shows that dim𝐸 (Ω𝐶 , 𝜖) = O(2𝐶𝐷 log(1 +
2𝑆/𝜖2) +𝐶𝑁 ). In the clustered bandits case with infinite arms, the

reward matrix has two components, 𝑅 ∈ R𝐶×𝐷 and an assignment

function 𝑐 : [𝑁 ] → 𝐶 . If we want to cover space of matrix 𝑅 in

infinity norm, then wewould exactly cover all assignment functions

and there are 𝐶𝑁 in number and for every 𝑅 we would find an

approximation which is 𝜖 far in the infinity norm. The latter 𝜖 cover

would involve𝑂 ( 1𝜖 )
𝐶𝐷

matrices assuming a bounded space of𝐶×𝐷
matrices. Therefore, the covering number is 𝑂 ( 1𝜖 )

𝐶𝐷 ∗ 𝐶𝑁 . This
yields the log-covering number bound.Combining both by results

in [26] gives the regret bound. □

Remark: Assuming every user arrival (random uniform arrival)

is treated as an independent linear bandit, regret would be roughly

�̃� (𝐷
√
𝑁𝑇 ). When 𝑁 ≈ 𝐷 (i.e. 𝑁 and 𝐷 are comparable), our regret

bound is effectively �̃� (𝐶𝐷
√
𝑇 ) ignoring log and constant factors

where only the number of clusters and 𝐷 matters. Usually 𝐶 is a

constant while 𝑁 and 𝐷 are very high dimensional. In this case,

our regret bound gives a polynomial advantage over treating each

user as an independent bandit. When 𝑁 >> 𝐷 , we point out that

we have an extra factor

√︃
(1 + log𝐶 𝑁

𝐶𝐷
) in regret that appears

primarily because of the log covering number dependence in regret.

We believe that a tighter analysis connecting regret and Eluder

dimension is needed in this specific clustering setting to resolve

this.
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Figure 2: Regret for the low-rank case on simulated data: Av-
erage regret for different methods averaged over 15 random
matrices. Results are on a 1000 users and 20 arms matrix with
4 user types. Every time step adds 1000 samples.

6 EXPERIMENTS
6.1 Baselines
We show the efficacy of the proposed algorithm TS-SGLD (Algo-

rithm 4) by comparing against other methods performing low-rank

collaborative bandits. We compare our method against the SOTA

Phased Matrix Completion (Phased MC) and Greedy Matrix Com-

pletion (Greedy MC) from [25]. Other baselines include Alternating

Linear Bandits (AltMin) from [12] and LATTICE from [24], where

the latter is specifically for comparison on the simulated cluster

setting. We also consider UCB on individual arms and a random

baseline which is currently deployed by the NGO for the real world

maternal health application. Results are shown for the best fine-

tuned hyperparameters for all baselines to give a fair comparison.

6.2 Simulated Data
The simulated dataset is created by generating random matrices

of size 𝑁 ×𝑀 with rank 𝐶 by multiplying two random matrices 𝑈

and𝑉 of shape 𝑁 ×𝐶 and𝐶 ×𝑀 respectively and adding Gaussian

noise to it. This is followed by a normalization step which scales

the values to probabilities between [0, 1].

𝑃 = normalize(𝑈 ·𝑉 + 𝑁 (𝜇, 𝜎2))

The matrices𝑈 ,𝑉 are randomly generated with each element being

from the range [0, 1] and 𝜇 and 𝜎 are chosen to be 0.5 and 0.1

respectively. The normalize operationmaps the smallest and highest

values to 0 and 1 and scales the other values accordingly. 𝐶 is set

to 4 for these experiments. Uniform prior of 0.5 is applied to all

parameters in Equation 3.

Figure 2 compares regrets of different methods for 1000 users

and 20 arms over 15 randomly generated low-rank matrices. UCB

gives the highest regret since it cannot leverage the collaborative

structure of the arm rewards. Due to the low-data setting, Greedy
MC takes more exploration steps to catch up with PhasedMC.
GreedyMC is primarily an explore-then-exploit approach which

is prohibitive since sub-optimal choices at the start can be costly,

especially in the subsequent real-world application. TS-SGLD with

full sampling performs about 65% better than PhasedMC. TS-
SGLD with alternate sampling has higher regret than TS-SGLD
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with full sampling since alternating sampling leads to a noisier

convergence to the posterior, but still has lower regret compared

to all other baselines. Similar results are also shown for the special

cluster setting described in Section 5 in Figure 5a in the Appendix.

LATTICE [24] is known to provide optimal bounds for the cluster

case in theory. However in practicality, in the low data regimes

where there is a small amount of data coming in at each time step,

the regret of LATTICE is worse than TS-SGLD with full sampling

by 15 percent in final cumulative regret.

6.3 Real World Dataset from Maternal mHealth
program

Dataset: The problem of optimal time slot selection for beneficiaries

in a mHealth program can be formulated as a collaborative bandits

problem [25]. The dataset is created from historic data from the

Kilkari program where anonymized call logs provide information

about which user was called at which time slot, and whether the call

was answered to provide a groundtruth pickup matrix (consisting of

200,000 users observed over one year for 7 time slots daily between

8𝑎𝑚 and 8𝑝𝑚) and a test dataset corresponding to a different set of

1000 users. For the experiments, timeslots are discretized into 7 and

14 slots where 14 slots correspond to different slots for weekdays

and weekends. 14 slots increases the problem complexity, however

it is more representative of this domain given that many users

have limited access to shared phones on weekdays and may have

different preferences for weekends.

Prior: Prior information is obtained from previous iterations of

the calling program. It was observed that the real world dataset for

a significant number of users contains zero entries in the pickup

matrix i.e. zero pick-up rates across most time slots. This was pro-

vided as a prior on the𝑉 matrix on the second term in Equation (3).

No priors were provided on the𝑈 matrix, since there is no demo-

graphic or any other meaningful information available about the

users to provide meaningful priors on the user type categorization

matrix. However, the method allows for priors to be incorporated

on both𝑈 and 𝑉 matrices if such information were available.

Themethod requires that we choose an appropriate rank𝐶 which

fits the data reasonably. In all of our experiments for this dataset,

𝐶 = 5 was chosen, based on experiments shown in Figure 6 in

the Supplementary material. Users are split into different buckets

based on largest pick-up probability across time slots to analyze the

performance of the algorithms finely. Beneficiaries with highest

pick-up rate (across any time slot) below 0.2 and above 0.8 are

classified into the low and high pick-up rate groups respectively.

The remaining users are classified into the middle pick-up rate

group. On a dataset of 1000 users, 488 users fall in this category.

Impact on Regret: Figure 7b (in supplementary) compares aver-

age regret on the medium listenership bucket of users across differ-

ent baselines, and and Figure 7a (in supplementary) shows regret

across all users. TS-SGLD performs particularly well in low-data

settings such as these. TS-SGLD with prior, is able to effectively

utilize prior information and outperforms TS-SGLD without prior

by 8 percent as well as PhasedMC and AltMin by 14 percent and

21 percent respectively. Despite the extremely low pickup and high

pickup users being harder to impact, TS-SGLD improves these by

4 and 8 percent respectively compared to SOTA.

Impact on re-attempts: Since a lot of bandwidth is currently

spent on re-attempts to increase likelihood of pickup across users,

we also measure the expected number of attempts required by the

different methods. The program is known to implement a constraint

of ≤ 9 calls [20] The average number of attempts made for connect-

ing a call is 5 [20]. Figure 3a shows the average number of attempts

made for the beneficiaries in the middle pick-up rate group ( 49%

of beneficiaries) reduces by 16% compared to the SOTA and 46%

compared to the current deployed system.

Weekday vs Weekend slots: Figure 3c shows the number of

attempts reduces significantly compared to the SOTA and non-

collaborative baselines, when 14 slots are used instead of 7 slots to

take into account additional preference for weekday vs weekends.

Impact on new enrollments: Since the program enrolls new

beneficiaries at regular intervals, Figure 7e and Figure 3d show the

performance of the algorithm for new users after the algorithm has

been running on an existing cohort for 10 timesteps for both the

algorithms. The regret achieved is significantly lower for TS-SGLD
compared to PhasedMC by 18 percent and translates to a further

9% reduction in the number of attempts to connect calls to the new

users. In fact, due to the𝑈𝑉 factorization, the algorithm only has to

learn the𝑈 matrix entries for the new users, and can leverage the

already known 𝑉 matrix to infer slots sooner. Since these mHealth

programs suffer from a high rate of drop off [7] due to prolonged

low listenership, it is important not only to learn optimal time slots

accurately but also quickly with a few number of samples to avoid

risk of drop off from the program.

Impact on Drop offs: Currently, beneficiaries with low listen-

ership (< 25% of message length) for 6 consecutive weeks or low

listenership for 9 weeks within a 16 week period are dropped off

from the program. It is therefore imperative to send calls at a conve-

nient time to both boost listenership and retain beneficiaries in the

program to ensure continued access to critical health information.

Despite this being a very strict metric and considerably harder to

impact, TS-SGLD manages to reduce dropoffs by 7 percent com-

pared to the SOTA and by 29 percent compared to the current

deployed system (Figure 4).

Combined Pickup and Engagement data: Similar to [25],

pick-up and engagement data was combined to minimize the regret

for engagement. A call is said to be engaged if listenership is greater

than 25% of the message length. TS-SGLD on concatenated pickup

and engagement data shows 17 percent improvement (Figure 3b)

in re-attempts over SOTA on medium-bucket listenership users.

Simulated Data vs Real World Data Gap: The difference

in performance of the algorithm between the simulated and real-

world data is due to the increased amount of unstructured noise

in real datasets. Furthermore, the low-rank assumption in the real-

world dataset does not hold completely, and in fact the matrix is

approximately low-rank, as discussed in Supplementary Section A.

7 CONCLUSION AND FUTUREWORK
We presented an algorithm to solve a collaborative bandits problems

for low rankmatrices using Thompson sampling. The algorithmwas

run on time slot inference problem inspired by the real world dataset

obtained from the largest maternal mHealth program in the world.

The proposed method showed a significant reduction in the number
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for 1000 users using pickup data
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(b) Number of attempts for connecting 1000 calls
for 1000 users using pickup + engagement data
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(c) Number of attempts connecting 1000 calls
for 1000 users using weekend + weekday slots
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(d) Number of attempts connecting 1000 calls
for 100 new users added to the system

Figure 3: Number of attempts needed to reach out to beneficiaries in the real-world ARMMAN dataset across 3 listenership
buckets. All plots are relative to the deployed random baseline capped at 100%.
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Figure 4: Percentage of dropoffs over a 4 month period.
Dropoffs happen when the engagement goes below 25% for 6
weeks consecutively or 9 weeks in a 12 week period.

of call attempts needed to reach out to beneficiaries by 47 percent

compared to the current deployment and 16 percent compared to

the SOTA matrix completion methods, and a further 9 percent for

new enrolments in the program leveraging the already inferred

user type to slot preference information from matrix factorization.

Reduced attempts free up critical bandwidth, to enable the program

operating under budget restrictions to potentially enroll 0.5 to 1

million more mothers (assuming on average 5 attempts per voice

message) into the program. The method also led to a reduction

in drop offs by 7 and 29 percent compared to the SOTA and the

current deployment, which can effectively enable retaining 0.2 to

1 million mothers into the program, ensuring continued access

to critical health information for marginalised communities with

limited access to resources. We further strengthened our approach

by utilizing both the pickup and engagement data. To the best of our

knowledge, we are also the first to provide Eluder dimension based

analysis for Thompson Sampling for the cluster case which is a

subset of the general low rank case. While the proposed method can

incorporate priors on both user type and user preference matrices,

we currently incorporate priors learnt from previous calling data

only on the latter due to lack of demographic information about

beneficiaries.
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