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ABSTRACT
ABA Learning is a form of logic-based learning, producing, from

examples and background knowledge, symbolic representations in

the form of assumption-based argumentation (ABA) frameworks

that naturally encode conflicts emerging from generalising the ex-

amples as well as their resolution. ABA Learning is based on the

application of transformation rules to progressively refine an initial

ABA framework (the background knowledge) guided by the exam-

ples, and is typically highly nondeterministic, with the search space

underpinning the choice of applied transformation rules very large.

In this paper we propose a novel ‘greedy’ variant of ABA Learning

tailored to settings where the examples and background knowledge

are drawn from labelled cases as in case-based reasoning. Greedy
ABA Learning applies the transformation rules in a fully deter-

ministic way. We prove that, when the casebase is ‘coherent’ (i.e.,

where all cases with the same features have the same label), Greedy

ABA Learning corresponds exactly with AA-CBR, another form

of logic-based learning for case-based reasoning. Finally, we show

that Greedy ABA Learning generalises beyond coherent casebases

to deal with conflicts.
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1 INTRODUCTION
ABALearning [9, 10, 21] is a form of logic-based learning, producing

symbolic representations in the form of assumption-based argu-

mentation (ABA) frameworks [2] from an initial ABA framework

(the background knowledge) and (positive and negative) examples.

The learnt ABA frameworks naturally encode conflicts emerging

from generalising the examples, given the background knowledge,

as well as their resolution. They encode this knowledge with the use

of rules, made defeasible by the presence amongst their premises

of assumptions which can be “attacked” by “arguments” for their

contraries [2]. Several forms of ABA Learning have been proposed

in the literature, differing in how they resolve conflicts emerg-

ing in the learnt ABA frameworks, whether sceptically [9, 23], by
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adopting the (unique) grounded extension semantics for ABA, or

credulously [10], by choosing one (stable) extension amongst the

several possible.

ABA Learning is based on the application of transformation rules

to progressively derive general rules from an initial ABA framework

(the background knowledge) guided by the examples. Typically,

these transformation rules may be applied in many alternative

ways, and thus the search space underpinning ABA Learning is

very large. For instance, the ‘rote learning’ transformation rule can

be applied to any positive example, the ‘folding’ transformation rule

can be applied to any two ABA rules whose premises “match”, and

the ‘assumption introduction’ transformation rule can be applied to

any ABA rule to pave the way to attack arguments drawn from it.

A major issue for developing effective ABA Learning strategies is

to control the resulting high nondeterminism.

In this paper, we propose Greedy ABA Learning, a novel vari-

ant of ABA Learning tailored to settings where the examples and

background knowledge are drawn from (categorical) casebases,

consisting of sets of cases, each characterised by a set of (binary)

features and a (binary) label. In this setting, the background knowl-

edge corresponds to simple ABA frameworks consisting of ‘facts’

(rules with empty premises).

Greedy ABA Learning starts by generalising the examples ex-

haustively (by applying the ‘rote learning’ and ‘folding’ transforma-

tion rules) and only afterwards looks for attacks against arguments

in the resulting ABA frameworks (by applying the ‘assumption

introduction’ transformation rule exhaustively).

Greedy ABA Learning can be deployed with ‘coherent’ casebases,

namely such that there are no two cases with the same features but

different labels, as well as with ‘incoherent’ casebases. We prove

that, when the casebase is ‘coherent’, Greedy ABA Learning corre-

sponds exactly with AA-CBR [3, 8, 16], another form of logic-based

learning with casebases of the same kind we consider, but using

abstract argumentation [11] as the underpinning symbolic formal-

ism rather than ABA. We also show that Greedy ABA Learning

generalises beyond coherent casebases to deal (credulously) with

conflicts amongst cases.

In summary, we make the following contributions:

(1) we define a novel variant of ABA Learning, using specialised

versions of existing transformation rules [21] so as to limit

the search space of possible solutions;

(2) we prove that this variant corresponds to an existing form

of AA-CBR [3] for coherent casebases; and

(3) we show that it can naturally deal with incoherent casebases.

2 RELATEDWORK
Learning argumentation frameworks from data. Several approaches
to integrate/reconcile argumentation and data-drivenmachine learn-

ing have been proposed (e.g., see the early survey in [5] and more
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recently [19]). Amongst these, a few understand supervised learn-

ing with data as argumentation, notably [1] understands concept

learning as abstract argumentation with preferences.

We focus on the AA-CBR approach of [3, 8, 16], which uses, as a

starting point, a casebase, with each case characterised by a set of

binary features and one of two outcomes, and predicts outcomes

for new cases based on the calculation of grounded extensions of

an abstract argumentation framework corresponding to the learn-

ing problem. However, while [3, 8] restrict attention to coherent
casebases (i.e., such that no two cases are equipped with the same

features but a different outcome), we also consider the possibility

of incoherent casebases. Differently from [16], that also drops the

coherence restriction, we do so by adopting a credulous semantics

for abstract argumentation.

Some other approaches are not restricted to cases with binary

features only. These include the approach of [18] that, similarly

to [3, 8], maps outcome prediction based on cases, onto abstract

argumentation, but also accommodates the tendency of features to

favour one side or another. Furthermore, [4] uses AA-CBR alongside

various feature engineering methods to apply AA-CBR to images

and text, and [17] uses AA-CBR alongside decision trees to binarise

non-binary features for prediction with any set of cases. Further-

more, [6] considers two sets of binary features per case, one of

which represents dynamic information. We leave to future work

accommodating these various extensions/variants of AA-CBR to

provide corresponding forms of ABA learning.

Learning ABA frameworks. ABALearn [21], and its implementation

in [23], is a precursor in using transformation rules for learning

ABA frameworks. However, they give a nondeterministic strat-

egy that focuses on cautious (a.k.a. sceptical) reasoning under the

grounded extension semantics. Cautious reasoning under stable

extension semantics is considered in [9], where the authors in-

troduce a learning strategy, called ASP-ABALearn, implemented

using Answer Set Programming (ASP) [13]. A recent extension of

this strategy, called ASP-ABALearn𝐵 [10], considers brave (a.k.a.

credulous) reasoning under stable extension semantics. Here we

adopt a deterministic strategy for applying transformation rules,

and consider reasoning under the grounded and stable extension

semantics. Moreover, we also restrict the transformation strategy

for its application to both coherent and incoherent casebases.

Other logic-based learning. ABA Learning is a form of logic-based

learning. Other approaches to logic-based learning under stable

model (i.e., stable extension) semantics include ILASP [15] and

FOLD-RM [25]. However, differently from ILASP, ABA Learning fea-

tures the ability of automatically synthesising brand new predicates

(i.e., assumptions and their contraries), and FOLD-RM [25] can only

learn stratified normal logic programs. We will present in Section 6

a variant of Greedy ABA Learning that can learn non-stratified

ABA frameworks in the sense that cycles through contraries are

allowed.

3 BACKGROUND
Abstract Argumentation (AA). An AA framework (AAF) [11] is a

pair (𝐴𝑟𝑔𝑠,{), where 𝐴𝑟𝑔𝑠 is a set of arguments and{⊆ 𝐴𝑟𝑔𝑠 ×
𝐴𝑟𝑔𝑠 is a (binary, directed) relation of attack between arguments.

For (𝛼, 𝛽) ∈{, we also write 𝛼 { 𝛽 . Also, Δ ⊆𝐴𝑟𝑔𝑠 defends Γ ⊆
𝐴𝑟𝑔𝑠 iff for every 𝛼 { 𝛽 with 𝛽 ∈ Γ, there exists 𝛾 { 𝛼 with 𝛾 ∈ Δ.

The semantics of an AAF is defined in terms of various notions

of extensions [11], including the following. An extension Δ ⊆ 𝐴𝑟𝑔𝑠
is conflict-free iff there exists no 𝛼 { 𝛽 for 𝛼, 𝛽 ∈ Δ; admissible iff
it is conflict-free and it defends itself; complete iff it is admissible

and for every 𝛼 ∈ 𝐴𝑟𝑔𝑠 , if Δ defends {𝛼}, then 𝛼 ∈ Δ; grounded iff

it is ⊆-minimally complete; stable iff it is conflict-free and for every

𝛼 ∈ 𝐴𝑟𝑔𝑠 \ Δ there exists 𝛽 { 𝛼 for 𝛽 ∈ Δ.

Assumption-based Argumentation (ABA). An ABA framework
(ABAF) [2, 7] is a tuple ⟨L,R,A, ⟩, where (L,R) is a deductive
system, consisting of a language L and a set R of rules over L,
A ⊆ L is a non-empty set of assumptions, and : A → L is

a contrary mapping. Rules 𝑟 ∈ R are of the form 𝑠0 ← 𝑠1, . . . , 𝑠𝑛
with 𝑛 ≥ 0 and 𝑠𝑖 ∈ L for all 𝑖 ∈ {0, . . . , 𝑛}: 𝑠0 is the head of 𝑟 ,

denoted by ℎ𝑒𝑎𝑑 (𝑟 ), and {𝑠1, . . . , 𝑠𝑛} is the (possibly empty) body

of 𝑟 , denoted by 𝑏𝑜𝑑𝑦 (𝑟 ); if 𝑏𝑜𝑑𝑦 (𝑟 ) is empty, then we may write 𝑟

as ℎ𝑒𝑎𝑑 (𝑟 ) ← and call it a fact. We restrict attention to flat ABA
frameworks, where ℎ𝑒𝑎𝑑 (𝑟 ) ∉ A for all 𝑟 ∈ R. Furthermore, as in

[21], we restrict L to be a set of atoms, with each sentence in L of

the form 𝑝 (𝑡) for 𝑡 a constant.1
A flat ABAF 𝐹 = ⟨L,R,A, ⟩ can be understood as an AAF

(𝐴𝑟𝑔𝑠𝐹 ,{𝐹 ) as follows. Let an argument with claim 𝑠 ∈ L, sup-
ported by A ⊆ A and 𝑅 ⊆ R (denoted A ⊢𝑅 𝑠 or simply A ⊢ 𝑠)
be a finite tree with nodes labelled by sentences in L or by 𝑡𝑟𝑢𝑒 ,

such that the root is labelled by 𝑠 , leaves are labelled by assump-

tions in Δ or by 𝑡𝑟𝑢𝑒 , and for each non-leaf node 𝑛 there is exactly

one rule 𝑟 ∈ 𝑅 such that 𝑛 is labelled with ℎ𝑒𝑎𝑑 (𝑟 ), the number

of children of 𝑛 is |𝑏𝑜𝑑𝑦 (𝑟 ) | and every child of 𝑛 is labelled with a

distinct sentence in 𝑏𝑜𝑑𝑦 (𝑟 ) or, if 𝑏𝑜𝑑𝑦 (𝑟 ) is empty, by 𝑡𝑟𝑢𝑒 . Then

𝐴𝑟𝑔𝑠𝐹 = {A ⊢ 𝑠 | 𝑠 ∈ L} and A ⊢ 𝑠1 {𝐹 B ⊢ 𝑠2 iff 𝑠1 = 𝛽 for some

𝛽 ∈ B. Thus, the semantics of an ABAF 𝐹 can be defined in terms

of the semantics of extensions of the AAF (𝐴𝑟𝑔𝑠𝐹 ,{𝐹 ) [24], that
is, Δ is a grounded/stable extension of 𝐹 = ⟨L,R,A, ⟩ iff Δ is a

grounded/stable extension of (𝐴𝑟𝑔𝑠𝐹 ,{𝐹 ). It can be shown that

every ABAF admits a unique grounded extension, denoted G(𝐹 ).
Furthermore, let an ABAF 𝐹 be stratified iff (𝐴𝑟𝑔𝑠𝐹 ,{𝐹 ) is acyclic.
Then, a stratified ABAF 𝐹 admits a unique stable extension, which

coincides with G(𝐹 ) [11].
We will use the following notion. Given 𝑠 ∈ L and extension

Δ of 𝐹 , 𝑠 is covered in Δ iff (A ⊢ 𝑠) ∈Δ for some A⊆A. In the case

where we focus on the (unique) grounded extension G(𝐹 ) of ABAF
𝐹 , we also say that 𝑠 is covered by 𝐹 , denoted 𝐹 |= 𝑠 , iff 𝑠 is covered
in G(𝐹 ). Note that, if 𝑠 is not covered in an extension Δ of 𝐹 then,

for every argument (A ⊢ 𝑠) with A ⊆ A, (A ⊢ 𝑠) may be attacked

by Δ or not, but if 𝐹 is stratified and Δ is its grounded extension

G(𝐹 ), then each such argument (A ⊢ 𝑠) is necessarily attacked by

Δ. Given argument 𝛼 = A ⊢𝑅 𝑠 in an extension of some 𝐹 , we refer

to the single rule 𝜌 ∈ 𝑅 such that the sentences in 𝜌’s body label 𝑠’

children in 𝛼 as the top rule of the argument.

As in [21], we assume that ABAFs are given via schemata, using
variables to represent compactly all instances over some universe
(of constants), as in the following illustration.

1
For simplicity, we focus on unary predicates, but, in general, our approach is applicable

to predicates of any arity.
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Example 1. Let 𝑋 range over universe {1, 2}. Then, ⟨L,R,A, ⟩
with L = {𝑝 (𝑋 ), 𝑎(𝑋 ), 𝑏 (𝑋 )}, R = {𝑝 (𝑋 ) ← 𝑎(𝑋 )},

A = {𝑎(𝑋 ), 𝑏 (𝑋 )}, 𝑎(𝑋 ) = 𝑏 (𝑋 ), 𝑏 (𝑋 ) = 𝑝 (𝑋 )
represents the ABA framework
⟨{𝑝 (1), 𝑝 (2), 𝑎(1), 𝑎(2), 𝑏 (1), 𝑏 (2)},
{𝑝 (1) ← 𝑎(1), 𝑝 (2) ← 𝑎(2)},
{𝑎(1), 𝑎(2), 𝑏 (1), 𝑏 (2)}, ⟩

with 𝑎(1) = 𝑏 (1), 𝑎(2) = 𝑏 (2), 𝑏 (1) = 𝑝 (1), 𝑏 (2) = 𝑝 (2).

Again as in [21], we also assume that L always contains all

equalities between elements of the universe, R includes all equality
rules 𝑎 = 𝑎 ←, where 𝑎 belongs to the universe, and all non-equality

rules in R are normalised, i.e., they are written as:

𝑝0 (𝑋0) ← 𝐸𝑞𝑠, 𝑝1 (𝑋1), . . . , 𝑝𝑛 (𝑋𝑛)
where 𝑝𝑖 (𝑋𝑖 ), for 0 ≤ 𝑖 ≤ 𝑛, is an atom (whose ground instances

over the universe are) in L and 𝐸𝑞𝑠 is a (possibly empty) sequence

of equalities whose variables occur in the tuples 𝑋0, 𝑋1, . . . , 𝑋𝑛 .
2

Further, we assume that the body of a normalised rule can be freely

rewritten by using the standard axioms of equality, e.g.,𝑌1 = 𝑎,𝑌2 =

𝑎 can be rewritten as 𝑌1 = 𝑌2, 𝑌2 = 𝑎. Finally, we use the notation

vars(𝑍 ), for 𝑍 any sequence of atoms, to refer to the set of all

variables occurring in 𝑍 .

4 LEARNING PROBLEMS AND SOLUTIONS
In this paper we focus on the following learning problem. Let F
be a set of (binary) features, and let P(F) be the powerset of F.

Let 𝑂 = {𝛿, 𝛿} be the set of possible outcomes, with 𝛿 the default
outcome. Let𝐷 ⊆ P(F) ×𝑂 be a finite casebase of labelled examples,

each of the form (𝑆, 𝑜𝑆 ) for 𝑆 ⊆ F and 𝑜𝑆 ∈ 𝑂 , where 𝐷 is said

to be coherent iff for (𝑆, 𝑜𝑆 ), (𝑇, 𝑜𝑇 ) ∈ 𝐷 , if 𝑆 = 𝑇 then 𝑜𝑆 = 𝑜𝑇 .
3

Let (𝑁, ?), for 𝑁 ∈ P(F), be a new case. Then, we strive towards
predicting an outcome 𝑜𝑁 ∈ 𝑂 for 𝑁 by means of a classifier

generalising the information held in 𝐷 .

AA-CBR [3, 8] provides one solution for this learning problem,

as reviewed next. For 𝐷 coherent, let 𝐴𝐴𝐹 (𝐷, 𝛿) = (𝐴𝑟𝑔𝑠,{) be
the AAF obtained as follows:

• 𝐴𝑟𝑔𝑠 = 𝐷 ∪ {(∅, 𝛿)}, where (∅, 𝛿) is the default argument;
• for (𝑆, 𝑜𝑆 ),(𝑇, 𝑜𝑇 ) ∈𝐴𝑟𝑔𝑠 , (𝑆, 𝑜𝑆 ){ (𝑇, 𝑜𝑇 ) iff
(1) 𝑜𝑆 ≠ 𝑜𝑇 ,

(2) 𝑇 ⊂ 𝑆 , and
(3) �(𝑈 , 𝑜𝑆 ) ∈ 𝐷 such that 𝑇 ⊂ 𝑈 ⊂ 𝑆 .

Given 𝐴𝐴𝐹 (𝐷, 𝛿) = (𝐴𝑟𝑔𝑠,{), for a new case (𝑁, ?), let us
define 𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ) = (𝐴𝑟𝑔𝑠𝑁 ,{𝑁 ) as follows:
• 𝐴𝑟𝑔𝑠𝑁 = 𝐴𝑟𝑔𝑠 ∪ {(𝑁, ?)};
• {𝑁={ ∪{((𝑁, ?), (𝑇, 𝑜𝑇 )) | 𝑇 ⊈ 𝑁 }.

Let G be the grounded extension of 𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ). Then the

outcome 𝑜𝑁 for 𝑁 is

AA-CBR(𝐷, 𝛿, 𝑁 ) =
{
𝛿 if (∅, 𝛿) ∈ G,
𝛿 otherwise.

Note that𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ) is acyclic, and, thus, the grounded exten-
sion coincides with the unique stable extension of 𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ).
2
In this paper, all non-equality predicates are unary, but in general they can have any

arity.

3
Unless specified otherwise (see Section 6), we will focus on coherent casebases.

Example 2. (Adapted from [3]) Let us consider F = {𝑎, 𝑏, 𝑐, 𝑑} and
𝐷 = {({𝑎}, 𝛿), ({𝑏}, 𝛿), ({𝑎, 𝑐}, 𝛿), ({𝑏, 𝑑}, 𝛿)}. 𝐷 is coherent. For the
new case (𝑁, ?) = ({𝑎, 𝑑}, ?), AAF(𝐷, 𝛿, 𝑁 ) is depicted in Figure 1,
its grounded extension is {({𝑎, 𝑑}, ?), ({𝑎}, 𝛿)}, and thus the outcome
AA-CBR(𝐷, 𝛿, 𝑁 ) is 𝛿 .

(∅, 𝛿 )

({𝑎}, 𝛿 ) ({𝑏}, 𝛿 )

({𝑎, 𝑐 }, 𝛿 ) ({𝑏,𝑑 }, 𝛿 )({𝑎,𝑑 }, ?)

Figure 1: AAF(𝐷, 𝛿, 𝑁 ) for Example 2 as a graph (adapted
from [3]), with the default argument as a rectangle, the new
case as an argument shown as a hexagon, all other arguments
(which are cases in 𝐷) as ovals and attacks as edges.

The outcome AA-CBR(𝐷, 𝛿, 𝑁 ) can be determined with an ABA

framework, by adapting the Rule Extractor of [3] as follows.

Definition 1. Let 𝐷 ⊆ P(F) × {𝛿, 𝛿} be a coherent casebase and
(𝑁, ?) be a new case. Let𝐴𝐴𝐹 (𝐷, 𝛿) = (𝐴𝑟𝑔𝑠,{) and𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ) =
(𝐴𝑟𝑔𝑠𝑁 ,{𝑁 ). Assume a naming function, 𝑛𝑎𝑚𝑒 , that assigns a
unique constant to every argument in𝐴𝑟𝑔𝑠 , such that 𝑛𝑎𝑚𝑒 ((∅, 𝛿)) =
𝑐𝛿 ; let C = {𝑛𝑎𝑚𝑒 (𝛼) | 𝛼 ∈ 𝐴𝑟𝑔𝑠𝑁 }. Then, the ABA framework

𝐹 (𝐷,𝛿,𝑁 ) associated with 𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ) is ⟨L,R,A, ⟩ with
• L = {𝑓 (𝑐) | 𝑓 ∈ F, 𝑐 ∈ C} ∪ {𝑎𝑠𝑚𝑐 (𝑋 ), 𝑐𝑡𝑟_𝑎𝑠𝑚𝑐 (𝑋 ) | 𝑐 ∈
C \ {𝑛𝑎𝑚𝑒 ((𝑁, ?)}, 𝑋 ∈ C} ∪ {default (𝑋 ) | 𝑋 ∈ C};
• R = R𝛿 ∪ R𝜒 ∪ R𝜙 where
– R𝛿 = {default (𝑋 ) ← 𝑎𝑠𝑚𝑐𝛿 (𝑋 ) | 𝑋 ∈ C}
– R𝜒 = {𝑐𝑡𝑟_𝑎𝑠𝑚𝑐 (𝑋 ) ← 𝑓1 (𝑋 ), . . . , 𝑓𝑛 (𝑋 ), 𝑎𝑠𝑚𝑐′ (𝑋 ) |

𝑐 = 𝑛𝑎𝑚𝑒 (𝛾), (𝛽,𝛾) ∈ {, 𝑐′ = 𝑛𝑎𝑚𝑒 (𝛽),
𝛽 = ({𝑓1, . . . , 𝑓𝑛}, 𝑜)};

– R𝜙 = {𝑓1 (𝑐) ←, . . . , 𝑓𝑛 (𝑐) ← |
𝛾 = ({𝑓1, . . . , 𝑓𝑛}, 𝑜) ∈ 𝐴𝑟𝑔𝑠𝑁 , 𝑛𝑎𝑚𝑒 (𝛾) = 𝑐};

• A = {𝑎𝑠𝑚𝑐 (𝑋 ) | 𝑐 ∈ C \ {𝑐𝑁 }, 𝑋 ∈ C}, where 𝑐𝑁 =

𝑛𝑎𝑚𝑒 ((𝑁, ?));
• for each 𝑎𝑠𝑚𝑐 (𝑋 ) ∈ A, 𝑎𝑠𝑚𝑐 (𝑋 ) = 𝑐𝑡𝑟_𝑎𝑠𝑚𝑐 (𝑋 ).

Example 3. Consider the learning problem in Example 2 and𝑛𝑎𝑚𝑒
such that
𝑛𝑎𝑚𝑒 (({𝑎}, 𝛿)) = 1, 𝑛𝑎𝑚𝑒 (({𝑏}, 𝛿)) = 2, 𝑛𝑎𝑚𝑒 (({𝑎, 𝑐}, 𝛿)) = 3,
𝑛𝑎𝑚𝑒 (({𝑏, 𝑑}, 𝛿)) = 4, 𝑛𝑎𝑚𝑒 (({𝑎, 𝑑}, ?)) = 5.

Then, 𝐹 (𝐷,𝛿,𝑁 ) has R = R𝛿 ∪ R𝜒 ∪ R𝜙 , with R𝜙 consisting of the
following rules (in normalised form):
𝑎(𝑋 ) ← 𝑋 = 1 𝑏 (𝑋 ) ← 𝑋 = 2

𝑎(𝑋 ) ← 𝑋 = 3 𝑐 (𝑋 ) ← 𝑋 = 3

𝑏 (𝑋 ) ← 𝑋 = 4 𝑑 (𝑋 ) ← 𝑋 = 4

𝑎(𝑋 ) ← 𝑋 = 5 𝑑 (𝑋 ) ← 𝑋 = 5

and R𝛿 ∪ R𝜒 consisting of the following rules:4

4
Note that here and everywhere, for simplicity, we omit to include assumptions in

the body or rules when there is no rule with their contrary in the head. Indeed, those

assumptions cannot be attacked and can be ignored. If given in full, in this example,

the second and third rules in R𝜒 would be 𝑐𝑡𝑟_𝑎𝑠𝑚𝑐𝛿
(𝑋 ) ← 𝑏 (𝑋 ), 𝑎𝑠𝑚2 (𝑋 ) and

𝑐𝑡𝑟_𝑎𝑠𝑚1 (𝑋 ) ← 𝑎 (𝑋 ), 𝑐 (𝑋 ), 𝑎𝑠𝑚3 (𝑋 ) .
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default (𝑋 ) ← 𝑎𝑠𝑚𝑐𝛿 (𝑋 )
𝑐𝑡𝑟_𝑎𝑠𝑚𝑐𝛿 (𝑋 ) ← 𝑎(𝑋 ), 𝑎𝑠𝑚1 (𝑋 )
𝑐𝑡𝑟_𝑎𝑠𝑚𝑐𝛿 (𝑋 ) ← 𝑏 (𝑋 )
𝑐𝑡𝑟_𝑎𝑠𝑚1 (𝑋 ) ← 𝑎(𝑋 ), 𝑐 (𝑋 ).

Given that𝐴𝐴𝐹 (𝐷, 𝛿, 𝑁 ) is acyclic, we get the following property.

Lemma 1. 𝐹 (𝐷,𝛿,𝑁 ) is stratified.

It is easy to see that the outcome obtained by AA-CBR can be

equivalently determined by ascertaining whether or not the claim

default (𝑐𝑁 ) is covered in 𝐹 (𝐷,𝛿,𝑁 ) , by construction thereof.

Lemma 2. AA-CBR(𝐷, 𝛿, 𝑁 ) = 𝛿 iff 𝐹 (𝐷,𝛿,𝑁 ) |= default (𝑐𝑁 ).

Thus, prediction of outcomes for new cases can be achieved

in ABA by covering default (𝐶𝑁 ) (in the grounded extension of

𝐹 (𝐷,𝛿,𝑁 ) ). For illustration, in Example 3, it is easy to see that 𝐹 (𝐷,𝛿,𝑁 )
̸ |= default (5), as the argument {𝑎𝑠𝑚1 (5)} ⊢ 𝑐𝑡𝑟_𝑎𝑠𝑚𝑐𝛿 (5) cannot
be attacked. Indeed, as we have seen in Example 2, the outcome for

this new case is 𝛿 .

In addition, 𝐹 (𝐷,𝛿,𝑁 ) can be used to determine coverage of cases

in 𝐷 , as well as the default argument, as follows.

Lemma 3. For any (𝑆, 𝑜) ∈ 𝐴𝑟𝑔𝑠 , 𝐹 (𝐷,𝛿,𝑁 ) |= default(name((𝑆, 𝑜))
iff 𝑜 = 𝛿 .

Thus, we can understand 𝑐𝛿 and cases in 𝐷 with outcome 𝛿

as positive examples and cases in 𝐷 with outcome 𝛿 as negative

examples of the default concept in the following ABA Learning

problem, instantiating the general definition of [21]:

Definition 2. The ABA Learning problem associated with (𝐷, 𝛿,
𝑁 ) is (𝐹𝐵, E+, E−), where
• the background ABA framework 𝐹𝐵 is ⟨L,R,A, ⟩ with
– L = {𝑓 (𝑐) | 𝑓 ∈ F, 𝑐 ∈ C} ∪ {default (𝑋 ) | 𝑋 ∈ C} ∪
{𝛼0, 𝑐𝑡𝑟_𝛼0};

– R = R𝜙 as in Definition 1;
– A = {𝛼0};
– 𝛼0 = 𝑐𝑡𝑟_𝛼0.
• the positive examples are E+ = {default (𝑐) | 𝑛𝑎𝑚𝑒 ((𝑆, 𝛿)) =
𝑐, (𝑆, 𝛿) ∈𝐷} ∪ {default (𝑐𝛿 )};
• the negative examples are E− = {default (𝑐) | 𝑛𝑎𝑚𝑒 ((𝑆, 𝛿))=
𝑐, (𝑆, 𝛿) ∈𝐷}.

Here, 𝛼0 is a bogus assumption, as required in [24] to guarantee

that the ABA framework includes at least one assumption, as in this

simple setting where the rules amount solely to facts characterising

the examples, no “real” assumption can be naturally identified.

Example 4. Consider again the learning problem of Example 2
and the 𝑛𝑎𝑚𝑒 function in Example 3. The associated ABA Learning
problem is (𝐹𝐵, E+, E−), where 𝐹𝐵 has R = R𝜙 as in Example 3, and
the positive and negative examples are
E+ = {default (𝑐𝛿 ), default (3)}
E− = {default (1), default (2), default (4)}.

Note that, in Definition 2, E+ ∩ E− = ∅ by construction. If we

start from a coherent casebase, we can further pull apart E+ and
E− as follows:

Definition 3. Let R be a set of rules of the form 𝑝 (𝑋 ) ← 𝑋 = 𝑐

for a unary predicate 𝑝 and a constant 𝑐 ∈ C. Two constants 𝑐1, 𝑐2 ∈ C

are discernible in R if there exists a predicate 𝑝 such that either
(𝑝 (𝑋 ) ← 𝑋 = 𝑐1) ∈ R and (𝑝 (𝑋 ) ← 𝑋 = 𝑐2) ∉ R or (𝑝 (𝑋 ) ←
𝑋 = 𝑐1) ∉ R and (𝑝 (𝑋 ) ← 𝑋 = 𝑐2) ∈ R.

Proposition 1. Let (𝐹𝐵, E+, E−) be the ABA Learning problem
associated with (𝐷, 𝛿, 𝑁 ), with 𝐹𝐵 = ⟨L,R,A, ⟩. The casebase 𝐷 is
coherent iff for all 𝑐1, 𝑐2 ∈ C, if default (𝑐1) ∈ E+ and default (𝑐2) ∈
E− , then 𝑐1 and 𝑐2 are discernible in R.

In the same way that, for the original learning problem, we strive

towards predicting an outcome for the new case 𝑁 by generalising

the information in 𝐷 (in an AAF), here we strive towards determin-

ing coverage of default(𝑐𝑁 ) from an ABA framework learnt from

the examples so that all positive ones are covered and none of the

negative ones are covered therein, as formally defined next:

Definition 4. Given the ABA Learning problem (𝐹𝐵, E+, E−)
associated with (𝐷, 𝛿, 𝑁 ), with 𝐹𝐵 = ⟨L,R,A, ⟩, the goal of ABA
Learning is to construct 𝐹 ′ = ⟨L′,R′,A′, ′⟩, called a solution, such
that L ⊆ L′, R ⊆ R′, A ⊆ A′, for all 𝛼 ∈ A:5 𝛼 ′ = 𝛼 , and the
following two conditions hold:
• (Completeness) for all 𝑒 ∈E+, 𝐹 ′ |= 𝑒 ;
• (Consistency) for all 𝑒 ∈ E− , 𝐹 ′ ̸ |= 𝑒 .

𝐹 ′ is an intensional solution whenR′\R is made out of rule schemata
constructed by using predicate symbols and variables only.

Intuitively, intensionality captures a notion of generality for

the learnt rules [10]. Note that 𝐹 ′(𝐷,𝛿,𝑁 ) amounting to 𝐹 (𝐷,𝛿,𝑁 )
in Example 3 with additionally the bogus assumption 𝛼0 and its

contrary, is an intensional solution to the ABA Learning problem

associated with the learning problem of Example 2. In the remainder,

we will define a form of ABA Learning for generating solutions to

the ABA Learning problem associated with (𝐷, 𝛿, 𝑁 ) in such a way

that they correspond to the solutions determined by AA-CBR.

Note that in [10] solutions to the brave ABA Learning problem
are defined by replacing the two conditions in Definition 4 with

the following three conditions:

• (Existence) 𝐹 ′ admits at least one stable extension Δ;
• (Completeness) for all 𝑒 ∈E+, 𝑒 is covered in Δ;
• (Consistency) for all 𝑒 ∈ E− , 𝑒 is not covered in Δ.

In [10] 𝐹 ′ is called a brave solution. Recall that for every stratified

(flat) ABA framework the grounded extension is guaranteed to

exist and to coincide with its (unique) stable extension. Thus, for

stratified ABA frameworks, our notion of ABA Learning problem in

Definition 4 is equivalent to the definition of brave ABA Learning

problem in [10].

5 GREEDY ABA LEARNING FROM COHERENT
CASEBASES

To achieve the goal of ABA Learning, several strategies and imple-

mentations thereof have been defined [9, 10, 21, 23], all combining

in different ways transformation rules. In our novel strategy, we

use the ones defined below, adapted from [21], all turning a given

ABAF ⟨L,R,A, ⟩ into a new ABAF ⟨L′,R′,A′, ′⟩6, as follows: 7
5
In the specific setting of Definition 2, necessarily 𝛼 = 𝛼0 .

6
When its new components are the same as the old ones we omit to indicate them.

7
For ABA rules: (1)𝐻,𝐾 denote heads, (2) 𝐸𝑞 denotes an equality, (3) 𝐵 (possibly with

subscripts) denotes sequences of atoms. Sequences of atoms can be freely reordered to

enable the application of a transformation rule.
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• Rote Learning (RL). For 𝑝 (𝑡) ∈ L, R′=R∪{𝑝 (𝑋 )←𝑋=𝑡}.
• Folding (Fld). For 𝜌1, 𝜌2 ∈ R, respectively of the form 𝐻 ←
𝐸𝑞, 𝐵 and 𝐾 ← 𝐸𝑞, R′ = (R \ {𝜌1}) ∪ {𝐻 ← 𝐸𝑞, 𝐾, 𝐵}.8
• Assumption Introduction (AI). For 𝜌1 ∈R of the form 𝐻←𝐵,

let 𝜌2 be 𝐻 ← 𝐵, 𝛼 (𝑋 ), where 𝑋 is the tuple of variables

from vars(𝐻 ) ∪ vars(𝐵) and 𝛼 (𝑋 ) ∉ L \ A9
. Then, R′ =

(R \ {𝜌1}) ∪ {𝜌2}, A′ =A ∪ {𝛼 (𝑋 )}, 𝛼 (𝑋 )
′
=𝑐𝑡𝑟_𝛼 (𝑋 ) for

some 𝑐𝑡𝑟_𝛼 (𝑋 ) ∉A′, and 𝛽′=𝛽 for all 𝛽 ∈A.

• Equality Removal (ER). For 𝜌1 ∈ R of the form 𝐻 ← 𝐸𝑞, 𝐵,

R′ = (R \ {𝜌1}) ∪ {𝐻 ← 𝐵}.
• Subsumption (Su). Suppose that R contains rules

𝜌1 : 𝐻 ← 𝐵1 and 𝜌2 : 𝐻 ← 𝐵1, 𝐵2
Then, 𝜌2 is said to be subsumed by 𝜌1 and is deleted from R,
and hence R′ = R \ {𝜌2}.

Definition 5. Given an ABAF 𝐹 = ⟨L,R,A, ⟩, an extension Δ
for 𝐹 , a set 𝐸 of claims in L, and a rule (ℎ(𝑋 ) ← 𝐵) ∈ R, we define
𝐶𝑜𝑣 (Δ, 𝐸, ℎ(𝑋 ) ← 𝐵) = {ℎ(𝑡) ∈ 𝐸 | there is an argument 𝛾 ∈ Δ with
claim ℎ(𝑡) and top rule ℎ(𝑋 ) ← 𝐵 such that 𝛾 is not attacked in Δ}.

Now we present the notion of an ABA Learning derivation con-

structed by a sequence of applications of the transformation rules.

Definition 6 (ABA Learning from Coherent Casebases).

Given an ABA Learning problem (𝐹𝐵, E+, E−) associated with the
triple (𝐷, 𝛿, 𝑁 ), an ABA Learning derivation is a sequence
(𝐹0, E+

0
, E−

0
, 𝑟0) ⇒ (𝐹1, E+

1
, E−

1
, 𝑟1) ⇒ . . .⇒ (𝐹𝑛, E+𝑛 , E−𝑛 , 𝑟𝑛) . . .

where, for 𝑖 ≥ 0, 𝐹𝑖 is an ABAF and 𝑟𝑖 ∈ {𝑅𝐿, Fld, ER, Su,AI},
such that, E+

0
= E+, E−

0
= E− , 𝑟0 is the RL label and, for 𝑖 > 0,

(𝐹𝑖 , E+𝑖 , E
−
𝑖
, 𝑟𝑖 ) is obtained from (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1, 𝑟𝑖−1) by applying

the transformation rule 𝑟𝑖−1 as specified at the five points below10.
R𝑖 andA𝑖 denote, respectively, the set of rules and assumptions in 𝐹𝑖 :
(RL) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1, RL) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1, Fld), where 𝐹𝑖 is ob-

tained by (repeatedly) applying RL for all ℎ(𝑡) ∈ E+
𝑖−1;

(Fld) (𝐹𝑖−1, E+𝑖−1, E
−
𝑖−1, Fld) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1, ER), where 𝐹𝑖 is ob-

tained by (repeatedly) applying Fld to all ℎ(𝑋 ) ← 𝑋 = 𝑐, 𝐵 ∈
R𝑖−1 and 𝑝 (𝑋 ) ← 𝑋 = 𝑐 ∈ R0;

(ER) (𝐹𝑖−1, E+𝑖−1, E
−
𝑖−1, ER) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1, Su), where 𝐹𝑖 is ob-

tained by (repeatedly) applying ER to all rules in R𝑖−1 \ R0;
(Su) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1, Su) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1,AI), where 𝐹𝑖 is ob-

tained by (repeatedly) applying Su and deleting from R𝑖−1
every rule that is subsumed by another rule in R𝑖−1;

(AI ) there are three cases:
(AI.1) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1,AI) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1,AI), where 𝐹𝑖

is obtained by selecting 𝜌 : ℎ(𝑋 ) ← 𝐵 in R𝑖−1 such that there
exists (𝑘 (𝑋 ) ← 𝐵, 𝛼 (𝑋 )) ∈ R𝑖−1 and, by applying AI to 𝜌 ,
getting R𝑖 = (R𝑖−1 \ {𝜌}) ∪ {ℎ(𝑋 ) ← 𝐵, 𝛼 (𝑋 )};
(AI.2) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1,AI) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1,AI), where 𝐹𝑖

is obtained by (1) selecting 𝜌 : ℎ(𝑋 ) ← 𝐵 in R𝑖−1 such
that (1.a) there exists no rule in R𝑖−1 with body 𝐵, 𝛼 (𝑋 ), with
𝛼 (𝑋 ) ∈ A𝑖−1 and (1.b) 𝐶𝑜𝑣 (G(𝐹𝑖−1), E−𝑖−1, 𝜌) ≠ ∅, and then
(2) applying AI so that: (2.a) A𝑖 = A𝑖−1 ∪ {𝛼 (𝑋 )}, where

8
The folding transformation rule in [21] is defined to be applicable to rules 𝜌1, 𝜌2 with

more general bodies.

9
The assumption 𝛼 (𝑋 ) may belong to A or be a new one, as specified in the ABA

Learning derivations defined in this section (Definition 6) in the next section (Defini-

tion 7).

10
When multiple transformation rules of the same type are applied in sequence, we

assume that each application takes the output of the previous as its input.

𝛼 (𝑋 ) ∉ A𝑖−1 is a new assumption with contrary 𝛼 (𝑋 ), and
(2.b) R𝑖 = (R𝑖−1 \ {𝜌}) ∪ {ℎ(𝑋 ) ← 𝐵, 𝛼 (𝑋 )};
(AI.3) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1,AI) ⇒ (𝐹𝑖−1, E

+
𝑖
, E−
𝑖
, RL), where ev-

ery 𝜌 ∈ R𝑖−1 with 𝐶𝑜𝑣 (G(𝐹𝑖−1), E−𝑖−1, 𝜌) ≠ ∅ has an as-
sumption in its body, and E+

𝑖
, E−
𝑖

are obtained as follows:
(1) E+

𝑖
= {𝛽 (𝑡) | ℎ(𝑡) ∈ 𝐶𝑜𝑣 (G(𝐹𝑖−1), E−𝑖−1, 𝜌

′), for some
𝜌′ : ℎ(𝑋 ) ← 𝐵, 𝛽 (𝑋 ) ∈ R𝑖−1}, and (2) E−

𝑖
= {𝛽 (𝑡) | ℎ(𝑡) ∈

𝐶𝑜𝑣 (G(𝐹𝑖−1), E+𝑖−1, 𝜌
′), for some 𝜌′ : ℎ(𝑋 ) ← 𝐵, 𝛽 (𝑋 ) ∈

R𝑖−1}.
We say that ABA Learning terminates for the learning problem

(𝐹𝐵, E+, E−) and its output is an ABA framework 𝐹 ′ if there exists
a derivation (𝐹𝐵, E+, E−, RL) ⇒ . . . ⇒ (𝐹 ′, ∅, ∅, RL). 𝐹 ′ is denoted
𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ).

There is some nondeterminism in the construction of an ABA

Learning derivation. In particular, the order of application of cases

(AI.1) and (AI.2) is not fixed and, within each case, the selection

of a rule 𝜌 for the application of AI is arbitrary. However, it can
be easily seen that the output of an ABA Learning derivation is

independent of the specific sequence of these derivation steps, as

stated below.

Proposition 2. Let 𝐹 ′ and 𝐹 ′′ be the outputs of two ABA Learning
derivations for the same learning problem (𝐹𝐵, E+, E−). Then, 𝐹 ′ and
𝐹 ′′ are equal up to the variable names, the order of atoms in bodies,
and the predicate names of assumptions.

Example 5. Let us consider the ABA Learning problem of Exam-
ple 4 and let R0 be the set of rules in 𝐹 (𝐷,𝛿,𝑁 ) . We construct an ABA
Learning derivation of the form (RL; Fld; ER; Su;AI ∗)∗ (we only indi-
cate the transformation rule labels) as follows, where by an iteration

we mean a sequence RL; Fld; ER; Su;AI ∗.
First iteration. Case (RL) applies, thereby getting
𝜌1 : default (𝑋 ) ← 𝑋 = 𝑐𝛿
𝜌2 : default (𝑋 ) ← 𝑋 = 3

from E+
0
, that is, E+. R := R0 ∪ {𝜌1, 𝜌2}.

The derivation proceeds by applying case (Fld). Rule 𝜌2 can be folded
by using the rules in the set R𝜙 listed in Example 3, thereby getting
𝜌3 : default (𝑋 ) ← 𝑋 = 3, 𝑎(𝑋 ), 𝑐 (𝑋 )

No rule in R𝜙 can be used to fold 𝜌1. Thus, R := (R \ {𝜌2}) ∪ {𝜌3},
and the derivation proceeds by applying case (ER)
𝜌4 : default (𝑋 ) ←
𝜌5 : default (𝑋 ) ← 𝑎(𝑋 ), 𝑐 (𝑋 )

and we get R := (R \ {𝜌1, 𝜌3}) ∪ {𝜌4, 𝜌5}.
Now, case (Su) applies and we have that 𝜌5 is subsumed by 𝜌4. Thus,
R := R \ {𝜌5} and the derivation proceeds by applying case (AI).
Let 𝐹 and E− be the ABA framework and the set of negative ex-
amples computed so far, respectively. Given that no assumption has
been introduced and 𝐶𝑜𝑣 (G(𝐹 ), E−, 𝜌4) = {default (1), default (2),
default (4)}, case (AI.2) applies. A new assumption 𝛼1 (𝑋 ), with con-
trary 𝑐𝑡𝑟_𝛼1 (𝑋 ), is introduced in A and added to the body of 𝜌4:
𝜌6 : default (𝑋 ) ← 𝛼1 (𝑋 )

No more assumptions are required and, therefore, case (AI.3) applies:
R := (R \ {𝜌4}) ∪ {𝜌6}, E+ := {𝑐𝑡𝑟_𝛼1 (1), 𝑐𝑡𝑟_𝛼1 (2), 𝑐𝑡𝑟_𝛼1 (4)},
and E− := {𝑐𝑡𝑟_𝛼1 (𝑐𝛿 ), 𝑐𝑡𝑟_𝛼1 (3)}.
Second iteration. By (RL), we get:
𝜌7 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑋 = 1

𝜌8 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑋 = 2
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𝜌9 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑋 = 4

and R := R ∪ {𝜌7, 𝜌8, 𝜌9}. By (Fld) and (ER), we derive:
𝜌10 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑎(𝑋 )
𝜌11 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑏 (𝑋 )
𝜌12 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑏 (𝑋 ), 𝑑 (𝑋 )

R := (R \ {𝜌7, 𝜌8, 𝜌9}) ∪ {𝜌10, 𝜌11, 𝜌12}. By (Su) we get that 𝜌12
is subsumed by 𝜌11. Hence, it is deleted, R := R \ {𝜌12}, and the
derivation moves on with (AI). Now, case (AI.2) applies and a new
assumption 𝛼2 (𝑋 ), with contrary 𝑐𝑡𝑟_𝛼2 (𝑋 ), is introduced in A and
added to the body of 𝜌10:
𝜌13 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑎(𝑋 ), 𝛼2 (𝑋 )

while no assumption is added to the body of rule 𝜌11. Hence, we get
R := (R \ {𝜌10}) ∪ {𝜌13}. Then, by (AI.3), we get E+ := {𝑐𝑡𝑟_𝛼2 (3)}
and E− := {𝑐𝑡𝑟_𝛼2 (1)}.
Third iteration. By (RL), we get
𝜌14 : 𝑐𝑡𝑟_𝛼2 (𝑋 ) ← 𝑋 = 3

and then, by (Fld) and (ER), we get
𝜌15 : 𝑐𝑡𝑟_𝛼2 (𝑋 ) ← 𝑎(𝑋 ), 𝑐 (𝑋 )

Given that no rule covers negative examples, by case (AI.3) we get E+ =
∅ and E− = ∅. Thus, the ABA Learning derivation terminates and
returns an ABAF 𝐹 ′ whose set of rules is R′ = R0∪{𝜌6, 𝜌11, 𝜌13, 𝜌15}.
R′ is equal (modulo the predicate names of the assumptions) to the
set of rules obtained in Example 3 by applying Definition 1.

Any ABA Learning derivation can be viewed as an adaptation of

the ABALearn algorithm presented in [10] specialised to the case

where the input ABA Learning problem is constructed from a co-

herent casebase, by using the greedy folding strategy as defined at

step (Fld) and the assumption introduction strategy defined by (AI ).
Indeed, ABALearn is a nondeterministic algorithm and it is para-

metric with respect to the specific implementation of the Folding

and Assumption Introduction transformation rules.

In our more specific context we strengthen some results about

ABALearn. Indeed, we get the following two lemmas.

Lemma 4 (Soundness of ABA Learning for Coherent Case-

bases). If ABA Learning terminates for the learning problem (𝐹𝐵, E+,
E−) associated with (𝐷, 𝛿, 𝑁 ), where 𝐷 is a coherent casebase, then
its output 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) is an intensional solution of the problem.

Proof. (Sketch) Let us consider the sequence, for 𝑖 > 0:

(𝐹𝑖−1, E+𝑖−1, E
−
𝑖−1, RL) ⇒ (𝐹𝑖 , E

+
𝑖−1, E

−
𝑖−1, Fld)

⇒ (𝐹𝑖+1, E+𝑖−1, E
−
𝑖−1, ER)

⇒𝑘 (𝐹𝑖+𝑘+1, E+𝑖−1, E
−
𝑖−1,AI)

⇒ (𝐹𝑖+𝑘+2, E+𝑖 , E
−
𝑖
, RL)

The core of the proof consists in showing that if 𝐹 ′ is a solution of

(𝐹𝑖+𝑘+2, E+𝑖 , E
−
𝑖
), then 𝐹 ′ is a solution of (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1). To see

that this invariant holds, note that (1) E+
𝑖
consists of the contraries

to the assumptions introduced by (AI ) that must be covered in

G(𝐹 ′) to avoid the coverage of negative examples in E−
𝑖−1, and

(2) E−
𝑖
consists of the contraries to the assumptions introduced by

(AI ) that must not be covered in G(𝐹 ′) to preserve the coverage of

the positive examples in E+
𝑖−1. Thus, if we get to (𝐹

′, ∅, ∅, RL), 𝐹 ′ is
a solution of (𝐹0, E+

0
, E−

0
). Moreover, 𝐹 ′ is an intensional solution,

because, due to a previous (ER), no rule derived by (AI ) contains
occurrences of constants. □

Lemma 5 (Termination of ABA Learning for Coherent Case-

bases). Let (𝐹𝐵, E+, E−) be the ABAF associated with (𝐷, 𝛿, 𝑁 ),

where 𝐷 is a coherent casebase. Then, ABA Learning terminates for
the input (𝐹𝐵, E+, E−) and its output 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) is stratified.

Proof. (Sketch) Let us consider the set RAI𝑛 of rules obtained by

an ABA Learning derivation of the form:

(𝐹𝐵, E+, E−, RL) ⇒ . . .

⇒ (𝐹𝑛−1, E+𝑛−1, E
−
𝑛−1,AI) ⇒ (𝐹𝑛, E

+
𝑛 , E−𝑛 , RL)

for 𝑛 > 0. RAI𝑛 is of the form R𝜙 ∪ R𝜆𝑛 , where R𝜙 are the rules in

𝐹𝐵 and R𝜆𝑛 are the learnt rules. Each rule in R𝜆𝑛 will be of one of

the following forms:

default (𝑋 ) ← 𝛼 (𝑋 ) (𝜌0)
𝑐𝑡𝑟_𝛾 (𝑋 ) ← 𝑓1 (𝑋 ), . . . , 𝑓𝑘 (𝑋 ), 𝛽 (𝑋 )
𝑐𝑡𝑟_𝜂 (𝑋 ) ← 𝑔1 (𝑋 ), . . . , 𝑔𝑚 (𝑋 )

where 𝑓1, . . . , 𝑓𝑘 , 𝑔1, . . . , 𝑔𝑚 are predicates in F, 𝛼 (𝑋 ), 𝛽 (𝑋 ) are as-
sumptions and 𝑐𝑡𝑟_𝛾 (𝑋 ), 𝑐𝑡𝑟_𝜂 (𝑋 ) are contraries. Let us consider
the AAF (𝐴𝑟𝑔𝑠𝜆,{𝜆), where𝐴𝑟𝑔𝑠𝜆 =

⋃
𝑛>0 R𝜆𝑛 and{𝜆

is defined

as follows: for two rules 𝜌1, 𝜌2 ∈ 𝐴𝑟𝑔𝑠𝜆 , 𝜌1 {𝜆 𝜌2 iff the head of

𝜌1 is of the form 𝑐𝑡𝑟_𝛼1 (𝑋 ) and the assumption 𝛼1 (𝑋 ) occurs in
the body of 𝜌2.

Let 𝜌0𝜌1 . . . be any sequence of rules in 𝐴𝑟𝑔𝑠𝜆 where, for 𝑖 ≥
0, 𝜌𝑖+1 {𝜆 𝜌𝑖 . By construction, 𝜌𝑖 is of the form 𝑐𝑡𝑟_𝛾 (𝑋 ) ←
𝑓1 (𝑋 ), . . . , 𝑓𝑘 (𝑋 ), 𝛽 (𝑋 ) and 𝜌𝑖+1 is of the form 𝑐𝑡𝑟_𝛽 (𝑋 ) ← 𝑔1 (𝑋 ),
. . . , 𝑔𝑚 (𝑋 ), 𝜂 (𝑋 ), where {𝑓1 (𝑋 ), . . . , 𝑓𝑘 (𝑋 )} ⊂ {𝑔1 (𝑋 ), . . . , 𝑔𝑚 (𝑋 )}
and 𝜂 (𝑋 ) may be absent. Since the set F of predicates is finite,

and we can assume that no duplicates occur in the body of a rule,

there is a maximum length of such sequences. Thus, ABA Learning

constructs a finite, acyclic, directed graph (𝐴𝑟𝑔𝑠𝜆,{𝜆), that is, ABA
Learning terminates for any input (𝐹𝐵, E+, E−) and the output

𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) is a stratified ABAF. □

Our soundness and termination results are stronger than the ones

for the ABALearn algorithm [10], as the latter may terminate with

failure, that is, without producing an intensional solution. Moreover,

the result of ABALearn is not necessarily a stratified ABAF, which

in our case guarantees soundness with respect to ground extensions

(and not stable extensions as in [10]). Furthermore, the next result

enforces that an ABA Learning derivation always gets an output

that is isomorphic to the one of Definition 1, thus generalising the

outcome of Example 5.

Theorem 6. Let𝐷 be a coherent casebase, 𝛿 be the default outcome,
and 𝑁 be a new case. Let 𝐹 (𝐷,𝛿,𝑁 ) be the ABAF associated with
AAF(𝐷, 𝛿, 𝑁 ) as shown in Definition 1. Let (𝐹𝐵, E+, E−) be the ABA
Learning problem associated with (𝐷, 𝛿, 𝑁 ), constructed as shown in
Definition 2. Then,

(1) ABA Learning terminates for the input ABA Learning problem
(𝐹𝐵, E+, E−), and returns an ABAF 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 );

(2) 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) is a stratified ABAF;
(3) 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) is an intensional solution of (𝐹𝐵, E+, E−);
(4) 𝐹 (𝐷,𝛿,𝑁 ) = 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) (modulo variable names, predicate

names of assumptions, order of atoms in bodies, and presence
of the bogus assumption and its contrary in 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 )).

Proof. (Sketch) Points (1) and (2) follow directly from Lemma 5.

Point (3) follows from Lemma 4.

The main step of the proof for Point (4) consists in showing that

the abstract argumentation framework 𝐴𝐴𝐹 (𝐷, 𝛿) = (𝐴𝑟𝑔𝑠,{) is
isomorphic to the abstract argumentation framework (𝐴𝑟𝑔𝑠𝜆,{𝜆).
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To see this, consider the mapping Φ : 𝐴𝑟𝑔𝑠𝜆 → 𝐷 ∪ {(∅, 𝛿)}, where
Φ(𝜌) = (𝑋, 𝑜𝑋 ) iff 𝑋 is the set of features occurring as predicates in

the body of 𝜌 (e.g., Φ(default (𝑋 ) ← 𝛼1 (𝑋 )) = (∅, 𝛿)). To show that

Φ is a bijection, we also use the fact that in 𝐴𝑟𝑔𝑠𝜆 there is no pair

of rules of the form 𝜌1 and 𝜌2 such that: (i) ℎ𝑒𝑎𝑑 (𝜌1) = ℎ𝑒𝑎𝑑 (𝜌2),
and (ii) the set of non-assumption atoms occurring in 𝑏𝑜𝑑𝑦 (𝜌1)
is a subset of the set of atoms occurring in 𝑏𝑜𝑑𝑦 (𝜌2). Indeed, 𝜌2
would not be derived, due to the application of rule Su. We can

also see that 𝜌1 {
𝜆 𝜌2 iff Φ(𝜌1) { Φ(𝜌2), where{ is the attack

relation in 𝐴𝐴𝐹 (𝐷, 𝛿). Then, Point 4 follows from Definition 1,

as in particular the following holds: (i) the rules of 𝐹 (𝐷,𝛿,𝑁 ) are
R𝛿 ∪R𝜒 ∪R𝜙 , (ii) the rules of 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) are R𝜙 ∪𝐴𝑟𝑔𝑠𝜆 , and
(iii)R𝛿∪R𝜒 = Φ−1 (𝐷∪{(∅, 𝛿)}), modulo variable names, predicate

names of assumptions, and order of atoms in bodies.

Finally, note that the language of the background ABA frame-

work 𝐹𝐵 includes a bogus assumption 𝛼0 and its contrary 𝑐𝑡𝑟_𝛼0
(see Definition 2). Thus, 𝛼0 and 𝑐𝑡𝑟_𝛼0 also appear in the language

of 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ), while they do not appear in 𝐹 (𝐷,𝛿,𝑁 ) . However,
neither 𝛼0 nor 𝑐𝑡𝑟_𝛼0 appear in the rules of 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ). □

We get the following straightforward consequence of Lemma 2

and Theorem 6(4).

Corollary 7. For a coherent casebase 𝐷 , AA-CBR(𝐷, 𝛿, 𝑁 ) = 𝛿
iff 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) |= default (cN ).

6 GREEDY ABA LEARNING FROM
INCOHERENT CASEBASES

In the previous sections we have dealt with coherent casebases.

When we drop the coherence assumption and we admit an incoher-

ent casebase 𝐷 , we can still use Definition 2 to construct an ABA

learning problem (𝐹𝐵, E+, E−) associated with (𝐷, 𝛿, 𝑁 ). However,
we cannot guarantee that a solution of (𝐹𝐵, E+, E−) (in the sense

of Definition 4) exists and can be computed by an ABA Learning

derivation (see Definition 6), as shown by the following simple ex-

ample (a variant of the well known Nixon diamond problem [22]).

Example 6 (Nixon diamond). Let us consider the ABA framework
𝐹𝐵 = ⟨L,R,A, ⟩, where R is the following set of rules:
𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 ) ← 𝑋 = 𝑗𝑒𝑟𝑟𝑦 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ) ← 𝑋 = 𝑗𝑒𝑟𝑟𝑦

𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 ) ← 𝑋 =𝑟𝑖𝑐ℎ𝑎𝑟𝑑 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ) ← 𝑋 =𝑟𝑖𝑐ℎ𝑎𝑟𝑑

𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 ) ← 𝑋 =𝑚𝑎𝑟𝑔𝑒𝑟𝑦

𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ) ← 𝑋 = jennifer
We also assume that in the universe there is a constant 𝑐𝛿 representing
the default case and a rule
𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ) ← 𝑋 =george

which represents the feature characterising the new case. The positive
and negative examples are the following sets:
E+
0
= {pacifist (c𝛿 ), pacifist (jerry), pacifist (margery)}

E−
0
= {pacifist (richard), pacifist (jennifer)}.

We do not present the source triple (𝐷, 𝛿, 𝑁 ), as the mapping is
straightforward.
𝐹𝐵 is incoherent, because 𝑗𝑒𝑟𝑟𝑦 and 𝑟𝑖𝑐ℎ𝑎𝑟𝑑 , who are classified as

pacifist and nonpacifist, respectively, are characterised by the same
features, that is, for both the predicates 𝑞𝑢𝑎𝑘𝑒𝑟 and 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛 hold.
In terms of Definition 3, 𝑗𝑒𝑟𝑟𝑦 and 𝑟𝑖𝑐ℎ𝑎𝑟𝑑 are not discernible, and
by Proposition 1, 𝐹𝐵 corresponds to an incoherent casebase.

An ABA Learning derivation is constructed by iterations analogous
to Example 5. By the first three iterations we obtain the rules:
𝜌1 : pacifist (𝑋 ) ← 𝛼1 (𝑋 )
𝜌2 : 𝑐𝑡𝑟_𝛼1 (𝑋 ) ← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ), 𝛼2 (𝑋 ).
𝜌3 : 𝑐𝑡𝑟_𝛼2 (𝑋 ) ← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ), 𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 ), 𝛼3 (𝑋 ).

At the fourth iteration, by (RL) we get:
𝜌4 : 𝑐𝑡𝑟_𝛼3 (𝑋 ) ← 𝑋 = 𝑟𝑖𝑐ℎ𝑎𝑟𝑑

and, by (Fld) and (ER):
𝜌5 : 𝑐𝑡𝑟_𝛼3 (𝑋 ) ← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ), 𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 )

Thus, by (AI.1), we use the previously introduced assumption 𝛼3 (𝑋 ),
and we get:
𝜌6 : 𝑐𝑡𝑟_𝛼3 (𝑋 ) ← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ), 𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 ), 𝛼3 (𝑋 )

The learnt ABA framework 𝐹 ′, with rules R∪{𝜌1, 𝜌2, 𝜌3, 𝜌6}, is not a
solution according to Definition 4. Indeed, G(𝐹 ′) = G(𝐹𝐵), and hence
𝐹 ′ does not cover any positive example. This is due to the self-attacking
rule 𝜌6, which does not allow the construction of a grounded extension
that includes an argument for a claim of the form pacifist (𝑡).

By formalising the above example as a casebase (𝐷, 𝛿, 𝑁 ), we
can also see that the construction of Definition 1 is not applicable

either, as the AAF (𝐴𝑟𝑔𝑠𝑁 ,{𝑁 ) is a directed graph with cycles. To

overcome this difficulty, we generalise the ABA Learning problem

presented in Definition 4 by considering brave ABA Learning prob-

lems and modifying the definition of an ABA Learning derivation

based on stable extensions, instead of grounded extensions, and

handling cycles through contraries in a sound way. The modified

ABA Learning derivation always guarantees the computation of a

brave solution.

Definition 7 (Brave ABA Learning). Given an ABA Learn-
ing problem (𝐹𝐵, E+, E−) associated with (𝐷, 𝛿, 𝑁 ), a brave ABA

Learning derivation is a sequence
(𝐹0, E+

0
, E−

0
,Δ0, 𝑟0) ⇒ (𝐹1, E+

1
, E−

1
,Δ1, 𝑟1) ⇒ . . .

⇒ (𝐹𝑛, E+𝑛 , E−𝑛 ,Δ𝑛, 𝑟𝑛) . . .
constructed as in Definition 6, with the following modifications:
(1) for 𝑖 ≥ 1, Δ𝑖−1 is a stable extension of 𝐹𝑖−1 such that: (1.a) Δ0 =

G(𝐹0), and (1.b) for 𝑟𝑖−1 = RL, with 𝑖 > 1, Δ𝑖 = Δ𝑖−1 ∪ {∅ ⊢ 𝑒 | 𝑒 ∈
E+
𝑖−1}; (1.c) for 𝑟𝑖−1 ∈ {Fld, ER, Su,AI}, with 𝑖 > 1, every 𝑒 ∈ E+

𝑖−1
is covered in Δ𝑖−1 and the set {𝑒 ∈ E−

𝑖−1 | 𝑒 is covered in Δ𝑖−1} is
minimal;
(2) the three cases (AI.1)–(AI.3) are replaced by the following ones:
(AI.1B) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1,Δ𝑖−1,AI) ⇒ (𝐹𝑖 , E+𝑖−1, E

−
𝑖−1,Δ𝑖−1,AI),

where 𝐹𝑖 is obtained by selecting 𝜌 : ℎ(𝑋 ) ← 𝐵 in R𝑖−1 such that
there exists (𝑘 (𝑋 ) ← 𝐵, 𝛼 (𝑋 )) ∈ R𝑖−1, and applying AI to 𝜌 , thereby
getting R𝑖 = (R𝑖−1 \ {𝜌}) ∪ {ℎ(𝑋 ) ← 𝐵, 𝛽 (𝑋 )}, with 𝛽 (𝑋 ) = 𝑘 (𝑋 )
if ℎ(𝑋 ) = 𝛼 (𝑋 ), and 𝛽 (𝑋 ) = 𝛼 (𝑋 ), otherwise;
(AI.2B) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1,Δ𝑖−1,AI) ⇒ (𝐹𝑖 , E+𝑖−1, E

−
𝑖−1,Δ𝑖−1,AI),

where 𝐹𝑖 is obtained by (1) selecting 𝜌 : ℎ(𝑋 ) ← 𝐵 in R𝑖−1 such
that (1a) there exists no rule in R𝑖−1 with body 𝐵, 𝛼 (𝑋 ), with 𝛼 (𝑋 ) ∈
A𝑖−1 and (1b) 𝐶𝑜𝑣 (Δ𝑖−1, E−𝑖−1, 𝜌) ≠ ∅, and (2) applying AI so that:
(2a)A𝑖 = A𝑖−1 ∪ {𝛼 (𝑋 )}, where 𝛼 (𝑋 ) ∉ A𝑖−1 is a new assumption
with contrary𝛼 (𝑋 ), and (2b)R𝑖 = (R𝑖−1\{𝜌})∪{ℎ(𝑋 ) ← 𝐵, 𝛼 (𝑋 )};
(AI.3B) (𝐹𝑖−1, E+𝑖−1, E

−
𝑖−1,Δ𝑖−1,AI) ⇒ (𝐹𝑖−1, E+𝑖 , E

−
𝑖
,Δ𝑖−1, RL),

where every 𝜌 ∈ R𝑖−1 with 𝐶𝑜𝑣 (Δ𝑖−1, E−𝑖−1, 𝜌) ≠ ∅ has an as-
sumption in its body, and E+

𝑖
, E−
𝑖
are obtained as follows: (1) E+

𝑖
=

{𝛼 (𝑡) | ℎ(𝑡) ∈ 𝐶𝑜𝑣 (Δ𝑖−1, E−𝑖−1, 𝜌
′), for some 𝜌′ ∈ R𝑖−1}, and

(2) E−
𝑖
= {𝛼 (𝑡) | ℎ(𝑡) ∈ 𝐶𝑜𝑣 (Δ𝑖−1, E+𝑖−1, 𝜌

′), for some 𝜌′ ∈ R𝑖−1}.
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In (AI.1𝐵)wehandle the casewherewe derive a rule 𝑐𝑡𝑟_𝛼 (𝑋 ) ←
𝐵, and a rule 𝑐𝑡𝑟_𝛾 (𝑋 ) ← 𝐵, 𝛼 (𝑋 ) had already been learnt in a

previous step. In this case, (AI.1B) avoids the introduction of the

self-attacking rule 𝑐𝑡𝑟_𝛼 (𝑋 ) ← 𝐵, 𝛼 (𝑋 ) and, instead, learns the
rule 𝑐𝑡𝑟_𝛼 (𝑋 ) ← 𝐵,𝛾 (𝑋 ). This learning step may generate an ABA

framework with more than one stable extension.

Note that in (AI.2B), (AI.3B) we consider a suitable stable exten-
sion Δ𝑖−𝑖 of 𝐹𝑖−1 that covers all positive examples, instead of the

grounded extension G(𝐹𝑖−1). The following lemma ensures that,

for all 𝑖 > 1, such a stable extension Δ𝑖−1 exists, and hence the

notion of a brave ABA Learning derivation is well-defined.

Lemma 8. Let (𝐹0, E+
0
, E−

0
,Δ0, 𝑟0) ⇒ (𝐹1, E+

1
, E−

1
,Δ1, 𝑟1) ⇒ . . .

⇒ (𝐹𝑛, E+𝑛 , E−𝑛 ,Δ𝑛, 𝑟𝑛) . . . be a brave ABA Learning derivation. Then,
for 𝑖 ≥ 1, (1) for 𝑟𝑖−1 = RL, every positive example 𝑒 ∈ E+

𝑖−1 is covered
in Δ𝑖 , and (2) for 𝑟𝑖−1 ∈ {Fld, ER, Su,AI}, every 𝑒 ∈ E+𝑖−1 is covered
in Δ𝑖−1.

Brave ABA Learning enjoys properties similar to ABA Learning,

when we refer to stable extensions instead of grounded extensions.

Lemma 9 (Soundness of Brave ABA Learning). If brave ABA
Learning terminates for the ABA Learning problem (𝐹𝐵, E+, E−)
associated with (𝐷, 𝛿, 𝑁 ), where 𝐷 is any (coherent or not) casebase,
then its output 𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) is an intensional solution.

Proof. (Sketch) The proof generalises the one for Lemma 4, by

considering a stable extension Δ of the learnt ABAF𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ),
instead of G(𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 )). □

Lemma 10 (Termination of Brave ABA Learning). Let 𝐹𝐵 be
the ABAF associated with (𝐷, 𝛿, 𝑁 ), where 𝐷 is any (coherent or not)
casebase. Then, brave ABA Learning terminates for the ABA Learning
problem (𝐹𝐵, E+, E−).

Proof. (Sketch) The proof is similar to the one for Lemma 5.

However, in the case where coherence is not assumed, the AAF

(𝐴𝑟𝑔𝑠𝜆,{𝜆) satisfies the following weaker property: let 𝜌0, 𝜌1 . . .
be any sequence of rules in 𝐴𝑟𝑔𝑠𝜆 where, for 𝑖 ≥ 0, 𝜌𝑖+1 {𝜆 𝜌𝑖 . By

construction, 𝜌𝑖 is of the form 𝑐𝑡𝑟_𝛾 (𝑋 ) ← 𝑓1 (𝑋 ), . . . , 𝑓𝑘 (𝑋 ), 𝛽 (𝑋 )
and 𝜌𝑖+1 is of the form 𝑐𝑡𝑟_𝛽 (𝑋 ) ← 𝑔1 (𝑋 ), . . . , 𝑔𝑚 (𝑋 ), 𝜂 (𝑋 ), where
{𝑓1 (𝑋 ), . . . , 𝑓𝑘 (𝑋 )} ⊆ {𝑔1 (𝑋 ), . . . , 𝑔𝑚 (𝑋 )} and 𝜂 (𝑋 ) may be absent.

In the case where {𝑓1 (𝑋 ), . . . , 𝑓𝑘 (𝑋 )} = {𝑔1 (𝑋 ), . . . , 𝑔𝑚 (𝑋 )}, by
(AI.1B), we must have 𝜂 (𝑋 ) = 𝛾 (𝑋 ) and no new assumption is

introduced. Thus, no infinite sequence can be constructed by brave

ABA Learning. □

For a coherent casebase, a brave ABA Learning derivation coin-

cides with an ABA Learning derivation as presented in Definition 1.

Indeed, the case where we derive mutually attacking rules at step

(AI.1B) will never occur. Thus, the learnt ABAF 𝐹 ′ will be stratified
and, as already mentioned, the grounded extension of 𝐹 ′ coincides
with its (unique) stable extension. The following theorem summa-

rizes the results for brave ABA Learning.

Theorem 11. Let 𝐷 be a casebase, 𝛿 be the default outcome, and
𝑁 be a new case. Then,

(1) Brave ABA Learning terminates for the input ABA Learning
problem (𝐹𝐵, E+, E−) associated with (𝐷, 𝛿, 𝑁 ), and returns
anABAF𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) which is an intensional brave solution
of (𝐹𝐵, E+, E−);

(2) If 𝐷 is coherent, then𝐴𝐵𝐴𝐿(𝐷, 𝛿, 𝑁 ) coincides with the output
of an ABA Learning derivation as in Definition 6.

The output of ABA Learning can be used to predict the out-

comes of new cases using the following notion (with coherent or

incoherent casebases alike).

Definition 8. Let 𝐹 ′ be the output of an ABA Learning derivation
for the learning problem (𝐹𝐵, E+, E−) associated with (𝐷, 𝛿, 𝑁 ). We
say that the outcome of 𝐹 ′ for the new case 𝑁 is 𝛿 iff there exists a
stable extension Δ of 𝐹 ′ such that (i) for all 𝑒 ∈E+ ∪ {default (𝑐𝑁 )},
𝑒 is covered in Δ, and (ii) for all 𝑒 ∈ E− , 𝑒 is not covered in Δ.

We now revisit the Nixon Diamond example, which illustrates a

case of incoherence for which the output of brave ABA Learning is

a non-stratified ABAF admitting several stable extensions.

Example 7 (Nixon Diamond (continued)). From rule 𝜌5, by the
modified step (AI.1B) of brave ABA Learning, we get, instead of 𝜌6:
𝜌7 : 𝑐𝑡𝑟_𝛼3 (𝑋 ) ← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋 ), 𝑞𝑢𝑎𝑘𝑒𝑟 (𝑋 ), 𝛼2 (𝑋 )

The learnt ABA framework 𝐹 ′′, with rules R ∪ {𝜌1, 𝜌2, 𝜌3, 𝜌7}, ad-
mits several stable extensions. Among these, there is a unique stable
extension Δ in which all the positive examples are covered and no
negative is covered, and hence 𝐹 ′′ is a brave solution of the learning
problem considered in Example 6. In Δ the new case pacifist (george)
is not covered, and hence the predicted outcome is 𝛿 , i.e., 𝑔𝑒𝑜𝑟𝑔𝑒 is
predicted to be non-pacifist.

7 CONCLUSION
We have proposed Greedy ABA Learning, a novel logic-based learn-

ing method from casebases, driven by the goal of reducing the high

nondeterminism inherent in ABA and limit the search space of

possible solutions for ABA Learning. We have proven that Greedy

ABA Learning generalises AA-CBR, another logic-based learning

method, beyond coherent casebases.

This paper opens several avenues for future work. We plan to

experiment with (implementations of) Greedy ABA Learning on

tabular datasets, as well as compare it experimentally with other

forms of and systems for ABA Learning, notably [10, 23]. It would

also be interesting to see whether Greedy ABA Learning could be

fruitfully applied to other data modality, e.g., in combination with

feature engineering as in [4]. We also intend to integrate Greedy

ABA Learning within neuro-symbolic pipelines, in the spirit of [20].

Finally, it would be interesting to explore the addition of preferences

to Greedy ABA Learning, e.g., to match [14], and to see whether

our method could find natural applicability in legal settings, where

AA-CBR has been shown to provide useful insights [12].
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