
More Efficient Sybil Detection Mechanisms Leveraging
Resistance of Users to Attack Requests∗

Ali Safarpoor Dehkordi

Australian National University

Canberra, Australia

ali.safarpoordehkordi@anu.edu.au

Ahad N. Zehmakan

Australian National University

Canberra, Australia

ahadn.zehmakan@anu.edu.au

ABSTRACT

We investigate the problem of sybil (fake account) detection in

social networks from a graph algorithms perspective, where graph

structural information is used to classify users as sybil and benign.

We introduce the novel notion of user resistance to attack requests

(friendship requests from sybil accounts). Building on this notion,

we propose a synthetic graph data generation framework that sup-

ports various attack strategies. We then study the optimization

problem where we are allowed to reveal the resistance of a sub-

set of users with the aim to maximize the number of users which

are discovered to be benign and the number of potential attack

edges (connections from a sybil to a benign user). Furthermore, we

devise efficient algorithms for this problem and investigate their

theoretical guarantees. Finally, through a large set of experiments,

we demonstrate that our proposed algorithms improve detection

performance notably when applied as a preprocessing step for dif-

ferent sybil detection algorithms. The code and data used in this

work are publicly available on GitHub.
1

CCS CONCEPTS

• Theory of computation → Graph algorithms analysis; •

Human-centered computing→ Social networks.

KEYWORDS

Sybil Detection, Social Networks, Algorithmic Graph Data Mining

ACM Reference Format:

Ali Safarpoor Dehkordi and Ahad N. Zehmakan. 2025. More Efficient Sybil

Detection Mechanisms Leveraging Resistance of Users to Attack Requests.

In Proc. of the 24th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 INTRODUCTION

Motivation. Online social networks (OSNs) like Facebook, Insta-

gram, and Twitter (now X) have become essential parts of our lives.

They are places where we connect with friends and family, get the

latest news, plan events, and even conduct business. Thus, they

have revolutionized many fundamental aspects of our lives.

∗
The full version of the paper arxived in [12].

1
GitHub repository: https://github.com/aSafarpoor/AAMAS2025-Paper/tree/main

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

However, the rapid growth of OSNs has raised privacy and secu-

rity concerns as malicious entities exploit them for identity theft

and spreading harmful content. A key element is sybils (also re-

ferred to as “fake”, “malicious”, and “fraudulent” accounts), used

for spamming, malware, and phishing, causing financial and repu-

tational damage [1, 32]. Thus, detecting sybils is crucial for a safer

online environment.

Early Detection Mechanisms. Detecting sybils can be con-

ducted in different stages of the formation. The first stage is during

registration, by using data like IP, Captcha, and location [26, 45],

The next stage to detect sybils that pass through the registration is

based on their first actions after joining the network, such as the

ratio of accepted friend requests, the randomness of the requests

sent, or the total number of requests, cf. [8, 9].

Late Detection Mechanisms.While many sybils can be caught

using early detection mechanisms, more sophisticated attackers

can bypass these by mimicking benign users. Numerous studies

have focused on identifying these hard-to-find accounts. Some

research analyzes the content provided by users to detect fake or

malicious activities, cf. [33]. Other studies [13, 24] examine user

profiles, considering factors such as profile pictures, the number

of followers and followings, or the volume of activities like the

number of posts. While these methods are more in-depth than the

early detection mechanisms, they may still fail to identify sybils

that sophisticatedly mimic benign users’ behavior.

Graph Based Detection Mechanisms. While sybils have a

lot of power over manipulating information such as their IP, user-

name, number of posts, and profile pictures, which are used by the

aforementioned methods, they have very little control over their

position with respect to the overall network structure. Thus, a nat-

ural question arises: can network structural information be used to

detect sophisticated sybil attacks? More precisely, suppose we are

given a graph 𝐺 , corresponding to a social network, where some

nodes (users) are labeled sybil or benign. The goal is to label the

remaining nodes as accurately as possible. Prior work has leveraged

various methods such as random walk [21], belief propagation [39],

and graph neural networks (GNN) [41].

Shortcomings of ExitingMethods.The existing algorithms [28,

38, 44] are usually designed under the homophily assumption and

very limited number of attack edges, that is, most edges (links)

in the graph are between nodes of the same type (sybil-to-sybil

or benign-to-benign) with significantly fewer edges in between

(sybil-to-benign or benign-to-sybil). Due to the lack of real-world

data, these algorithms are usually tested on synthetic graph models,

which are tailored to possess such homophily properties. How-

ever, based on current research [40], we know that the homophily

property is not satisfied in many real-world examples.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

565

https://github.com/aSafarpoor/AAMAS2025-Paper/tree/main
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Missing Piece of Puzzle. One key aspect that steers the forma-

tion of connection in a network is how benigns react to friendship

requests from sybils. We introduce the notion of user resistance,

where a resistant user rejects such requests while a non-resistant

accepts them. (For simplicity, we suppose a user is either resistant

or non-resistant, but our results can be extended to the setup where

nodes have various degrees of resistance.) The notion of resistance

permits us to design a more dynamic graph generation framework

where, unlike prior static models [16, 43], the outcome graph is a

function of the attack strategy and resistance of users rather than

a simplified pre-assumption such as homophily. We then devise

effective and efficient mechanisms to leverage resistance informa-

tion for finding potential attack edges and benigns, which serve as

helpful preprocessing steps for sybil detection algorithms.

Attack Models. It is commonly assumed, cf. [28], that an at-

tacker connects its created sybil accounts together in a fashion

that it mimics benigns, for example, by copying the connections

between a set of benigns with the same size.

The vital question is how the connections between sybils and

the rest of the network are formed. Prior models [39] implant these

connections following a presumed structural property such as ho-

mophily. However, in reality, these connections are a function of

two variables: (i) the attacker’s strategy to send connection requests

and (ii) whether a request that has been sent is accepted by the

corresponding benign, which is determined by their resistance.

Following this natural observation, we introduce a novel generic

modeling framework and three potential attack strategies. This

creates a powerful test bed for sybil detection mechanisms.

Potential Attack Edges. As mentioned, most sybil detection

algorithms function well when the homophily property holds. Still,

as observed in [16], this is often not the case, especially when

the attacker has a powerful strategy and users are non-resistant.

Thus, it would be beneficial to determine potential attack edges

(sybil-to-benign connections). Then, they can be removed or re-

ceive less weights to enhance the homophily and consequently the

performance of sybil detection algorithms.

Incoming edges for non-resistant benigns are potential attack
edges. The issue is that, in reality, we don’t know which nodes

are resistant/non-resistant. However, we might have an estimate

of whether a node is resistant (e.g., based on their number of con-

nections, interaction behaviors, and so on). Furthermore, we can

determine whether a user is resistant by sending a sequence of

requests from a dummy sybil account. However, we don’t want to

bombard the whole network with such dummy sybil requests. Thus,

we suppose we have a fixed budget 𝑘 of the number of users whose

resistance can be revealed. We formulate this as an optimization

problem and provide an optimal linear time algorithm.

Discovering Benigns. If we know that a node 𝑣 is benign and

resistant, we can conclude that a node 𝑢 with an edge to 𝑣 is also
benign. Now, if 𝑢 is known to be resistant, we can conclude that

a node 𝑤 , which has an edge to 𝑢, is benign too, and so on. How

many new benigns can be discovered if we are allowed to reveal the

resistance of 𝑘 nodes? We prove that this problem is computation-

ally “hard”. However, we propose a greedy-based and traversing

algorithm, which turns out to be very performant based on exper-

iments on real-world graph data. In addition to potential attack

edge discovery from above, expanding the benign set can serve as

an important preprocessing step for sybil detection algorithms.

Enhancing Detection Algorithms by Preprocessing. Based

on the contributions mentioned above, we investigate the state-of-

the-art detectionmethods, including SybilSCAR [39], SybilWalk [21],

and SybilMetric [2], with and without preprocessing steps con-

ducted by our resistance-based mechanisms. We first examine the

performance of thesemethods on several real-world social networks

incorporated into our synthetic framework under three different

attack strategies. We then gauge the performance when our poten-

tial attack edge and benigns discovery mechanisms are applied as a

preprocessing step. They prove to be very impactful in enhancing

the accuracy performance.

Outline. In the rest of this section, we provide some basic defi-

nitions and an overview of some prior work. Our data generation

framework, accompanied by attack models, is provided in Section 2.

The maximizing benigns and potential attack edges discovery mech-

anisms using resistance information are given in Section 3.1 and 3.2.

Finally, the experimental results of our proposed mechanisms are

discussed in Section 4.

1.1 Preliminaries

Graph Definition. A social network is represented by a directed

graph𝐺 = (𝑉 , 𝐸) with node set𝑉 and edge set 𝐸 ⊆ 𝑉 ×𝑉 . We have

|𝑉 | = 𝑛 and |𝐸 | = 𝑚. Nodes correspond to users; edges represent

connections, such as following (directed) or friendship (bidirec-

tional).

We define Γin (𝑣) := {𝑢 : (𝑢, 𝑣) ∈ 𝐸} and Γout (𝑣) := {𝑢 : (𝑣,𝑢) ∈
𝐸} to be respectively the set of incoming and outgoing neighbors

of a node 𝑣 . Then, we define 𝑑in (𝑣) := |Γin (𝑣) |, 𝑑out (𝑣) := |Γout (𝑣) |
and 𝑑 (𝑣) := 𝑑in (𝑣) +𝑑out (𝑣). Let Δin = max {𝑑in (𝑣) | 𝑣 ∈ 𝑉 } denote
the maximum incoming degree and Δout = max {𝑑out (𝑣) | 𝑣 ∈ 𝑉 }.
We show an edge from 𝑢 to 𝑣 by 𝑒𝑢𝑣 , and if the edge is undirected,

we show that by 𝑒𝑢𝑣 . In addition, for two subsets 𝑉1,𝑉2 ⊆ 𝑉 we

define 𝜕(𝑉1,𝑉2) := {𝑒𝑣𝑢 ∈ 𝐸 : 𝑣 ∈ 𝑉1 ∧ 𝑢 ∈ 𝑉2}. A path in a graph

𝐺 = (𝑉 , 𝐸) is a sequence of nodes 𝑣1, 𝑣2, . . . , 𝑣𝑘 where each adjacent

pair is connected by an edge, i.e., (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑘 − 1.

Benign and Sybil Classification (BSC) Problem

Input: Given a graph𝐺 = (𝑉 , 𝐸) where nodes are labeled as Benign,
Sybil, or Unknown, partitioned into subsets 𝐵, 𝑆 , and𝑈 respectively

(𝐵 ∪ 𝑆 ∪𝑈 = 𝑉 and (𝐵 ∩ 𝑆) ∪ (𝐵 ∩𝑈 ) ∪ (𝑆 ∩𝑈 ) = ∅).
Goal: Maximize the number of correctly labeled nodes in 𝑈 .

User Resistance. In the real world, each user can choose to

accept or reject sybil requests. Some users are more cautious and

reject such requests, while others might accept them. For simplicity,

we assume each user, which is represented as a node in a graph,

either accepts all sybil requests or rejects all of them. To model

this, we define a binary value 𝑟 : 𝑣 → {0, 1} to represent a user’s

resistance to sybil requests, where 1 means resistant (rejecting)

and 0 means non-resistant (accepting). Since, in reality, the value

of 𝑟 (𝑣) is not known to us, we suppose we know a probability

function 𝑝𝑟 (𝑣) whose value is more likely to be closer to 1 if 𝑣

is resistant and 0 otherwise. Such estimates can be achieved in

practice by studying certain user features, such as the number of

incoming/outgoing connections, the number of known sybil/benign

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

566



neighbors, and content posted. In our paper, we suppose such a

probability distribution is given to us as input.

1.2 Related Work

Somemechanisms aim to detect sybils at the early stages. This could

be as early as registration time using techniques like captchas or

analyzing data such as registration time and IP addresses, cf. [26, 45].

The sybils that pass through these filters might be caught based on

their first activities, such as friendship requests, cf. [9].

While such early detection mechanisms are useful in identifying

a considerable fraction of sybils, more sophisticated attacks can

deceive them by mimicking benign users. Thus, there has been

a growing interest in leveraging network structure information

to detect more sophisticated attacks, cf. [21, 42]. This is because,

unlike information such as username or IP, sybil users have very

limited power to control their network structural properties. Below,

we give an overview of various existing methods.

Graph Metrics. Graph metrics can help distinguish sybils from

benign nodes. Asghari et al.[2] analyzed metrics like degree, be-

tweenness, eigenvector centrality, clustering coefficient, and short-

est path length. Yoon[42] introduced graph accessibility for sybil

detection. Jethava and Rao [20] combined user behavior with graph

metrics like the Jaccard index and betweenness centrality.

Random Walk. Random walk-based detection mechanisms

have particularly become popular, cf. [7, 46]. They usually rely on

the premise that a random walk starting from a sybil user is more

likely to encounter sybil users. SybilGuard [44] was one of the

first methods to leverage random walks for sybil detection. Sybil-

Limit [43] improved on this by enhancing scalability and providing

a tighter bound on the number of accepted sybils. SybilInfer [11] ad-

ditionally used Bayesian inference and Monte Carlo simulations to

provide a more robust mechanism. SybilRank [10] proposed using

a ranking algorithm that prioritizes nodes based on the degree-

normalized probability of a short random walk from a non-sybil

landing on them. SybilWalk [21] improved random walk-based

models by incorporating known benigns and sybils simultaneously.

This model defines two extra nodes as label nodes and then connects

known nodes to their respective label node.

Belief Propagation. Another popular approach, cf. [31], is to

assign some initial probability of being sybil to each node (where

known sybils get higher and known benigns get lower probabilities)

and then use some updating mechanism, called belief propagation,

to improve these probabilities. The idea is that a node’s probability

(belief) is updated as a function of the probabilities of its neighbors.

SybilBelief [16] is a semi-supervised learning algorithm that uses

belief propagation to detect sybils. SybilSCAR [39] unified random

walk and belief propagation methods, applying local rules itera-

tively to identify sybils. GANG [38] improved previous models by

using directed graphs. SybilFuse [15] employed collective classifica-

tion by training local classifiers to calculate trust scores first, then

propagating these scores using weighted random walk and belief

propagation to improve detection accuracy.

Machine Learning.Machine Learning (ML) methods for sybil

detection usually involve feature extraction, model training, and

classification. Some basicMLmethods include SVM, Logistic Regres-

sion, and Random Forest, cf.[23, 24, 35]. Furthermore, deep learning

methods can process raw data and capture complex structures,

making them ideal for sybil detection. Goyal et al. [17] used graph

convolutional network (GCN) to learn structural features, while

Borkar et al. [6] employed recurrent networks for text content pro-

cessing, followed by clustering for sybil detection. Recent advances

leverage graph neural networks (GNNs) and attention mechanisms.

Yang and Zheng [41] used attention-based GNNs, Khan et al.[22]

developed a GNN-based framework to analyze user profiles and

connections, and Liu et al.[27] integrated diverse attributes using

heterogeneous GNNs.

2 ATTACK MODELS

To effectively evaluate detection algorithms, it is essential to pro-

vide high-quality datasets. Many existing datasets suffer from a lack

of proper labeling, as they are often labeled manually and are quite

limited in size. To tackle this issue, some synthesized datasets have

been provided [16, 28] but they still fall short in various aspects.

For example, [16] uses a synthesized model to generate the sybil

area, which is less favorable than using real-world data. Further-

more, the existing models [28] make special assumptions on the

strategy employed by the attacker and the structure of the edges

between sybil and benign parts, for example, uniform random edges.

They then leverage these structural properties to devise algorithms

that are tailored for this setting. However, the proposed algorithms

should ideally be agnostic of the attack strategy deployed by the

attacker since the attacker can adopt various attack strategies. More-

over, the availability of diverse datasets generated by various attack

strategies enhances the reliability of evaluation outcomes. This

encourages us to synthesize datasets with different characteristics.

We will see that the notion of user resistance, defined in this paper,

forms an excellent foundation for synthesizing realistic datasets.

To synthesize a labeled network, one needs to define the nodes

and their labels and the edge set, especially attack edges, formed

from sybils to benigns. An existing dataset of online social net-

works is usually used as the benign set, treating all individuals

as benign [39]. For the sybil set, a common approach is that the

attacker may replicate a subgraph from the real graph to secure an

initial real-world structure. If attackers avoid using this strategy,

their presence becomes readily detectable through the analysis of

simple graph features.

Following the above description, the sybil set 𝑆 will be created

based on the chosen subset 𝐵′ ⊂ 𝐵, where 𝐵 is the benign set. Then,

the edges between nodes in 𝑆 are formed to copy the corresponding

structure in 𝐵′. Each node 𝑣 ∈ 𝐵′ has a corresponding copy in 𝑆

and vice versa; these nodes are referred to as dual of each other.

Following a specific strategy, the attacker sends requests to the

benigns. If a benign has resistance 1, the request is rejected; oth-

erwise, it is accepted. Recall that we show the resistance of each

node 𝑣 with 𝑟 (𝑣), which is set to 0 (non-resistant) or 1 (resistant).

For example, if the resistance of all nodes is set to 1, all the sent

requests are rejected, and no edge is formed from 𝑆 to 𝐵. However,

in reality, not all nodes are resistant.

As stated, our proposed framework is not limited to a particular

attack strategy and facilitates the study of various strategies. Below,

we provide three natural approaches which may be used by the

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

567



attacker. Before that, we explain some concepts which are shared

among them.

Assume the number of Attack Edges from node 𝑠𝑖 ∈ 𝑆 to 𝐵 is

𝐴𝐸 (𝑖). As discussed above, we suppose that the attacker “copies”

the subgraph among a subset of benigns 𝐵′ ⊂ 𝐵 as 𝑆 . To mimic a

benign behavior further, one natural strategy is to ensure that each

node in 𝑆 has as many edges to 𝐵 \ 𝐵′ as its dual. More precisely,

one aims to have 𝐴𝐸 (𝑖) = |𝜕({𝑑𝑢𝑎𝑙 (𝑠𝑖 )}, 𝐵 \ 𝐵′) |.
Furthermore, it is plausible to consider adding edges from the

benign region (𝐵) to the sybil region (𝑆). Given the low likelihood

that real users spontaneously connect to sybils, we posit that only

nodes that have already accepted an edge from a sybil user might

reciprocally connect back to it. Formally, consider each edge (𝑢, 𝑣) ∈
𝐸 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐵. We add the reverse edge (𝑣,𝑢) with a

certain probability, say 1/2, for each such edge.

Below, we describe our proposed attack strategies. Please refer

to the full version [12] for a detailed pseudocode.

Random Attack Strategy. In this strategy, the attacker sim-

ply sends random requests to benigns. The number of requests

from each node 𝑖 ∈ 𝑆 is 𝑐 · 𝐴𝐸 (𝑖). For an appropriate choice of

constant 𝑐 , as a function of the average resistance in 𝐵, the ex-

pected number of attack edges from 𝑖 will be our desired value

𝐴𝐸 (𝑖) = |𝜕({𝑑𝑢𝑎𝑙 (𝑠𝑖 )}, 𝐵 \ 𝐵′) | (the same applied to the strategies

below).

Preferential Attachment Attack Strategy. The attacker might

prefer to target nodes with the least resistance, especially those

that have accepted more attack requests in the past. This also aligns

with the power-law behavior observed in real-world social networks.

Thus, we leverage the preferential attachment model of network

growth. We use a modified version of the preferential attachment

model based on the Barabási-Albert (BA) graph [3], namedModified
BA. This takes into account both the original degree of each node

and the number of accepted attack requests. This modification has

been applied to take into account that the attacker is more likely

to send requests to nodes that have already proven vulnerable (by

accepting previous sybil requests).

BFS Attack Strategy. To enhance the difficulty of detecting

sybil behavior, another natural approach is that each sybil attempts

connections with the neighbors of its dual in the benign region. The

acceptance of these connection requests, however, depends on the

targeted node’s resistance. To achieve the desired number of attack

edges for each sybil node 𝑠𝑖 (that is, the aforementioned value of

𝐴𝐸 (𝑖)), we process nodes using a BFS algorithm. For each node 𝑠𝑖 ,

the BFS starts from 𝑑𝑢𝑎𝑙 (𝑠𝑖 ). If the number of nodes that BFS can

reach is not enough, a preferential attachment attack strategy is

utilized to complete the process.

3 PREPROCESSING ALGORITHMS

In this part of the paper, we will study the problems of Maximizing

Benigns (in Section 3.1) and Discovering Potential Attack Edges (in

Section 3.2) leveraging the resistance probability information. We

propose algorithms for solving these problems. As will be discussed

in Section 4, the outcome of these algorithms serves as a very

valuable preprocessing step for detection algorithms.

3.1 Maximizing Benigns

Maximizing Benigns (MB) Problem

Input: Given 𝐺 = (𝑉 , 𝐸), sets of benigns and sybils 𝐵 and 𝑆 such

that 𝐵 ∩ 𝑆 = ∅, budget 𝑘 , and resistant probability distribution

𝑝𝑟 : 𝑉 → [0, 1].
Goal: Maximize the number of newly discovered benigns by re-

vealing the resistance of 𝑘 nodes.

An algorithm is permitted to reveal the resistance of nodes in

a node set 𝐴 of size 𝑘 as a reveal set. Each selected node 𝑢 will be

revealed to be resistant (𝑟 (𝑢) = 1) or not, with probability 𝑝𝑟 (𝑢),
independently. (In real life, we send a set of friend requests from

some dummy sybils to a node𝑢 and determinewhether it is resistant,

but our budget has a bound to avoid bombarding all users with

such requests.) Then, the goal is to maximize the number of newly

discovered benigns.

Observation 3.1. A node𝑢 in𝑉 \ (𝐵∪𝑆) can be newly discovered
benign if and only if it has a path to a node in 𝐵 and each node 𝑣 on
that path (except, potentially, 𝑢 itself) has revealed to have 𝑟 (𝑣) = 1.

Definition 3.1. 𝑓 (𝐴) is the expected number of discovered be-
nigns upon revealing the nodes in the reveal set 𝐴.

3.1.1 Hardness Results. We prove that our problem is computa-

tionally hard by a reduction from the Maximum Coverage Problem.

Definition 3.2 (Maximum Coverage (MC) Problem). Given
set𝑊 = {𝑤1,𝑤2, · · · ,𝑤ℎ}, collection of subsets 𝑄 = {𝑞1, 𝑞2, · · · , 𝑞𝑙 },
∀𝑞𝑖 ∈ 𝑄 : 𝑞𝑖 ⊆𝑊 , and budget 𝑘 , what is the maximum number of
elements which can be covered by a set 𝐴 ⊂ 𝑄 of size 𝑘? We say a set
𝑞𝑖 covers an element𝑤 𝑗 if𝑤 𝑗 ∈ 𝑞𝑖 .

Theorem 3.1 ([14]). There is no (1− 1

𝑒 )-approximation polynomial
time algorithm for theMC problem unless NP ⊆ DTIME(𝑛𝑂 (log log𝑛) ).

Assume 𝐼 = ⟨𝑊,𝑄, 𝑘⟩ is an instance of MC. We define a transfor-

mation to convert 𝐼 into 𝐼 ′ = ⟨𝐺, 𝐵, 𝑆, 𝑘, 𝑝𝑟 (·)⟩, which is an instance

of MB. Without loss of generality, we assume that each 𝑤𝑖 ∈ 𝑊
appears in at least one of the subsets 𝑞 𝑗 ∈ 𝑄 (otherwise, they could

be simply ignored because they cannot be covered at all). Now, we

present the transformer in the following.

Transformer. To define the transformer to convert 𝐼 to 𝐼 ′, we
first need to construct the MC problem in graph space as𝐺 = (𝑉 , 𝐸).
We define 𝑉 = 𝑉𝑄 ∪ 𝑉𝑊 , where 𝑉𝑄 = {𝑣𝑞𝑖 : 1 ≤ 𝑖 ≤ 𝑙} and
𝑉𝑊 = {𝑣𝑤𝑖

: 1 ≤ 𝑖 ≤ ℎ}. Note that 𝑉𝑄 ∩ 𝑉𝑊 = ∅. We also define

𝐸 = {(𝑣𝑤𝑖
, 𝑣𝑞 𝑗
) : 𝑤𝑖 ∈ 𝑞 𝑗 }. In addition, 𝑘 is the same, 𝑆 = ∅, 𝐵 = 𝑉𝑄 ,

and 𝑝𝑟 (𝑣) = 1 for all nodes (which means we know all nodes are

resistant). An example is provided in the full version [12].

Connection Between Optimal Solutions. For any arbitrary

instance of the MC problem, let𝑂𝑃𝑇MC denote the optimal solution,

and similarly 𝑂𝑃𝑇MB for the MB problem. We claim that

𝑂𝑃𝑇MC = 𝑂𝑃𝑇MB (1)

First, let 𝐴 be an optimal solution for the MB problem. Note that

𝐴 ∩ 𝑉𝑊 = ∅ because revealing a node in 𝑉𝑊 does not result in

discovering any new benign. Consider that set𝐴𝑞 , which includes a

set𝑞𝑖 if and only if 𝑣𝑞𝑖 ∈ 𝐴. If a node 𝑣𝑤𝑗
is newly discovered benign

by revealing𝐴, then there is a node 𝑣𝑞𝑖 such that (𝑣𝑤𝑗
, 𝑣𝑞𝑖 ) ∈ 𝐸 and

𝑣𝑞𝑖 ∈ 𝐴. This implies that 𝑤 𝑗 ∈ 𝑞𝑖 and 𝑞𝑖 ∈ 𝐴𝑞 . Therefore, 𝑤 𝑗 is

covered by 𝐴𝑞 . This implies that 𝑂𝑃𝑇MC ≥ 𝑂𝑃𝑇MB.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

568



It remains to prove that 𝑂𝑃𝑇MC ≤ 𝑂𝑃𝑇MB. Let 𝐴𝑞 ⊂ 𝑄 generate

an optimal solution for the MC problem. Define 𝐴 to include a

node 𝑣𝑞𝑖 if and only if 𝑞𝑖 ∈ 𝐴𝑞 . Consider an element𝑤 𝑗 , which is

covered by𝐴𝑞 , and let 𝑞𝑖 be a set which covers it. Then, 𝑣𝑞𝑖 ∈ 𝐴 and

(𝑣𝑤𝑗
, 𝑣𝑞𝑖 ) ∈ 𝐸. Thus, 𝑤 𝑗 will be a newly discovered benign since

𝑤 𝑗 ∈ 𝑉 \ 𝐵, and it has an edge to a node with resistance 1. This

implies that 𝑂𝑃𝑇MC ≤ 𝑂𝑃𝑇MB.

Inapproximability. Assume there exists a polynomial-time

(1− 1

𝑒 )-approximation algorithm𝐴𝑙𝑔MB, that solves theMBproblem.

For an instance of the MC problem, we can use the previously

mentioned transformer to construct an instance of our problem in

polynomial time. Then, we apply 𝐴𝑙𝑔MB to solve the constructed

instance, yielding a solution 𝑆𝑜𝑙MB. Using the same argument as

previously described for the relationship between optimal solutions,

we can show that 𝑆𝑜𝑙MC ≥ 𝑆𝑜𝑙MB. Thus, 𝑆𝑜𝑙MC ≥ 𝑆𝑜𝑙MB ≥ (1 −
1

𝑒 )𝑂𝑃𝑇MB. With the help of Equation (1) we can conclude 𝑆𝑜𝑙MC ≥
(1 − 1

𝑒 )𝑂𝑃𝑇MC

Therefore, we get an (1 − 1

𝑒 )-approximation algorithm for MC,

which operates in polynomial time. However, according to Theo-

rem 3.1, this is impossible unless NP ⊆ DTIME(𝑛𝑂 (log log𝑛) ). Thus,
we have the theorem below.

Theorem 3.2. There is no (1− 1

𝑒 )-approximation polynomial time
algorithm for the MB problem unless NP ⊆ DTIME(𝑛𝑂 (log log𝑛) ).

3.1.2 Greedy Approach. For the MB problem, we can use the clas-

sical greedy algorithm, which iteratively reveals the node that

maximizes the expected number of newly discovered benigns (an

exact description is given in the full version [12]). According to

Nemhauser et al. [30], if 𝑓 (·) is non-negative, monotone and sub-

modular, then this algorithm is (1 − 1

𝑒 )-approximation (which

matches the bound from Theorem 3.2). However, we prove that the

objective function 𝑓 (·), in fact, is not submodular (please see the

full version [12] for a proof). Thus, we cannot conclude (1 − 1

𝑒 )-
approximation guarantee. On the positive side, the greedy algorithm

has proven to be performant, cf. [4, 18], even if the submodularity

property doesn’t hold. Thus, we study this further. However, it

turns out that computing 𝑓 (·) is #P-hard, implying that the greedy

algorithm is not polynomial time. To tackle this issue, we show

that we can estimate 𝑓 (·) with an arbitrarily small error parameter

using the Monte Carlo method.

#P-hardness. We rely on a reduction from 𝑎-𝑏 Connectedness for

Induced Subgraphs Problem, which is known to be #P-hard [34].

𝑎-𝑏 Connectedness for Induced Subgraphs (CIS):
Input: Given a directed graph 𝐺 = (𝑉 , 𝐸) and 𝑎, 𝑏 ∈ 𝑉 .

Goal: What is the number of induced subgraphs of 𝐺 such that

there is a path from 𝑎 to 𝑏.

Theorem 3.3. Computing 𝑓 (·) is #P-hard.

Proof. Suppose 𝐺 = (𝑉 , 𝐸) and 𝑎, 𝑏 ∈ 𝑉 are given as the in-

put of CIS problem. We consider two instances of our problem to

compute 𝑓 (·). First consider graph 𝐺 = (𝑉 , 𝐸), 𝐵 = {𝑏}, 𝑆 = ∅,{
𝑟 (𝑣) = 1

2
𝑣 ∈ 𝑉 \ {𝑎, 𝑏}

𝑟 (𝑣) = 1 𝑣 ∈ {𝑎, 𝑏} , and reveal set 𝐴 = 𝑉 . The second case

is identical to the first case, except we add a node 𝑎′ and add an edge
from 𝑎′ to 𝑎. Let’s call this graph𝐺 ′ = (𝑉 ′, 𝐸′), where𝑉 ′ = 𝑉 ∪{𝑎′}.
Furthermore, again 𝐵 = {𝑏}, 𝑆 = ∅, the values of 𝑟 (𝑣) are the same

Figure 1: The construction used in the proof of #P-hardness.

for all nodes, and 𝑟 (𝑎′) is any arbitrary value (its choice doesn’t

impact our argument), and𝐴 = {𝑉 }. See Figure 1 for a visualization.
Let 𝑓−𝑎′ (𝐴) and 𝑓+𝑎′ (𝐴) denote the value of 𝑓 (𝐴), the expected

number of discovered benigns, in the first and second case, respec-

tively. Firstly, we observe that 𝑎′ is discovered to be benign if and

only if 𝑎 is discovered to be benign. This implies that 𝑓+𝑎′ (𝐴) −
𝑓−𝑎′ (𝐴) is equal to the probability of the node 𝑎 being discovered

to be benign. Secondly, note that each of the nodes in 𝑉 \ {𝑎, 𝑏} is
revealed to be resistant or not with probability 1/2, independently.
Thus, based on Observation 3.1, the probability that 𝑎 is revealed

to be benign is the same as having a path from 𝑎 to 𝑏 once we

remove each node in𝑉 \ {𝑎, 𝑏} with probability 1/2. Combining the

aforementioned two points, we can conclude that 𝑓+𝑎′ (𝐴) − 𝑓−𝑎′ (𝐴)
is equal to the fraction of all 2

𝑛−2
possible induced subgraphs ob-

tained from removing nodes in 𝑉 \ {𝑎, 𝑏} in graph 𝐺 , where there

is a path from 𝑎 to 𝑏.

So far we concluded that the solution to CIS problem is equal

to (𝑓+𝑎′ (𝐴) − 𝑓−𝑎′ (𝐴)) × 2
𝑛−2

. Since the provided transformer is

polynomial time and CIS is #P-hard, we conclude that the problem

of computing 𝑓 (·) is #P-hard as well. □

Monte Carlo Greedy Algorithm. Algorithm 1 modifies the classi-

cal greedy approach by using the Monte Carlo method to estimate

𝑓 (·) since, as we proved, its computation is #P-hard. The function

EST(·) runs the revealing process𝑅 times and computes the number

of discovered benigns each time. Then, the average values found

are returned as an estimation of the original expectation.

As part of the function EST(·), to compute the number of dis-

covered benigns based on 𝑟 (·) and the reveal set 𝐴, we apply a BFS

starting from known benigns in𝐴. During the BFS, only nodes with

resistance 1 (starting from 𝐴) are added to the queue, marking their

neighbors as discovered. This ensures every discovered node has

a path of nodes with resistance 1 to an initial benign, meeting the

criterion in Observation 3.1. The pseudocode of this algorithm is

provided in the full version [12].

Furthermore, using Hoeffding’s inequality [19], one can achieve

arbitrary error margin 𝜖 and gain confidence 𝛼 by setting the num-

ber of iterations 𝑅 ≥ 𝑘2Δ2

in
ln( 1

1−𝛼 )
2𝜖2

. The time complexity of the

algorithm is 𝑂 (𝑘 · 𝑅 · (𝑛2 + 𝑛𝑚)). One can check that, for con-

stant 𝜖 and 𝛼 , the run time is polynomial. Please refer to the full

version [12] for more details on these two points.

3.1.3 Proposed Traversing Algorithm. We propose an algorithm

that iteratively selects the node expected to reveal the maximum

number of newly discovered benigns. More precisely, we keep a set

of nodes 𝑁 such that if a node in 𝑁 is revealed to be resistant, then

we can conclude all its incoming neighbors are benign. Based on

Observation 3.1, these nodes already have a path to a node in 𝐵, and

all nodes on the path are revealed to be benign. Thus, initially, 𝑁 is

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

569



Algorithm 1 Monte Carlo Greedy Algorithm

Input 𝐺 = (𝑉 , 𝐸), 𝐵, 𝑆, budget 𝑘, 𝑝𝑟 (·), 𝜖, 𝛼
Output 𝑟𝑒𝑣𝑒𝑎𝑙_𝑠𝑒𝑡 𝐴

1: Initialize 𝐴← ∅
2: for 𝑖 = 1 to 𝑘 do

3: 𝑣 ← arg max𝑤∈𝑉 \𝐴 Est(𝐴 ∪ {𝑤}, 𝑝𝑟 (·), 𝐵, 𝑆, 𝜖, 𝛼)
4: 𝐴← 𝐴 ∪ {𝑣}
5: return 𝐴

6: function Est(𝐴, 𝑝𝑟 (·), 𝐵, 𝑆, 𝜖, 𝛼)
7: Initialize 𝑐𝑜𝑢𝑛𝑡 ← 0

8: 𝑅 ←
⌈
𝑘2Δ2

in
ln( 1

1−𝛼 )
2𝜖2

⌉
9: for 𝑅 iterations do

10: Assign resistance 𝑟 (𝑣) for each 𝑣 ∈ 𝐴 based on 𝑝𝑟 (𝑣)
11: 𝑛𝑒𝑤_𝑏𝑒𝑛𝑖𝑔𝑛 ← number of discovered benigns based

on 𝐵, 𝑆 , and assigned resistances.

12: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 𝑛𝑒𝑤_𝑏𝑒𝑛𝑖𝑔𝑛

13: return 𝑐𝑜𝑢𝑛𝑡/𝑅

Algorithm 2 Traversing Algorithm

Input 𝐺 = (𝑉 , 𝐸), 𝐵, 𝑆, budget 𝑘, 𝑝𝑟 (·)
Output 𝑟𝑒𝑣𝑒𝑎𝑙_𝑠𝑒𝑡 𝐴

1: 𝐴← ∅
2: 𝑁 ← 𝐵

3: for 𝑣 ∈ 𝑉 do

4: Γ̂in (𝑣) ← Γin (𝑣) \ (𝐵 ∪ 𝑆)
5: 𝛾in (𝑣) = |Γ̂in (𝑣) |
6: while |𝐴| < 𝑘 do

7: pick 𝑣 with highest 𝑝𝑟 (𝑣) · 𝛾in (𝑣) between nodes in 𝑁

8: 𝐴← 𝐴 ∪ {𝑣}
9: 𝑁 ← 𝑁 \ {𝑣}
10: if 𝑟 (𝑣) = 1 then

11: 𝑁 ← 𝑁 ∪ Γ̂in (𝑣)
12: for 𝑢 ∈ Γ̂in (𝑣) do
13: for𝑤 ∈ Γout (𝑢) do
14: Γ̂in (𝑤) ← Γ̂in (𝑤) \ {𝑢}
15: 𝛾in (𝑤) ← 𝛾in (𝑤) − 1

16: return 𝐴

simply 𝐵, but it is updated as the algorithm reveals more resistant

nodes. However, among all the incoming neighbors of a node 𝑣 ,

we are only interested in the ones that will be “newly” discovered

benign. Thus, we define Γ̂(𝑣), which excludes unrelated nodes such

as the already discovered ones (that is, 𝐵 ∪ 𝑆) or already discovered

benigns. We continuously update Γ̂(𝑣) as more nodes are revealed

and added to𝐴. More precisely, for each node 𝑣 , if 𝑟 (𝑣) is revealed to
be 1, then we must consider every in-neighbor 𝑢 of 𝑣 , and for each

out-neighbor𝑤 of𝑢, we then remove𝑢 from the set of in-neighbors

of 𝑤 . This is because 𝑢 has already been discovered to be benign.

The pseudocode of this algorithm is provided in Algorithm 2.

The For loop runs in 𝑂 (𝑛 +𝑚). The While loop is computed

𝑘 times, and the lines 7-9 can clearly be executed in 𝑂 (𝑛). The
complexity of the If statement part is𝑂 (Δin ·Δout). This is achieved

Algorithm 3 Proposed Algorithm: Select Top 𝑘 Nodes

Input Input 𝐺 = (𝑉 , 𝐸), 𝐵, 𝑆, budget 𝑘, 𝑝𝑟 (·)
Output List of 𝑘 nodes

1: 𝑛𝑜𝑑𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 ← ∅
2: for each node 𝑣 in 𝐵 do

3: value← (1 − 𝑝𝑟 (𝑣)) · |Γin (𝑣) \ (𝐵 ∩ 𝑆) |
4: 𝑛𝑜𝑑𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 ← 𝑛𝑜𝑑𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 ∪ {(𝑣, value)}
5: 𝑡𝑜𝑝_𝑘_𝑛𝑜𝑑𝑒𝑠 ← top 𝑘 nodes of 𝑛𝑜𝑑𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 based on 𝑣𝑎𝑙𝑢𝑒

using median of medians algorithm

6: return top_k_nodes

by using the appropriate data structure (please refer to the full

version [12] for more details). Thus, the time complexity of this

algorithm is𝑂 ((𝑛 +𝑚) +𝑘 · (𝑛 +Δin ·Δout)), which can be bounded

by 𝑂 (𝑘𝑛2).

3.2 Discovering Potential Attack Edges

Definition 3.3. An edge 𝑒 = (𝑢, 𝑣) is a Potential Attack Edge
(PAE) if 𝑢 ∈ 𝑉 \ (𝐵 ∪ 𝑆), 𝑣 ∈ 𝐵, and 𝑟 (𝑣) = 0. In other words, it is an
incoming edge to a benign 𝑣 with 𝑟 (𝑣) = 0.

Discovering Potential Attack Edges Problem

Input: Given 𝐺 = (𝑉 , 𝐸), sets of benigns and sybils 𝐵 and 𝑆 such

that 𝐵, 𝑆 ⊆ 𝑉 , 𝐵 ∩ 𝑆 = ∅, budget 𝑘 , and probability of resistant

𝑝𝑟 : 𝑉 → [0, 1].
Goal: Maximize expected number of discovered potential attack

edges by revealing 𝑟 (𝑣) of 𝑘 nodes from 𝐵.

For each node 𝑣 , we know 𝑑in (𝑣) and 𝑝𝑟 (𝑣), and (1 − 𝑝𝑟 (𝑣)) ·
|Γin (𝑣) \ (𝐵 ∩ 𝑆) | is the expected number of edges which will be dis-

covered by revealing the node 𝑣 . Since there is no overlap between

edges discovered by each revealed node, choosing 𝑘 nodes with

the highest value of (1 − 𝑝𝑟 (𝑣)) · |Γin (𝑣) \ (𝐵 ∩ 𝑆) | is the optimal

solution. This is outlined in Algorithm 3. For choosing the top 𝑘

nodes based on the computed values, we can use the median of

medians algorithm [5], which runs in O(𝑛). Thus, the overall time

complexity is linear. As we will discuss, we can reduce the weight

of discovered PAEs as a preprocessing step to assist sybil detection

algorithms.

4 EXPERIMENTS

After establishing our experiments setting in Sections 4.1 and 4.2, we

test our proposed algorithms for maximizing benigns problem and

potential attack edges problem in Section 4.3. Then, in Section 4.4,

we study the impact of applying our algorithms as a preprocessing

step for various sybil/benign classification methods.

4.1 Experimental Setup

We use real-world graph data as the benign set. Then, our at-

tack strategies are used to generate sybils and their connections

to sybil/benigns. For the graph, the data used include Facebook,

LastFM, and Twitter from SNAP [25]. In addition, we use, Pokec

network
2
(we use only the subgraph induced by benigns). Some

statistics of these networks are presented in the full version [12].

2
https://github.com/binghuiwang/sybildetection/blob/master/Directed_Pokec.rar (ac-

cessed July 20, 2024)

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

570

https://github.com/binghuiwang/sybildetection/blob/master/Directed_Pokec.rar


For undirected networks, we assume the edges in both directions

exist. After generating sybils and attack edges in each dataset, as

explained in the next section, we randomly selected 2% of benigns

and an equal number of sybils for the training set. The remaining

sybils were included in the test set, along with an equal number of

benigns. This means the size of known benigns for Facebook, Pokec,

LastFM, and Twitter datasets are 80, 200, 150, and 200, respectively.

4.2 Attack Strategies

To choose the parameters in our attack models, we rely on some

real-world statistics. Facebook reports indicate that the proportion

of sybils is around 16% [29]. A 2013 study also found that 10%

of Twitter users were fake [37]. Thus, we choose the size of the

sybil set to be around 10% of the network in our attack strategies.

Furthermore, Vishwanath [36] conducted a study involving the

creation of fake Facebook profiles and sending friend requests to

students in a large university. It was observed that only 30% of

students declined friend requests from fake Facebook profiles, 52%

were undecided after two weeks, and 18% accepted immediately.

Based on these results, we chose 25% of nodes to be non-resistant.

To compute the probability of resistance 𝑝𝑟 (𝑣) for a node 𝑣 based
on resistance 𝑟 (𝑣), we generate a random number 𝑥 between 0

and 1 and then we use 𝑝𝑟 (𝑣) = (1 − 𝑟 (𝑣))𝑥3 + 𝑟 (𝑣) (1 − 𝑥3). We

choose this simple formula to introduce randomness while giving

higher probabilities when 𝑟 (𝑣) = 1 and lower probabilities when

𝑟 (𝑣) = 0. For example, for 𝑟 (𝑣) = 1, the probability of 𝑝𝑟 (𝑣) ≥ 0.5

is 0.79, and the average probability value is 0.75. In addition, in

all attack strategies, we set 𝑐 = 4 (please refer to Section 2 for the

parameters of the attack models) since we aim for a non-resistance

ratio of 25%. This way, the number of accepted attacks for a sybil 𝑠𝑖
in expectation will be

25

100
· 𝑐 · 𝐴𝐸 (𝑖) = 𝐴𝐸 (𝑖), which is our desired

value. Some statistics on the outcome of the attack strategies are

provided in the full version [12].

4.3 Preprocessing

In this section, we evaluate our proposed algorithms for maximizing

benigns and potential attack edges problems.

4.3.1 Maximizing Benigns. We compare our proposed algorithms,

Monte Carlo Greedy (Algorithm 1) and Traversing (Algorithm 2),

against the following baseline methods.

1. Random. Randomly select𝑘 nodes from benign set 𝐵 to reveal.

2. Highest-Resistance. Pick 𝑘 nodes with highest 𝑝𝑟 (·) from 𝐵.

3. Highest-Resistance-and-Degree. Pick 𝑘 nodes 𝑣 with high-

est 𝑝𝑟 (𝑣).|Γin (𝑣) \ (𝐵 ∪ 𝑆) | from 𝐵.

Between our two proposed algorithms, Traversing reveals the

resistance of each selected node and uses that outcome information

when selecting the next nodes, while the Monte Carlo Greedy does

not. To make this a fairer comparison, we also consider a Monte

Carlo Greedy variant, which reveals each selected node’s resistance.

This is called Resistance Aware Monte Carlo Greedy (please refer

to the full version [12] for an exact description of this algorithm).

Figure 2 illustrates the performance of different algorithms on

the Facebook dataset. (The high variance in the results of the Monte

Carlo Greedy algorithms in this experiment is attributed to the fact

that the run was performed only once.) We observe that our pro-

posed algorithms, Traversing and two variants of Monte Carlo,

significantly outperform other algorithms. Among our proposed

algorithms, the Traversing algorithm performs better than the

Monte Carlo Greedy algorithms. Furthermore, based on our ex-

periments, the Traversing algorithm is substantially faster than the

two Monte Carlo Greedy algorithms. For example, for the Facebook

dataset and Preferential Attachment attack strategy, with a budget

of 𝑘 = 30, the Traversing algorithm completes in 119 milliseconds,

while the Monte Carlo Greedy algorithm takes 52 minutes. Thus,

the Traversing algorithm is not only more accurate, but also signifi-
cantly faster. For other datasets, similar results are provided in the

full version [12].

4.3.2 Potential Attack Edges. We now evaluate the performance

of our Proposed Algorithm 3 for the potential attack edges (PAE)

problem against the Random algorithm, which makes 𝑘 random

choices. Figure 3 (top row) illustrates the number of PAEs found by

each algorithm for a range of budgets. Our algorithm outperforms

the Random algorithm. This is unsurprising since our algorithm is

optimal, as we proved in Section 3.2.

One natural question is what fraction of PAEs are, in fact, attack

edges (edges from sybil to benign). We report this information in

Figure 3 (second row). As one can observe, for our algorithm, around

20% of found PAEs are attack edges for various budget choices. To

get a better understanding of how good this performance is, we

consider the Full-Knowledge algorithm. We suppose this algorithm

knows all the values of resistance (note that this information is

not available to our algorithm) and aims to greedily pick nodes

which maximize the ratio of attack edges over PAEs. While for

small budgets, the gap is large, as the budget grows, the ratio of

attack edges over PAEs for our algorithm almost matches the Full-

Knowledge algorithm, which is impressive considering that our

algorithm doesn’t know the exact values of resistance 𝑟 (·). For other
datasets, similar results are provided in the full version [12].

4.4 Classification Algorithms

Our algorithms for discovering benigns and potential attack edges

can act as a preprocessing step for various sybil detection algo-

rithms. We analyze the performance of three state-of-the-art detec-

tion algorithms, with and without such preprocessing step.

We consider the SybilWalk [21] and SybilSCAR [39] algorithms.

We also analyze a node classifier algorithm based on logistic re-

gression that we call SybilMetric [2]. We first executed each of

these algorithms without any preprocessing. We then applied the

Traversing algorithm to maximize the number of benigns (our best

algorithm for maximizing benigns based on our experiments in

the previous section) before running the detection strategies. In

the final setup, we also used our potential attack edges discover-

ing algorithm on both the initial known benigns and the newly

identified benigns from the first preprocessing step. Since detection

algorithms usually rely on homophily property, removing (or reduc-

ing the weight of) attack edges could benefit them. Therefore, in

the last setup, before running the detection algorithms, the weights

for the discovered PAEs were adjusted to reduce their importance.

Furthermore, in all experiments, for both preprocessing phases,

the budget is set to 1% of benigns. We used the same setup as the

prior work for the studied detection algorithms.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

571



Figure 2: The number of discovered benigns by each algorithm when the budget ranges from 1 to 𝑘 in the maximizing benigns

problem on the Facebook dataset and for different attack strategies.

Figure 3: The number of discovered PAEs for different bud-

gets (first row) and the percentage of attack edges relative to

the number of discovered PAEs (second row) on the Facebook
dataset. Each column represents a different attack strategy.

Our comparison results for the Facebook dataset are shown in

Table 1. To measure the performance of the detection algorithms,

we use AUC (Area Under the Curve), which is commonly used by

the prior work since it is less affected by biases compared to accu-

racy. Based on these results, the performance of all three algorithms

is improved after adding maximizing benigns outputs. Using discov-

ered PAEs as a preprocessing step also enhances the AUC in some

cases, but not always. This flags that one may need to incorporate

the information regarding the PAEs directly into these algorithms

instead of just reducing weights as we did to get a stronger boost in

the performance. (This would be an interesting potential avenue for

future research.) Thus, overall, our preprocessing steps, especially

discovering benigns, can significantly boost the performance of

detection strategies. For other datasets, similar results are provided

in the full version [12]. It is also worth emphasizing that our prepro-

cessing steps are not computationally demanding. More precisely,

Table 1: Performance of SybilSCAR, SybilWalk, and SybilMet-

ric with and without preprocessing on the Facebook dataset.

Init represents the setup without preprocessing. MB incor-

porates discovered benigns by the Traversing algorithm.

MB+PAE incorporates both discovered benigns and PAEs.

Attack

Strategy

Step

SybilSCAR

AUC

SybilWalk

AUC

SybilMetric

AUC

Random

Init 0.924 0.966 1.00

MB 0.988 0.998 1.00

MB+PAE 0.988 0.998 0.99

BA

Init 0.876 0.929 1.00

MB 0.954 0.972 1.00

MB+PAE 0.944 0.972 1.00

BFS

Init 0.986 0.985 0.97

MB 0.995 0.996 0.99

MB+PAE 0.991 0.997 1.00

in most cases, the computational overhead added by the prepro-

cessing step is negligible in comparison to the time required by the

detection algorithm itself.

5 CONCLUSION

In this paper, we introduced novel attack strategies for synthesizing

more realistic and generic datasets by introducing the concept of

user resistance. We then considered two optimization problems

where we leveraged resistance information to discover benigns

and potential attack edges. We introduced several algorithms and

theoretically analyzed their runtime and solution accuracy. We

then showed the outcomes of these algorithms contain valuable

information that can be used as a preprocessing step for detection

algorithms. We conducted a large set of experiments that confirmed

the positive impact of our preprocessing algorithms

Future research could explore dynamic attack strategies to en-

hance the adaptability of sybil detection algorithms. Developing

bias-robust algorithms is also essential, as current methods are

vulnerable to dataset biases, especially when preprocessing reveals

new benigns and skews the dataset. In addition, developing algo-

rithms for maximizing benigns problemwith theoretical guarantees

could be a potential avenue for future work.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

572



REFERENCES

[1] Kayode Sakariyah Adewole, Nor Badrul Anuar, Amirrudin Kamsin, Kasturi Dewi

Varathan, and Syed Abdul Razak. 2017. Malicious accounts: Dark of the social

networks. Journal of Network and Computer Applications 79 (2017), 41–67.
[2] Sara Asghari, Mostafa Haghir Chehreghani, and Morteza Haghir Chehreghani.

2022. On using node indices and their correlations for fake account detection. In

2022 IEEE International Conference on Big Data (Big Data). IEEE, 5656–5661.
[3] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.
[4] Andrew An Bian, Joachim M. Buhmann, Andreas Krause, and Sebastian Tschi-

atschek. 2017. Guarantees for Greedy Maximization of Non-submodular Func-

tions with Applications. In Proceedings of the 34th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 70), Doina
Precup and Yee Whye Teh (Eds.). PMLR, 498–507.

[5] Manuel Blum, Robert W Floyd, Vaughan R Pratt, Ronald L Rivest, and Robert E

Tarjan. 1973. Time bounds for selection. J. Comput. System Sci. 7, 4 (1973),

448–461. https://doi.org/10.1016/S0022-0000(73)80033-9

[6] Bharat S Borkar, Dipak R Patil, Ashok V Markad, and Manish Sharma. 2022.

Real or fake identity deception of social media accounts using recurrent neural

network. In 2022 International Conference on Fourth Industrial Revolution Based
Technology and Practices (ICFIRTP). IEEE, 80–84.

[7] Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos, Jorge Lería, Jose Lorenzo,

Matei Ripeanu, Konstantin Beznosov, and Hassan Halawa. 2016. Íntegro: Lever-

aging victim prediction for robust fake account detection in large scale OSNs.

Computers & Security 61 (2016), 142–168.

[8] Adam Breuer, Ran Eilat, and Udi Weinsberg. 2020. Friend or Faux: Graph-Based

Early Detection of Fake Accounts on Social Networks. In Proceedings of The Web
Conference 2020. Association for Computing Machinery, 1287–1297.

[9] Adam Breuer, Nazanin Khosravani, Michael Tingley, and Bradford Cottel. 2023.

Preemptive Detection of Fake Accounts on Social Networks via Multi-Class

Preferential Attachment Classifiers. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (Long Beach, CA, USA)

(KDD ’23). Association for Computing Machinery, New York, NY, USA, 105–116.

[10] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding

the detection of fake accounts in large scale social online services. In 9th USENIX
symposium on networked systems design and implementation (NSDI 12). USENIX
Association, 197–210.

[11] George Danezis and Prateek Mittal. 2009. Sybilinfer: Detecting sybil nodes using

social networks.. In Ndss, Vol. 9. San Diego, CA, 1–15.

[12] Ali Safarpoor Dehkordi and Ahad N. Zehmakan. 2025. More Efficient Sybil

Detection Mechanisms Leveraging Resistance of Users to Attack Requests.

arXiv:2501.16624

[13] Buket Erşahin, Özlem Aktaş, Deniz Kılınç, and Ceyhun Akyol. 2017. Twitter

fake account detection. In 2017 international conference on computer science and
engineering (UBMK). IEEE, 388–392.

[14] Uriel Feige. 1998. A threshold of ln n for approximating set cover. Journal of
ACM 45, 4 (1998), 634–652.

[15] Peng Gao, Binghui Wang, Neil Zhenqiang Gong, Sanjeev R Kulkarni, Kurt

Thomas, and Prateek Mittal. 2018. Sybilfuse: Combining local attributes with

global structure to perform robust sybil detection. In 2018 IEEE conference on
communications and network security (CNS). IEEE, 1–9.

[16] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal. 2014. Sybilbelief: A

semi-supervised learning approach for structure-based sybil detection. IEEE
transactions on information forensics and security 9, 6 (2014), 976–987.

[17] Bharti Goyal, Nasib Singh Gill, Preeti Gulia, Om Prakash, Ishaani Priyadarshini,

Rohit Sharma, Ahmed J Obaid, and KusumYadav. 2023. Detection of fake accounts

on social media using multimodal data with deep learning. IEEE Transactions on
Computational Social Systems (2023).

[18] Jianxiong Guo, Yi Li, and Weili Wu. 2019. Targeted protection maximization

in social networks. IEEE Transactions on Network Science and Engineering 7, 3

(2019), 1645–1655.

[19] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random

variables. The collected works of Wassily Hoeffding (1994), 409–426.

[20] Gordhan Jethava and Udai Pratap Rao. 2022. User behavior-based and graph-

based hybrid approach for detection of sybil attack in online social networks.

Computers and Electrical Engineering 99 (2022), 107753.

[21] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. Random walk based

fake account detection in online social networks. In 2017 47th annual IEEE/IFIP
international conference on dependable systems and networks (DSN). IEEE, 273–
284.

[22] Zafran Khan, Zeeshan Khan, Byung-Geun Lee, Hong Kook Kim, and Moongu

Jeon. 2024. Graph neural networks based framework to analyze social media

platforms formalicious user detection. Applied Soft Computing 155 (2024), 111416.
[23] Priyanka Kondeti, Lakshmi Pranathi Yerramreddy, Anita Pradhan, and Gandharba

Swain. 2021. Fake account detection usingmachine learning. In Evolutionary Com-
puting and Mobile Sustainable Networks: Proceedings of ICECMSN 2020. Springer,
791–802.

[24] Ngoc C Le, Manh-Tuan Dao, Hoang-Linh Nguyen, Tuyet-Nhi Nguyen, and Hue

Vu. 2020. An application of random walk on fake account detection problem:

A hybrid approach. In 2020 RIVF International Conference on Computing and
Communication Technologies (RIVF). IEEE, 1–6.

[25] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. Retrieved July 20, 2024 from http://snap.stanford.edu/data

[26] Xiao Liang, Zheng Yang, Binghui Wang, Shaofeng Hu, Zijie Yang, Dong Yuan,

Neil Zhenqiang Gong, Qi Li, and Fang He. 2021. Unveiling fake accounts at

the time of registration: An unsupervised approach. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining. Association for

Computing Machinery, 3240–3250.

[27] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.

2018. Heterogeneous graph neural networks for malicious account detection. In

Proceedings of the 27th ACM international conference on information and knowledge
management. Association for Computing Machinery, 2077–2085.

[28] Haoyu Lu, Daofu Gong, Zhenyu Li, Feng Liu, and Fenlin Liu. 2023. Sybilhp:

Sybil detection in directed social networks with adaptive homophily prediction.

Applied Sciences 13, 9 (2023), 5341.
[29] Martin Moore. 2023. Fake accounts on social media, epistemic uncertainty and

the need for an independent auditing of accounts. Internet Policy Review 12, 1

(2023).

[30] George L. Nemhauser, Laurence A.Wolsey, andMarshall L. Fisher. 1978. An analy-

sis of approximations for maximizing submodular set functions—I. Mathematical
Programming 14 (1978), 265–294.

[31] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[32] Devakunchari Ramalingam and Valliyammai Chinnaiah. 2018. Fake profile

detection techniques in large-scale online social networks: A comprehensive

review. Computers & Electrical Engineering 65 (2018), 165–177.

[33] Santosh Kumar Uppada, K Manasa, B Vidhathri, R Harini, and B Sivaselvan.

2022. Novel approaches to fake news and fake account detection in OSNs: user

social engagement and visual content centric model. Social Network Analysis and
Mining 12, 1 (2022), 52.

[34] Leslie G Valiant. 1979. The complexity of enumeration and reliability problems.

siam Journal on Computing 8, 3 (1979), 410–421.

[35] Estée Van Der Walt and Jan Eloff. 2018. Using machine learning to detect fake

identities: bots vs humans. IEEE access 6 (2018), 6540–6549.
[36] Arun Vishwanath. 2018. Why Do So Many People Fall for Fake Profiles Online?

Retrieved April 18, 2024 from https://theconversation.com/why-do-so-many-

people-fall-for-fake-profiles-online-102754

[37] Keith Wagstaff. 2013. 1 in 10 Twitter Accounts Fake, Say Researchers. Re-

trieved April 18, 2024 from https://www.nbcnews.com/technology/1-10-twitter-

accounts-fake-say-researchers-2d11655362

[38] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting

fraudulent users in online social networks via guilt-by-association on directed

graphs. In 2017 IEEE International Conference on Data Mining (ICDM). IEEE,
465–474.

[39] Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. 2017. SybilSCAR: Sybil

detection in online social networks via local rule based propagation. In IEEE
INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1–9.

[40] Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Xibin Zhao, and Hai Wan. 2024.

Revisiting graph-based fraud detection in sight of heterophily and spectrum. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 9214–9222.
[41] Peipei Yang and Zhuoyuan Zheng. 2020. Fake account detection with attention-

based graph convolution networks. In 2020 IEEE 3rd International Conference on
Automation, Electronics and Electrical Engineering (AUTEEE). IEEE, 106–110.

[42] Minji Yoon. 2021. Graph fraud detection based on accessibility score distributions.

In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part II 21. Springer, 483–498.

[43] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. 2008. Sybil-

limit: A near-optimal social network defense against sybil attacks. In 2008 IEEE
Symposium on Security and Privacy. IEEE, 3–17.

[44] Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and Abraham Flaxman. 2006.

Sybilguard: defending against sybil attacks via social networks. In Proceedings of
the 2006 conference on Applications, technologies, architectures, and protocols for
computer communications. Association for Computing Machinery, 267–278.

[45] Dong Yuan, Yuanli Miao, Neil Zhenqiang Gong, Zheng Yang, Qi Li, Dawn Song,

Qian Wang, and Xiao Liang. 2019. Detecting fake accounts in online social

networks at the time of registrations. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security. Association for Computing

Machinery, 1423–1438.

[46] Xiaoying Zhang, Hong Xie, Pei Yi, and John CS Lui. 2022. Enhancing Sybil detec-

tion via social-activity networks: A random walk approach. IEEE Transactions on
Dependable and Secure Computing 20, 2 (2022), 1213–1227.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

573

https://doi.org/10.1016/S0022-0000(73)80033-9
https://arxiv.org/abs/2501.16624
http://snap.stanford.edu/data
https://theconversation.com/why-do-so-many-people-fall-for-fake-profiles-online-102754
https://theconversation.com/why-do-so-many-people-fall-for-fake-profiles-online-102754
https://www.nbcnews.com/technology/1-10-twitter-accounts-fake-say-researchers-2d11655362
https://www.nbcnews.com/technology/1-10-twitter-accounts-fake-say-researchers-2d11655362

	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Related Work

	2 Attack Models
	3 Preprocessing Algorithms
	3.1 Maximizing Benigns
	3.2 Discovering Potential Attack Edges

	4 Experiments
	4.1 Experimental Setup
	4.2 Attack Strategies
	4.3 Preprocessing
	4.4 Classification Algorithms

	5 Conclusion
	References



