
Composing Reinforcement Learning Policies,
with Formal Guarantees

AAAI Track

Florent Delgrange

Vrije Universiteit Brussel

Brussels, Belgium

florent.delgrange@vub.be

Guy Avni

University of Haifa

Haifa, Israel

gavni@cs.haifa.ac.il

Anna Lukina

TU Delft

Delft, The Netherlands

a.lukina@tudelft.nl

Christian Schilling

Aalborg University

Aalborg, Denmark

christianms@cs.aau.dk

Ann Nowé

Vrije Universiteit Brussel

Brussels, Belgium

ann.nowe@vub.be

Guillermo A. Pérez

University of Antwerp

Antwerp, Belgium

guillermo.perez@uantwerpen.be

ABSTRACT
We propose a novel framework to controller design in environments

with a two-level structure: a known high-level graph (“map”) in

which each vertex is populated by a Markov decision process, called

a “room”. The framework “separates concerns” by using different

design techniques for low- and high-level tasks. We apply reactive

synthesis for high-level tasks: given a specification as a logical for-

mula over the high-level graph and a collection of low-level policies

obtained together with “concise” latent structures, we construct a
“planner” that selects which low-level policy to apply in each room.

We develop a reinforcement learning procedure to train low-level

policies on latent structures, which unlike previous approaches,

circumvents a model distillation step. We pair the policy with prob-

ably approximately correct guarantees on its performance and on

the abstraction quality, and lift these guarantees to the high-level

task. These formal guarantees are the main advantage of the frame-

work. Other advantages include scalability (rooms are large and

their dynamics are unknown) and reusability of low-level policies.

We demonstrate feasibility in challenging case studies where an

agent navigates environments with moving obstacles and visual

inputs.

KEYWORDS
Planning and Reasoning under Uncertainty; Controller Synthesis;

Model Checking; Representation Learning; Reinforcement Learning

ACM Reference Format:
Florent Delgrange , Guy Avni , Anna Lukina , Christian Schilling ,

Ann Nowé , and Guillermo A. Pérez . 2025. Composing Reinforcement

Learning Policies, with Formal Guarantees: AAAI Track. In Proc. of the
24th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,

10 pages.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

1 INTRODUCTION
We consider the fundamental problem of constructing control poli-
cies for environments modeled as Markov decision processes (MDPs)

with formal guarantees. We deal with long-horizon tasks in environ-

ments with prior structural knowledge: the input to our method is

a (high-level) map given as a graph, where each vertex is populated

by an MDP with unknown dynamics called a room, and the long-

horizon task is given on the map. Such settings arise naturally. As

a running example, a robot delivers a package in a warehouse with

moving obstacles (e.g., forklifts, workers, or other robots); while it

is infeasible to model the low-level interactions of the agent with

its immediate surroundings, modeling the high-level map of the

rooms in the warehouse requires minimal engineering effort. We

list other examples of two-level domains with prior knowledge of

the high-level architecture and in which our method is relevant:

(i) routing [28]: the network topology, e.g., connection between

routers, is often known but modeling low-level routing decisions is

intricate; (ii) skill graphs [8] of agents, e.g., “grab a key” and “open

a door”, and their dependencies are naturally modeled as a graph;

(iii) software systems [44], in particular probabilistic programs [28]:
each vertex represents a software component (an MDP in a proba-

bilistic program) and edges capture dependencies or interactions.

Our framework “separates concerns” by using different design

techniques for low- and high-level tasks with complementary ben-

efits and drawbacks. For high-level tasks, we apply reactive syn-
thesis [40], which constructs an optimal policy based on a model of
the environment and a specification as a logical formula, yielding a
guarantee that the policy satisfies the specification. Logic is an intu-
itive and natural specification language. The reliance on an explicit

environment model hinders scalability and application to domains

with partially-known dynamics. Hence, we solve low-level tasks

via reinforcement learning (RL [47]). In particular, we may use deep
RL (DRL [35]), which is successful in domains of high-dimensional
feature spaces with unknown dynamics. However, RL generally lacks
formal guarantees and struggles with long-term objectives, where

one needs to deal with the notorious problem of sparse rewards [32]

by guiding the agent [33], which in turn poses an engineering effort.

Framework (Fig. 1). We output a two-level controller for an agent,

consisting of a collection of low-level policies Π and a high-level

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

574

https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952
https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Florent Delgrange , Guy Avni , Anna Lukina , Christian Schilling , Ann Nowé , and Guillermo A. Pérez

%

Environment

Map 𝑣
𝑒

𝑒′

𝑡
(a) Two-level environment
partitioned into rooms.

Low-level RL

Latent
Model

action

next latent

observation

𝜋𝑣,𝑒
Latent policy

state

abstraction

Room
𝑣

Agent

reward

(b) Latent models and policies are learned con-
jointly with the RL process. Both are paired with
PAC guarantees on the abstraction quality of the
model and the performance of the policy.

Map
Synthesis

construct a
that satisfies 𝜑 with guarantees

Specification 𝜑 ∶

low-level latent models/policies

high-level planner 𝜏

𝑣
𝑒

𝑒′

(one per room, direction)

𝑡

𝑡

“reach ”𝑡
(c) Planner synthesis.

Figure 1: (a) Environment in which the agent (top-right) needs to reach the target (green, bottom-left) while avoiding moving
adversaries (red). The target appears in the map as a dedicated vertex 𝑡 . (b) The agent is trained to exit each room, in every
possible direction. Training is performed in parallel simulations. An abstraction of the environment is learned via neural
networks, yielding a latent model for each room. Simultaneously, a policy is learned via RL on the learned latent representation,
which guarantees the agent’s low-level behavior conformity through PAC bounds. More details in Sect. 4. (c) Given a high-level
description of the environment, a collection of latent models and policies for each room, and the specifications, synthesis
outputs a high-level planner guaranteed to satisfy the specifications. The challenge resides in the way the low-level components
are merged to apply synthesis while maintaining their guarantees. More details in Sect. 5.

planner 𝜏 . When the agent enters a room corresponding to a vertex 𝑣

of the map, the planner chooses an outgoing edge 𝑒 and deploys the

associated policy 𝜋𝑣,𝑒 ∈ Π. The agent follows 𝜋𝑣,𝑒 until it exits the

room. For example, 𝑒 can model a door between two rooms. Note

that the agent may exit from direction 𝑒′ ≠ 𝑒 . It is thus key to have

an estimate of the success probability of 𝜋𝑣,𝑒 when designing 𝜏 .

We obtain low-level policies by developing a novel RL procedure

that is run locally in each room 𝑣 and outputs latent policies 𝜋𝑣,𝑒 ,
for each direction 𝑒 . These policies are represented on a concise

model of the room (Fig. 1(b)). Again, we only assume simulation

access to the rooms; the latent policies are learned and paired with

probably approximately correct (PAC) performance guarantees.

Finally, given a map, a collection of policies Π, and a high-level

specification 𝜑 given as a logical formula over the map, we design

an algorithm to find a planner 𝜏 that optimizes for 𝜑 while lifting

the guarantees on the policies in Π to 𝜏 (Fig. 1(c)).

Advantages. We point to the advantages of the framework. First

and foremost, it provides guarantees on the operation of the controller.
A key design objective is to ease the engineering burden: reward

engineering is only done locally (for each room), and the high-

level map and tasks are given in an intuitive specification language.

Second, our framework enables reusability: a policy 𝜋𝑣,𝑒 , including
its guarantees, is reusable across similar rooms 𝑣 ′ and when the

high-level task or structure changes. Finally, our framework offers

a remedy for the notorious challenge of sparse rewards in RL.

Case study. We complement our theoretical results with illustra-

tions of feasibility in two case studies, where an agent must reach

a distant location while avoiding mobile adversarial obstacles with

stochastic dynamics. The first case study is a grid world; the second

case study is a vision-based Doom environment [29]. DQN [36]

struggles to find a policy in our domain, even with reward shaping.

In the rooms, we demonstrate our novel procedure for training con-

cise latent policies directly. We synthesize a planner based on the

latent policies and show the following results. First, our two-level

controller achieves high success probability, demonstrating that

our approach overcomes the challenge of sparse rewards. Second,

the values predicted in the latent model are close to those observed,

demonstrating the quality of our automatically constructed model.

Contributions. We outline our key theoretical contributions.

(i) Learning guarantees for low-level policies. We tie between

the values (the probability that the low-level objective is

satisfied) of the latent model and that of the environment via

a loss function (Thm. 1) and demonstrate that PAC bounds

can be computed for these value differences (Thm. 2).

(ii) Guarantees on the synthesized controller. We prove memory

bounds on the size of an optimal high-level planner (Thm. 3).

Moreover, we show that an optimal planner can be obtained

by solving an MDP whose size is proportional to the size of

the map, i.e., disregarding the size of the rooms (Thm. 4).

(iii) Unified learning and synthesis guarantees. We show that the

learning guarantees for the low-level policies can be lifted

to the two-level controller. Specifically, minimizing the loss

function to learn an abstraction of each room independently

(and in parallel) guarantees that the values obtained under

the two-level controller in the abstraction closely match

those obtained in the true two-level environment (Thm. 5).

Related work. Hierarchical RL (HRL) [39] (see also the option
framework [48]) is an approach that outputs two-level controllers.

Our approach is very different despite similarity in terms of outputs

and motivation (e.g., both enable reusability and modularity). The

most significant difference is that our framework provides guarantees,
which HRL generally lacks. In our framework, high-level planners

are synthesized based on prior knowledge of the environment (the

map) and only after the low-level policies are learned. In HRL, both

low-level policies and two-level controllers can be learned concur-

rently and with no prior knowledge. Another difference is that in

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

575

https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952

Composing Reinforcement Learning Policies, with Formal Guarantees AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

HRL, the low-level objectives generally need to be learned, whereas

in our approach they are known. We argue that the “separation of

concerns” in our framework eases the engineering burden while

HRL notoriously requires significant engineering efforts. Finally,

unlike option-inspired approaches, where the integration of high-

and low-level components results in a “semi-”Markovian process,

our framework ensures that a small amount of memory for the high-

level planner is sufficient to enable the agent to operate within a

fully Markovian process. This facilitates the design of planning and

synthesis solutions at the highest level of the environment.

Distillation [25] is an established approach: a neural network

(NN) is trained then distilled into a concise latent model. Verifica-

tion of NN controllers is challenging, e.g., [5]. Verification-based

distillation is a popular approach in which verification is applied to

a latent policy, e.g., [6, 10, 13, 16, 18]. In contrast,we study controller-
synthesis based on latent policies. To our knowledge, only [2] devel-

ops a synthesis based on distillation approach, but with no guaran-

tees. In addition, we develop a novel training procedure that trains a
latent policy directly and circumvents the need for model distillation.
We stress that the abstraction is learned unlike [27, 43].

CLAPS [53] is a recent approach that outputs a two-level con-

troller with correctness guarantees. The technique to obtain guar-

antees is very different from ours. Low-level policies are trained

using [52], which accompanies a policy with a super-martingale

on the environment states that gives rise to reach-avoid guaran-

tees. On the other hand, our policies are given on a learned latent

model, which we accompany with PAC guarantees on the quality of

the abstraction. We point to further differences: they assume prior

knowledge of the transitions whereas we only assume simulation

access, their policy is limited to be stationary and deterministic

whereas our policies are general, and their high-level structure

arises from the logical specification whereas ours arises from the

structure of the environment.

It is known that safety objectives in RL are intractable [4]. Shield-
ing [3, 11, 12, 30] circumvents the difficulty of ensuring safety

during training by monitoring a policy and blocking unsafe actions.

Shielding has been applied to low-level policies in a hierarchical

controller [49]. The limitation of this approach is that interference

with the trained policy might break its guarantees. LTL objectives

add intractability [50] to the already complex hierarchical scenarios

in RL [31] and only allow for PAC guarantees if the MDP structure

is known [19]. Reactive synthesis is applied in [37] to obtain low-

level controllers, but scalability is a shortcoming of synthesis. Ap-

proaches encouraging but not ensuring safety use constrained pol-

icy optimization [1], safe padding in small steps [22], time-bounded

safety [21], safety-augmented MDPs [46], differentiable probabilis-

tic logic [51], or distribution sampling [7].

2 PRELIMINARIES
Markov Decision Processes (MDPs). Let Δ(X) denote the set of dis-

tributions on X. An MDP is a tupleM = ⟨S,A, P, I⟩ with states S,
actions A, transition function P : S × A → Δ(S), and initial dis-

tribution I ∈ Δ(S). An agent interacts with M as follows. At

each step, the agent is in some state 𝑠 ∈ S. It performs an ac-

tion 𝑎 ∈ A and subsequently goes to the next state according to

the transition function: 𝑠′ ∼ P(· | 𝑠, 𝑎). A policy 𝜋 : S → Δ(A)

prescribes which action to choose at each step and gives rise to

a distribution over paths of M, denoted by Pr
M
𝜋 . The probabil-

ity of finite paths is defined inductively. Trivial paths 𝑠 ∈ S have

probability Pr
M
𝜋 (𝑠) = I(𝑠). Paths 𝜌 = 𝑠0, 𝑠1, . . . , 𝑠𝑛 have probability

Pr
M
𝜋 (𝑠0, 𝑠1, . . . , 𝑠𝑛−1) · E𝑎∼𝜋 (· |𝑠𝑛−1) P(𝑠𝑛 | 𝑠𝑛−1, 𝑎).

Limiting behaviors in MDPs. The transient measure [9]

𝜇𝑛𝜋
(
𝑠′ |𝑠

)
= P

𝜌∼PrM𝜋
[𝜌 ∈

{
𝑠0, . . . , 𝑠𝑛 |𝑠𝑛 = 𝑠′

}
| 𝑠0 = 𝑠]

gives the probability of visiting each state 𝑠′ after exactly 𝑛 steps

starting from 𝑠 ∈ S. Under policy 𝜋 , 𝐶 ⊆ S is a bottom strongly
connected component (BSCC) of M if (i) 𝐶 is a maximal subset

satisfying 𝜇𝑛𝜋 (𝑠′ | 𝑠) > 0 for any 𝑠, 𝑠′ ∈ 𝐶 and some 𝑛 ≥ 0, and (ii)

E𝑎∼𝜋 (· |𝑠) P(𝐶 | 𝑠, 𝑎) = 1 for all 𝑠 ∈ S. MDPM is ergodic if, under
any stationary policy 𝜋 , the set of reachable states

Reach(M, 𝜋) =
{
𝑠 ∈ S | ∃𝑛 ≥ 0,E𝑠0∼I 𝜇

𝑛
𝜋 (𝑠 | 𝑠0) > 0

}
consist of a unique aperiodic BSCC. Then, for 𝑠 ∈ S, the stationary
distribution ofM under 𝜋 is given by 𝜉𝜋 = lim𝑛→∞ 𝜇𝑛𝜋 (· | 𝑠).

Objectives and values. A qualitative objective is a set of infi-

nite paths O ⊆ S𝜔 . For 𝐵,𝑇 ⊆ S, we consider reach-avoid objec-
tives O(𝑇, 𝐵) =

{
𝑠0, 𝑠1, . . . | ∃𝑖 . 𝑠𝑖 ∈ 𝑇 and ∀𝑗 ≤ 𝑖, 𝑠 𝑗 ∉ 𝐵

}
(or just O

if clear from context) where the goal is to reach a “target” in 𝑇

while avoiding the “bad” states 𝐵. Henceforth, fix a discount factor
𝛾 ∈ (0, 1). In this work, we consider discounted value functions (see,

e.g., [15]). The value of any state 𝑠 ∈ S for policy 𝜋 w.r.t. objec-

tive O is denoted by𝑉 𝜋 (𝑠,O) and corresponds to the probability of

satisfying O from state 𝑠 as 𝛾 goes to one, i.e., lim𝛾→1𝑉
𝜋 (𝑠,O) =

P
𝜌∼PrM𝜋

[𝜌 ∈ O | 𝑠0 = 𝑠]. In particular, for the reach-avoid objec-

tive O(𝑇, 𝐵), 𝑉 𝜋 (𝑠,O) corresponds to the discounted probability

of visiting 𝑇 for the first time while avoiding 𝐵, i.e., 𝑉 𝜋 (𝑠,O) =
E
𝜌∼PrM𝜋

[
sup𝑖≥0

𝛾𝑖 · 1
{
𝑠𝑖 ∈ 𝑇 ∧ ∀𝑗 ≤ 𝑖, 𝑠 𝑗 ∉ 𝐵

}
| 𝑠0 = 𝑠

]
, where 𝑠𝑖 ,

𝑠 𝑗 are respectively the 𝑖th, 𝑗 th state of 𝜌 . We are particularly inter-

ested in the values obtained from the beginning of the execution,

written 𝑉 𝜋
I (O) = E𝑠0∼I [𝑉 𝜋 (𝑠0,O)]. We may sometimes omit O

and simply write 𝑉 𝜋
and 𝑉 𝜋

I .

Reinforcement learning obtains a policy in a model-free way.

Executing action 𝑎𝑖 in state 𝑠𝑖 and transitioning to 𝑠𝑖+1 incurs

a reward 𝑟𝑖 = rew(𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1), computed via a reward function
rew : S × A × S → R. An RL agent’s goal is to learn a policy 𝜋∗

maximizing the return E
𝜌∼Pr

M
𝜋∗

[∑
𝑖≥0

𝛾𝑖𝑟𝑖
]
. The agent is trained

by interacting with the environment in episodic simulations, each

ending in one of three ways: success, failure, or an eventual reset.

3 PROBLEM FORMULATION
In this section, we formallymodel a two-level environment and state

the problem of two-level controller synthesis. The environment

MDP is a high-level map: an undirected graph whose vertices are

associated with “low-level” MDPs called rooms (Fig. 2(a)). A two-

level controller works as follows. In each room, we assume access to

a set of low-level policies, each optimizing a local (room) reach-avoid

objective (Fig. 2(b)). When transitioning to a new room, a high-level

planner selects the next low-level policy.
Two-level model. A room 𝑅 = ⟨S𝑅,A𝑅, P𝑅, 𝐷𝑅,I𝑅,O𝑅⟩ consists

of S𝑅 , A𝑅 , P𝑅 as in an MDP, a set of directions 𝐷𝑅 , an entrance
function I𝑅 : 𝐷𝑅 → Δ(S𝑅) taking a direction from which the room

is entered and producing an initial distribution over states, and an

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

576

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Florent Delgrange , Guy Avni , Anna Lukina , Christian Schilling , Ann Nowé , and Guillermo A. Pérez

𝑠1,𝑣0

𝑠3,𝑣0

𝑠1, 𝑢 𝑠2, 𝑢

𝑠0, 𝑢

𝑑0 =→

𝑅0
𝑅1

𝑎𝑒𝑥𝑖𝑡



𝑤𝑖𝑛

𝑎𝑒𝑥𝑖𝑡
𝑠0,𝑣0

𝑠2,𝑣0 𝑠3, 𝑢

𝑠0, 𝑢
′

𝑣0
𝑑1 = ⟨𝑣0, 𝑢⟩


𝓁(𝑣0) = 𝑅0

𝑢
𝑑2 = ⟨𝑢, 𝑢

′
⟩

𝑢
′

(a) A two-level model of a simple grid-world environment.

𝑣3

𝑢

𝜋↓

𝜋→

𝜋→

𝜋↑

𝐵𝓁(𝑢)

𝑣2

𝓁(𝑢)(→)𝑣1

𝑠2

𝑠1

𝑠3

(b) A two-level model for which an optimal plan-
ner requires memory, here flattened in 2D.

Figure 2: (a) Top: The high-level graph G with two rooms 𝑅0 = ℓ (𝑣0) and 𝑅1 = ℓ (𝑢). Middle: Part of the explicit MDP for the
bottom layer; e.g., the MDP 𝑅0 contains 16 states. Traversing the edge ⟨⟨𝑠2, 𝑣0⟩, ⟨𝑠0, 𝑢⟩⟩ corresponds to exiting 𝑅0 and entering 𝑅1

from direction 𝑑1 = ⟨𝑣0, 𝑢⟩. The goal of is to reach 𝑢′ by exiting the room 𝑅1 from direction 𝑑2 = ⟨𝑢,𝑢′⟩ while avoiding the
moving adversaries . For 𝑖 ∈ {0, 1}, the entrance function I𝑅𝑖 models the distribution from which the initial location of in 𝑅𝑖
is drawn. (b) A room with four policies for a planner to choose from; e.g., 𝜋→ (· | 𝑠1) leads to 𝐵ℓ (𝑢) and 𝜋↑ (· | 𝑠1) leads to 𝑠3. Note
that, while these are deterministic policies, in general, the policies in rooms are probabilistic.

exit function O𝑅 : 𝐷𝑅 → 2
S𝑅

returning a set of exit states from the

room in a given direction 𝑑 ∈ 𝐷𝑅 . States are assigned to at most

one exit, i.e., if 𝑠 ∈ O𝑅 (𝑑) and 𝑠 ∈ O𝑅 (𝑑′), then 𝑑′ = 𝑑 .

𝑅(⋅ ∣→)

𝑅(→)

Figure 3: Small room in a grid world.

Example 1 (Room). Consider the grid world of Fig. 3 as a room

𝑅 populated by an adversary . One can encode the position of

in S𝑅 and its behaviors through P𝑅 . This can be achieved by,

e.g., considering states of the form 𝑠 = ⟨(𝑥1, 𝑦1), (𝑥2, 𝑦2)⟩ ∈ S𝑅
where (𝑥1, 𝑦1) is the position of and (𝑥2, 𝑦2) the one of in

the grid. Note that the position of depends on the direction

from which the agent enters 𝑅. The agent enters from the left in

direction→ to the states of 𝑅 distributed according to the entrance

function I𝑅 (· | 𝑑 =→) (the tiling patterns highlight its support).

Precisely, while the agent enters (in a deterministic way) in the

leftmost cell (yellow tiling), I𝑅 allows to (probabilistically) model

the possible positions of when entering the room (red tiling)

from direction 𝑑 =→. When reaching the green area, depicting

states from O𝑅 (→), exits 𝑅 by the right direction→.

A map is a graph G = ⟨V, 𝐸⟩ with vertices V and undirected

edges 𝐸 ⊆ V × V . The neighbors of 𝑣 ∈ V are 𝑁 (𝑣) = {𝑢 ∈
V | ⟨𝑢, 𝑣⟩ ∈ 𝐸} and the outgoing edges from 𝑣 are out(𝑣) =

{𝑒 = ⟨𝑣,𝑢⟩ ∈ 𝐸}. A two-level model H = ⟨G,R, ℓ, 𝑣0, ⟨𝑑0, 𝑑1⟩⟩ con-
sists of a map G = ⟨V, 𝐸⟩, a set of rooms R, a labeling ℓ : V → R of

each vertex 𝑣 ∈ V with a room ℓ (𝑣) and directions 𝐷ℓ (𝑣) = 𝑜𝑢𝑡 (𝑣),
an initial room 𝑣0 ∈ V , and directions 𝑑0, 𝑑1 ∈ out(𝑣0) in which 𝑣0

is respectively entered and must be exited.

Fix a two-level model H = ⟨G,R, ℓ, 𝑣0, ⟨𝑑0, 𝑑1⟩⟩. Intuitively,
the explicit MDP M corresponding to H is obtained by “stitch-

ing” MDPs 𝑅 ∈ R corresponding to neighboring rooms (Fig. 2(a)).

Formally,M = ⟨S,A, P, I⟩, where S =
{
⟨𝑠, 𝑣⟩ : 𝑠 ∈ Sℓ (𝑣) , 𝑣 ∈ V

}
,

A =
⋃

𝑅∈R A𝑅 ∪ {𝑎exit }. The initial distribution I simulates start-

ing in room ℓ (𝑣0) from direction 𝑑0; thus, for each 𝑠 ∈ Sℓ (𝑣0) ,
I(⟨𝑠, 𝑣0⟩) = Iℓ (𝑣0) (𝑠 | 𝑑0). The transitions P coincide with P𝑅 for

non-exit states. Let 𝑑 = ⟨𝑣,𝑢⟩ ∈ 𝐸 with 𝑣 ∈ 𝑁 (𝑢); O𝑅 (𝑑) are the exit
states in room 𝑅 associated with 𝑣 in direction 𝑑 , and Iℓ (𝑢) (· | 𝑑)
is the entrance distribution in 𝑅 associated with 𝑢 in direction 𝑑 .

The successor state of 𝑠 ∈ O𝑅 (𝑑) follows Iℓ (𝑢) (· | 𝑑) when 𝑎exit is
chosen. Each path 𝜌 inM corresponds to a unique path(𝜌) in G
traversing the rooms.

High-level reach and low-level reach-avoid objectives. The high-
level reachability objective we consider is “^𝑇 ,” where 𝑇 ⊆ V is a

subset of vertices in the graph ofH . Here, ^𝑇 is a temporal logic

notation meaning “eventually visit the set 𝑇 .” Formally, a path 𝜌

inM satisfies ^𝑇 iff path(𝜌) visits a vertex 𝑣 in 𝑇 . The low-level
safety objective is defined over states of the rooms in R. For each
room 𝑅, let 𝐵𝑅 ⊆ S𝑅 be a set of “bad” states. For room 𝑅 and

direction 𝑑 ∈ 𝐷𝑅 , the reach-avoid objective O𝑑
𝑅
∈ S∗

𝑅
is {𝑠0, . . . , 𝑠𝑛 |

𝑠𝑛 ∈ O𝑅 (𝑑) and 𝑠𝑖 ∉ 𝐵𝑅 for all 𝑖 ≤ 𝑛}, i.e., exit 𝑅 via 𝑑 avoiding 𝐵𝑅 .

High-level control. We define a high-level planner 𝜏 : V∗ → 𝐸

and a set of low-level policiesΠ such that, for each room𝑅 ∈ R and a

direction 𝑑 ∈ 𝐷𝑅 , Π contains a policy 𝜋𝑅,𝑑 for the objectiveO𝑑
𝑅
. The

pair 𝜋 = ⟨𝜏,Π⟩ is a two-level controller forH , defined inductively as

follows. Consider the initial vertex 𝑣0 ∈ V . First, the planner always

chooses 𝜏 (𝑣0) = 𝑑1, thus control in ℓ (𝑣0) follows 𝜋ℓ (𝑣0),𝑑1
. Then,

let 𝜌 be a path in H ending in 𝑠 ∈ S𝑅 , for some room 𝑅 = ℓ (𝑣).
If 𝑠 is not an exit state of 𝑅, then control follows a policy 𝜋𝑅,𝑑
with 𝑑 = ⟨𝑣,𝑢⟩ and 𝑢 ∈ 𝑁 (𝑣). If 𝑠 is an exit state in direction 𝑑

and path(𝜌) ends in 𝑣 , i.e., 𝑠 ∈ O𝑅 (𝑑), then 𝑎exit is taken in 𝑠 and

the next state is an initial state in 𝑅′ = ℓ (𝑢) drawn from I𝑅′ (· | 𝑑).
The planner chooses a direction 𝑑′ = 𝜏 (path(𝜌) · 𝑢) ∈ out(𝑢) to

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

577

https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952

Composing Reinforcement Learning Policies, with Formal Guarantees AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

exit 𝑅′. Control of 𝑅′ proceeds with the low-level policy 𝜋𝑅′,𝑑 ′ . Note
that 𝜋 is a policy in the explicit MDPM.

Problem 1. Given a two-level model H = ⟨G,R, ℓ, 𝑣0, ⟨𝑑0, 𝑑1⟩⟩,
discount factor 𝛾 ∈ (0, 1), high-level objective ^𝑇 , and low-level
objectives {O𝑑

𝑅
| 𝑅 ∈ R, 𝑑 ∈ 𝐷𝑅}, construct a two-level controller 𝜋 =

⟨𝜏,Π⟩ maximizing the probability of satisfying the objectives.

4 OBTAINING LOW-LEVEL RL POLICIES
There are challenges in reasoning about RL policies—especially

those obtained via DRL, which are typically represented by large

NNs. We develop a novel, unified approach which outputs a latent

model together with a concise policy. The idea is to learn a tractable
latent model for each room, where the values of the low-level objec-

tives can be explicitly computed. Each latent model is accompanied

by probably approximately correct (PAC) guarantees on their ab-

straction quality. We first focus on those guarantees. In the next

section, we will then focus on how to synthesize a planner (with

guarantees) based on these learned models and policies.

4.1 Quantifying the quality of the abstraction
In this section, we fix an MDP environmentM = ⟨S,A, P, I⟩. A
latent model abstracts a concrete MDP and is itself an MDPM =

⟨S,A, P, I⟩ whose state space is linked toM via a state-embedding
function 𝜙 : S → S. We focus on latent MDPs with a finite state

space, where values can be exactly computed.

Let 𝜋 be a policy inM, called a latent policy. The key feature is

that 𝜙 allows to controlM using 𝜋 : for each state 𝑠 ∈ S, let 𝜋 (· | 𝑠)
inM follow the distribution 𝜋 (· | 𝜙 (𝑠)) inM. Abusing notation,

we refer to 𝜋 as a policy inM. We write 𝑉 𝜋
for the value function

ofM operating under 𝜋 .

GivenM and 𝜋 , we bound the difference between 𝑉 𝜋
and 𝑉 𝜋

;

the smaller the difference, the more accurately M abstracts M.

Computing 𝑉 𝜋
is intractable. To overcome this, in the same spirit

as [16, 20], we define a local measure on the transitions ofM and

M to bound the difference between the values obtained under 𝜋

(cf. Fig. 4). We define the transition loss 𝐿𝜋P w.r.t. a distance metric

D on distributions over S. We focus on the total variation distance
(TV)D(𝑃, 𝑃 ′) = 1/2 ∥𝑃 − 𝑃 ′∥

1
for 𝑃, 𝑃 ′ ∈ Δ

(
S
)
. We compute 𝐿𝜋P by

taking the expectation according to the stationary distribution 𝜉𝜋 :

𝐿𝜋P = E𝑠∼𝜉𝜋 ,𝑎∼𝜋 (· |𝑠) D
(
𝜙P(· | 𝑠, 𝑎), P(· | 𝜙 (𝑠), 𝑎)

)
. (1)

The superscript is omitted when clear from the context. Efficiently

sampling from the stationary distribution can be done via random-

ized algorithms, even for unknown probabilities [34, 41].

𝑠 𝑠

𝑎 𝑎

𝑠′ 𝑠2𝑠1

M M
𝜙

𝜋

P P
𝜙

Figure 4: To run 𝜋 in the origi-
nal environmentM, (i) map 𝑠 to
𝜙 (𝑠) = 𝑠, (ii) draw 𝑎 ∼ 𝜋 (· | 𝑠).
𝐿P measures the gap (in red) be-
tween latent states produced via
𝑠1 = 𝜙 (𝑠′) with 𝑠′ ∼ P(· | 𝑠, 𝑎)
(shortened as 𝑠1 ∼ 𝜙P(· | 𝑠, 𝑎)) and
those produced directly in the la-
tent space: 𝑠2 ∼ P(· | 𝑠, 𝑎).

Recall that RL is episodic, terminating when the objective is

satisfied/violated or via a reset. We thus restrictM to an episodic
process, which implies ergodicity of bothM andM under mild

conditions (cf. [26] for a discussion).

Assumption 1 (Episodic process). The environmentM has a
reset state 𝑠reset such that (i) 𝑠reset is almost surely visited under
any policy, and (ii) M follows the initial distribution once reset:
P(· | 𝑠reset, 𝑎) = I for any 𝑎 ∈ A. The latent modelM is also episodic
with reset state 𝜙 (𝑠reset).

Assumption 2. The abstraction preserves information regarding
the objectives. Formally, let ⟨𝑇,𝑇 ⟩, ⟨𝐵, 𝐵⟩ ⊆ S×S be sets of target and
bad states, respectively. Then, for X ∈ {𝑇, 𝐵}, 𝑠 ∈ X iff 𝜙 (𝑠) ∈ X.1

We consider the objective O(𝑇, 𝐵) inM and O
(
𝑇, 𝐵

)
inM.

The following lemma establishes a bound on the difference in values

based on 𝐿P. Notably, as 𝐿P goes to zero, the two models almost
surely have the same values from every state.

Lemma 1 ([16]). Let 𝜋 be a latent policy and 𝜉𝜋 be the unique sta-

tionary measure ofM, then the average value difference is bounded

by 𝐿P: E𝑠∼𝜉𝜋

���𝑉 𝜋 (𝑠) −𝑉 𝜋 (𝜙 (𝑠))
��� ≤ 𝛾𝐿P

1−𝛾 .

The next theorem provides a bound applicable to the initial dis-

tribution, removing the need of the expectation in Lem. 1. It follows

from plugging the stationary distribution in 𝑠reset into Lem. 1 and

observing that 1/𝜉𝜋 (𝑠reset) is the average episode length [45].

Theorem 1. The value difference from the initial states is bounded

by 𝐿P:
���𝑉 𝜋
I −𝑉

𝜋

I

��� ≤ 𝐿P
𝜉𝜋 (𝑠reset) (1−𝛾) .

4.2 PAC estimates of the abstraction quality
Thm. 1 establishes a bound on the quality of the abstraction based

on 𝐿P and 𝜉𝜋 (𝑠reset). Computing these quantities is not possible in

practice since the transition probabilities ofM are unknown.

Instead, we obtain PAC bounds on 𝜉𝜋 (𝑠reset) and 𝐿P by simulat-

ingM. The estimate of 𝜉𝜋 (𝑠reset) is obtained by taking the portion

of visits to 𝑠reset in a simulation and Hoeffding’s inequality. The esti-

mate of 𝐿P is obtained as follows. When the simulation goes from 𝑠

to 𝑠′ following action 𝑎, we add a “reward” of P(𝜙 (𝑠′) | 𝜙 (𝑠), 𝑎).
Since 𝐿P is a loss, we subtract the average reward from 1.

Lemma 2. Let

{
⟨𝑠𝑡 , 𝑎𝑡 , 𝑠′𝑡 ⟩ : 1 ≤ 𝑡 ≤ T

}
be a set of T transitions

drawn from 𝜉𝜋 by simulatingM𝜋 . Let

�̂�P=1− 1

T

T∑︁
𝑡=1

P
(
𝜙
(
𝑠′𝑡
)
| 𝜙 (𝑠𝑡), 𝑎𝑡

)
and 𝜉reset=

1

T

T∑︁
𝑡=0

1 {𝑠𝑡 = 𝑠reset}.

Then, for all 𝜀, 𝛿 > 0 and T ≥ ⌈− log(𝜁)/2𝜀2⌉, with at least probability
1 − 𝛿 we have that

(i) if 𝜁 ≤ 𝛿 , �̂�P + 𝜀 > 𝐿P,
(ii) if 𝜁 ≤ 𝛿/2, �̂�P + 𝜀 > 𝐿P and 𝜉𝜋 (𝑠reset) > 𝜉reset − 𝜀.
The following theorem has two key implications: (i) it establishes

a lower bound on the minimum number of samples necessary to

calculate the PAC upper bound for the average value difference;

(ii) it suggests an online algorithm with a termination criterion for

the value difference bound obtained from the initial states.

1
By labeling states with atomic propositions, a standard in model checking [16].

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

578

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Florent Delgrange , Guy Avni , Anna Lukina , Christian Schilling , Ann Nowé , and Guillermo A. Pérez


𝜏∶ ∗ → 𝐷


Two-level model Explicit MDP

𝜏∶  ×  → 𝐷

⟨𝑠, 𝑣⟩

State space features: state 𝑠 in room 𝑅 = 𝓁(𝑣);

Π

MDP Plan

⟨𝑠, 𝑣, 𝑢⟩

state 𝑠, room 𝑅 = 𝓁(𝑣), target 𝑑 = ⟨𝑣, 𝑢⟩;

𝜏∶  ×  → 𝐷


Π

Succinct Model

⟨𝑣, 𝑢⟩

Theorem 4fix Π⇝Theorem 3

𝑅 = 𝓁(𝑢) entered from 𝑑 = ⟨𝑣, 𝑢⟩;

Figure 5: Chain of reductions for synthesizing a planner 𝜏 in a two-level modelH .H can be formulated as an explicit MDP
M. Once the low-level policies Π are learned (Fig. 1(b)), the synthesis problem reduces to constructing a stationary policy in
an MDP planMΠ where Π is fixed and the state space ofMΠ encodes the directions chosen in each room. From this policy,
one can derive a |V|-memory planner 𝜏 forH (Thm. 3). Finally, finding a policy inMΠ is equivalent to finding a policy in a
succinct modelMG

Π
where (i) the state space corresponds to the directions from which rooms are entered, (ii) the actions to the

choices of the planner, and (iii) the transition probabilities to the values achieved by the latent policy chosen (Thm. 4).

Theorem 2 (The value bounds are PAC learnable). Consider T
transitions

{
⟨𝑠𝑡 , 𝑎𝑡 , 𝑠′𝑡 ⟩ : 1 ≤ 𝑡 ≤ T

}
drawn from 𝜉𝜋 by simulating

M under 𝜋 . Then, for any 𝜀, 𝛿 > 0, T ≥ ⌈−𝛾 ′ log(𝛿 ′)/(2𝜀2 (1−𝛾)2𝜁)⌉,
with at least probability 1 − 𝛿 , the following value bounds hold, on

(i) the average value gap: E𝑠∼𝜉𝜋
���𝑉 𝜋 (𝑠) −𝑉 𝜋 (𝜙 (𝑠))

��� ≤ 𝛾𝐿P
1−𝛾 + 𝜀

with 𝛿 ′ = 𝛿 , 𝛾 ′ = 𝛾2
, and 𝜁 = 1, and

(ii) the value gap from the initial states:���𝑉 𝜋
I −𝑉

𝜋

I

��� ≤ �̂�P

𝜉reset (1 − 𝛾)
+ 𝜀

with 𝛿 ′ = 𝛿/2, 𝛾 ′ = (�̂�P +𝜉reset (1 + 𝜀 (1 − 𝛾)))
2
, and 𝜁 = 𝜉 4

reset
.

Unlike (i), which enables precomputing the number of samples to

estimate the bound, (ii) allows estimating with an algorithm, almost

surely terminating but without predetermined endpoint since T
relies in that case on the current approximations of 𝐿P and 𝜉𝜋 .

4.3 Obtaining latent policies during training
As highlighted in the last section, our guarantees rely on learning

a policy on the representation induced by a suitable, latent ab-

straction. Accordingly, we propose a DRL procedure that trains the

policy and the latent model simultaneously. Previous approaches
used a two-step process: train a policy 𝜋 inM and then distill it.
In contrast, our one-step approach alternates between optimizing a

latent policy 𝜋 via DQN [36] and representation learning through

Wasserstein auto-encoded MDPs (WAE-MDPs [17]). This process

avoids the distillation step by directly learning 𝜋 and minimizing

𝐿P. That way, the DQN policy is directly optimized on the learned

latent space (cf. Fig. 1(b)). We call this procedure WAE-DQN.
The combination of these techniques is nontrivial and requires

addressing stability issues. To summarize, WAE-DQN ensures the

following properties: (i) 𝜙 groups states with close values, support-

ing the learning of 𝜋 ; (ii) 𝜋 prescribes the same actions for states

with close behaviors, improving robustness and enabling reuse of

the latent space for rooms with similar structure.

5 OBTAINING A PLANNER
Fix Π as a collection of low-level, latent policies. In this section, we

show that synthesizing a planner reduces to constructing a policy

in a succinct model, where the action space coincides with the edges

of the map G (i.e., the choices of the planner). In the following, we

describe the chain of reductions leading to this result. An overview

is given in Fig. 5. We further discuss the memory requirements of

the planner. Precisely, we study the following problem:

Problem 2. Given a two-level model H , a collection of latent
policies Π, and an objective O, construct a planner 𝜏 such that the
controller ⟨𝜏,Π⟩ is optimal for O inH .

Example 2 (Planners require memory). Consider again Fig. 2(b). To

reach 𝑣3 and avoid 𝐵ℓ (𝑢) from 𝑢, 𝜏 must remember from where the

room ℓ (𝑢) is entered: 𝜏 must choose ↑ from 𝑣1, and→ from 𝑣2.

Next, we establish a memory bound for an optimal planner. Upon

entering a room 𝑅 ∈ R, the planner selects a direction 𝑑 ∈ 𝐸, so the
policy operating in 𝑅 is 𝜋𝑅,𝑑 ∈ Π, optimizing the objective O𝑑

𝑅
to

exit 𝑅 via 𝑑 . We construct an MDP planM
Π
= ⟨SΠ,AΠ, PΠ, IΠ⟩ to

simulate this interaction. A state 𝑠∗ = ⟨𝑠, 𝑣,𝑢⟩ ∈ SΠ representsH
being at vertex 𝑣 , the room 𝑅 = ℓ (𝑣) at state 𝑠 , and the operating

policy 𝜋𝑅,𝑑=⟨𝑣,𝑢 ⟩ . For non-exit states 𝑠 , the transition function PΠ (· |
𝑠∗) follows P𝑅 (· | 𝑠, 𝑎) with 𝑎 ∼ 𝜋𝑅,𝑑 (· | 𝑠); for exit states, the
planner chooses direction 𝑑′ ∈ 𝐷𝑅′ for the next room 𝑅′ = ℓ (𝑢),
where PΠ (· | 𝑠 , 𝑑′) follows I𝑅′ (· | 𝑑) from 𝑑 = ⟨𝑣,𝑢⟩.

An optimal stationary policy exists forM
Π
[42] and can be im-

plemented by a planner that memorizes the room’s entry direction.

This requires memory of size |V|, as decisions depend on any of

the |V| preceding vertices.
Theorem 3. Given low-level policies Π, there is a |V|-memory

planner 𝜏 maximizing O inH iff there is a deterministic stationary

policy 𝜋★ maximizing O inM
Π
.

Planner synthesis. As a first step, we construct a succinct MDP
MG

Π
that preserves the value ofM

Π
. States ofMG

Π
are pairs ⟨𝑣,𝑢⟩

indicating room 𝑅 = ℓ (𝑢) is entered via direction 𝑑 = ⟨𝑣,𝑢⟩. As
inM

Π
, a planner selects an exit direction 𝑑′ = ⟨𝑢, 𝑣 ′⟩ for 𝑅. We use

the following trick. Recall that we consider discounted properties;

when 𝑅 is exited via direction 𝑑′ after 𝑗 steps, the utility is 𝛾 𝑗 . In

MG
Π
, we set the probability of transitioning to 𝑣 ′ upon choosing 𝑑′

to the expected value achieved by policy 𝜋𝑅,𝑑 ′ in 𝑅.

The next example illustrates how setting transition probabilities

to be expected values maintains the values between the models.

Example 3. Consider the explicit model of Fig. 2(a), projected on

two dimensions in Fig. 6. Each directed arrow corresponds to a

transition with a non-zero probability. A state of the form ⟨𝑠, 𝑣⟩
indicates that the agent is in state 𝑠 of room ℓ (𝑣). Consider a path 𝜌
that enters ℓ (𝑣0) = 𝑅0, exits after 𝑖 = 3 steps (𝑠0 → 𝑠1 → 𝑠2

𝑎exit−−−→),

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

579

https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952

Composing Reinforcement Learning Policies, with Formal Guarantees AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

enters ℓ (𝑢) = 𝑅1, exits after 𝑗 = 3 steps (𝑠0 → 𝑠1 → 𝑠2
𝑎exit−−−→),

and finally reaches the high-level goal. The prefix of 𝜌 in 𝑅0 is

discounted to 𝛾3
when the agent exits. Similarly, the suffix of 𝜌 in

𝑅1 is discounted to 𝛾3
. Once in the goal, the agent gets a “reward"

of one (the goal is reached). The discounted reward obtained along

𝜌 is thus 𝛾𝑖+𝑗 = 𝛾6
. In expectation, this corresponds to multiplying

the values in the individual rooms and, in turn, with the semantics

ofMG
Π

where probabilities are multiplied along a path.

𝑠2, 𝑣0

𝑠0, 𝑣0 𝑠1, 𝑣0

𝑠3, 𝑣0

𝑠2, 𝑢𝑠1, 𝑢

𝑠3, 𝑢𝑠0, 𝑢
𝑎𝑒𝑥𝑖𝑡

𝑅0 𝑅1

𝑎𝑒𝑥𝑖𝑡 goal

Figure 6: Projection of Fig. 2(a) on two dimensions.

LetMG
Π

= ⟨S,A, P, I⟩ with S = 𝐸 ∪ {⊥}, A = 𝐸, I(𝑑0) = 1,

P(⟨𝑢, 𝑡⟩|⟨𝑣,𝑢⟩, 𝑑) = E𝑠∼Iℓ (𝑢) (· | ⟨𝑣,𝑢 ⟩)
[
𝑉 𝜋 ℓ (𝑢),𝑑

(
𝑠,O𝑑

ℓ (𝑢)

)]
, (2)

and P(⊥ | ⟨𝑣,𝑢⟩, 𝑑) = 1− P(⟨𝑢, 𝑡⟩ | ⟨𝑣,𝑢⟩, 𝑑) for any ⟨𝑣,𝑢⟩ ∈ 𝐸 with

target direction 𝑑 = ⟨𝑢, 𝑡⟩ ∈ 𝐷ℓ (𝑢) , while P(⊥ | ⊥, 𝑑) = 1. The sink

state⊥ captures when low-level policies do not satisfy the objective.

Theorem 4. Let ⟨𝜏,Π⟩ be a |V|-memory controller forH and 𝜋 be

an equivalent policy inMΠ, the values obtained under 𝜋 for O in

MΠ are equal to those under 𝜏 obtained inMG
Π

for the reachability

objective to statesV ×𝑇 .
We are ready to describe the algorithm to synthesize a planner.

Note that the values 𝑉 𝜋𝑅,𝑑
in Eq. (2) are either unknown or com-

putationally intractable. Instead, we leverage the latent model to

evaluate the latent value of each low-level objective using standard

techniques for discounted reachability objectives [15]. We construct

MG
Π
similar toMG

Π
and obtain the controller ⟨𝜏,Π⟩ by computing a

planner 𝜏 optimizing the values ofMG
Π
[42]. AsMG

Π
andMG

Π
have

identical state spaces, planners forMG
Π
are compatible withMG

Π
.

Lifting the guarantees. We now lift the guarantees for low-level

policies to a planner operating on the two-level model, overcoming

the following challenge. To learn one latent model per room 𝑅 and

the set of low-level policies Π, we run WAE-DQN independently

(and possibly in parallel) in each room 𝑅 (Fig. 1(b)). Viewing 𝑅

as an MDP, we obtain a transition loss 𝐿
𝑅,𝑑
P for every direction 𝑑 ,

associated with latent policy 𝜋𝑅,𝑑 ∈ Π. Independent training intro-

duces complications. Each room 𝑅 has its own initial distribution I𝑅 ,
while at synthesis time, the initial distribution depends on the con-

troller 𝜋 = ⟨𝜏,Π⟩ and marginalizes I𝑅 (· | 𝑑) over directions 𝑑
chosen by 𝜏 . Recall that 𝐿

𝑅,𝑑
P is the TV between original and latent

transition functions, averaged over 𝜉𝜋𝑅,𝑑
, i.e., states likely to be

visited under 𝜋 when using I𝑅 as the entrance function. The lat-

ter differs from I𝑅 , used at synthesis time. As 𝜉𝜋𝑅,𝑑
may not align

with the state distribution visited under the two-level controller 𝜋 ,

𝐿
𝑅,𝑑
P (and thus the guarantees from the latent model) may become

obsolete or non-reusable.

Fig. 7 illustrates the distribution shift. Assume that 𝜏 chooses the

right direction→ in 𝑅. As I𝑅 is uniform, every state is included in

𝑅(⋅ ∣ ↓)

𝑅(⋅ ∣ ↑)

𝐈𝑅

exit

Figure 7: Uniform
distribution I𝑅 (blue),
entrance function I𝑅
(red: ↓, green: ↑).

the support of the distribution 𝜉𝜋𝑅,→
of states visited under 𝜋𝑅,→ at train-

ing time. In contrast, under a two-

level controller, rooms are entered

according to I𝑅 (· | 𝑑 ∈ {↓, ↑}). Since
the goal is to exit on the right, all

states of 𝑅 need not be visited un-

der 𝜋𝑅,→, so the distribution over vis-

ited states may differ. The question

is whether we can recover the latent

models’ guarantees at synthesis time.

Fortunately, as we will show in the

following theorem, it turns out that

if the initial distribution I𝑅 of each

room 𝑅 is well designed and provides

sufficient coverage of the state space

of 𝑅, it is possible to learn a latent
entrance function I𝑅 so that the guarantees associated with each

room can be lifted to the two-level controller.

Theorem 5. Let ⟨𝜏,Π⟩ be a |V|-memory controller forH and 𝜋

be an equivalent stationary policy inM
Π
.

• (Entrance loss) Define I𝑅 : 𝐷𝑅 → Δ
(
S
)
and

𝐿I = E𝑅,𝑑∼𝜉𝜋 D
(
𝜙I𝑅 (· | 𝑑), I𝑅 (· | 𝑑)

)
,

where 𝜉𝜋 is the stationary measure ofM
Π
under 𝜋 and

𝜙I𝑅 (𝑠 | 𝑑) = P𝑠∼I𝑅 (· |𝑑) [𝑠 = 𝜙𝑅 (𝑠)] for all 𝑠 ∈ S;

• (State coverage) Assume that for any training room 𝑅 ∈ R
and direction 𝑑 ∈ 𝐷𝑅 , the projection of the BSCC ofM

Π

under 𝜋 to S𝑅 is included in the BSCC of 𝑅 under 𝜋𝑅,𝑑 ;

Then, there exists a constant 𝐾 ≥ 0 so that:���𝑉MΠ,𝜋
I −𝑉M

G
Π
,𝜏

I

��� ≤ 𝐿I + 𝐾 · E𝑅,𝑑∼𝜉𝜋 𝐿
𝑅,𝑑
P

𝜉𝜋 (𝑠reset) · (1−𝛾)
.

Essentially, under mild conditions, the guarantees obtained for

individually trained rooms can be reused for the entire two-level en-

vironment. By minimizing losses within each room independently,
the true environment’s values increasingly align with those com-

puted in the latent space for the high-level objective.

This is the building block that enables our technique, as low-level

latent policies are trained before performing synthesis.

6 CASE STUDIES
While the focus of this work is primarily of a theoretical nature,

we show in the following that our theory is grounded through a

navigation domain involving an agent required to reach a distant

location while avoiding moving adversaries. We consider two chal-

lenging case studies. The first one consists of a large grid world of

scalable size with a nontrivial observation space. The second one is

a large ViZDoom environment [29] with visual inputs.

Our framework allows formally verifying the values of the spec-

ification in a learned model, providing PAC bounds on the abstrac-

tion quality of this model, and synthesizing a controller in such

large environments with guarantees. Thus, this section aims to

show the following: (1) our method successfully trains latent poli-

cies in non-trivial settings; (2) the theoretical bounds are a good

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

580

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Florent Delgrange , Guy Avni , Anna Lukina , Christian Schilling , Ann Nowé , and Guillermo A. Pérez

Figure 8: Evaluation ofWAE-DQN (low-level) and DQN (high-
level) policies respectively in each room/direction and in a
9-room, 20×20 grid-world environment (avg. over 30 rollouts).

prediction for the observed behavior; (3) our low-level policies are

reusable and can be composed into a strong global policy.

Grid world. The grid-world environments consist of 𝑁 rooms

of𝑚 × 𝑛 cells, each containing at most 𝑙 possible items: walls, en-

tries/exits, power-ups, and 𝐴 adversaries. The latter patrol, moving
between rooms, with varying stochastic behaviors (along walls, chas-
ing the agent, or fully random). The rooms need not be identical. Each
state features (i) a bitmap of rank 4 and shape [𝑁, 𝑙,𝑚, 𝑛] and (ii)

step, power-up, and life-point (Lp) counters. The state space is large

and policies may require, e.g., convolutional NNs to process the

observations. Fig. 8 shows that DRL (here, DQN with SOTA exten-

sions and reward shaping, [24, 38]) struggles to learn for 9 rooms/11

adversaries, while applyingWAE-DQN independently in each room

allows learning to satisfy low-level reach-avoid objectives.

ViZDoom. We designed a map for the video game Doom con-

sisting of 𝑁 = 8 distinct rooms. The map includes 𝐴 adversaries

that pursue and attack the agent, reducing the agent’s health upon

successful hits. Additional adversaries spawn randomly on the map

(every ∼60 steps). Similar to the grid-world environment, adver-

saries can move freely between rooms. The agent has the ability to

shoot; however, missed shots incur a negative reward during the

RL phase, penalizing wasted ammunition. The agent’s observations

consist of (i) a single frame of the game (visual input), (ii) the veloc-
ity of the agent along the 𝑥,𝑦 axes, (iii) the agent’s angle w.r.t. the

map, and (iv) its current health. Notice that the resulting state space

is inherently colossal due to the inclusion of these variables.

𝑑 Grid World ViZDoom

→ 0.50412 0.32011

← 0.77787 0.44883

↑ 0.49631 0.37931

↓ 0.48058 0.48108

Table 1: PAC bounds �̂�𝑑P .

Results. We use WAE-DQN to

train low-level latent models and

policies in a 9-room, 20 × 20 grid

world as well as in the ViZDoom
environment. At the start of each

episode, the agent is placed in a

random room, and the episode

concludes successfully when the

agent reaches a sub-goal. Leveraging the representation learning

capabilities of WAE-MDPs, the latent space generalizes over all

rooms: we only train 4 policies (one for each direction). PAC bounds

for each direction are reported in Tab. 1 (𝜀 = 0.01, 𝛿 = 0.05). The

lower the bounds, the more accurately the latent model is guar-

anteed to represent the true underlying dynamics (Thm. 2). From

those policies, we apply our synthesis procedure to construct a

two-level controller. The results are shown in Tab. 2. To emphasize

the reusability of the low-level components, we modify the envi-

ronments by significantly increasing both the number of rooms and

𝑁 Lp 𝐴 avg. return (𝛾 = 1) latent value avg. value (original)

G
r
i
d
W
o
r
l
d

9 1 11 0.5467 ± 0.1017 0.1378 0.07506 ± 0.01664

9 3 11 0.7 ± 0.09428 0.4343 0.01 ± 0.00163

25 3 23 0.4933 ± 0.09832 0.1763 0.007833 ± 0.002131

25 5 23 0.5667 ± 0.07817 0.346 0.00832 ± 0.00288

49 7 47 0.02667 ± 0.01491 0.004229 5.565e-6 ± 7e-6

Vi
ZD

oo
m 8 / 8 0.89333 ± 0.059628 0.24171 0.23405 ± 0.014781

8 / 14 0.78 ± 0.064979 0.16459 0.16733 ± 0.023117

8 / 20 0.39333 ± 0.11643 0.086714 0.06898 ± 0.017788

Table 2: Synthesis for 𝛾 = 0.99. Avg. return is the observed,
empirical probability of reaching the high-level goal when
running the synthesized two-level controller in the environ-
ment. This metric serves as a reference for the controller’s
performance. Latent value is the predicted value of the high-
level objective computed in the latentmodel.Avg. value is the
empirical value of this objective approximated by simulating
the environment under the controller.

adversaries in the grid world (up to 50 each) and the initial number

of adversaries in the ViZDoom environment (from 8 to 20), while

keeping the same latent models and policies unchanged.

In the grid world, the predicted latent values are consistent with

the observed ones and comprised of the approximate return and

values in the environment (averaged over 30 rollouts). In ViZDoom,
the PAC bounds (Tab. 1) are lower, theoretically indicating that

the latent model is of higher quality and greater accuracy. This

theoretical insight is supported by the results, as the latent values

are closer to the empirical, observed ones.

7 CONCLUSION
Our approach enables synthesis in environments where traditional

formal synthesis does not scale. Given a high-level map, we inte-

grate RL in the low-level rooms by training latent policies, which

ensure PAC bounds on their value function. Composing with the la-

tent policies allows to construct a high-level planner in a two-level

model, where the guarantees can be lifted. Experiments show the

feasibility in scenarios that are even challenging for pure DRL.

While we believe the map is a mild requirement, future work

involves its relaxation to “emulate” synthesis with only the specifi-

cation as input (end-to-end). In that sense, integrating skill discov-

ery [8] or goal-oriented [33] RL are promising directions. The prob-

lem tackled in this work involves, in essence, multiple objectives. A

natural extension is to incorporate traditional multi-objective rea-

soning (e.g., [14, 23]) into the decision process, allowing to reason

about the trade-offs between the different low-level objectives.

ACKNOWLEDGMENTS
We thank Sterre Lutz and Willem Röpke for providing valuable

feedback during the preparation of this manuscript.

This research was supported by the Belgian Flemish AI Research

Program, the “DESCARTES” iBOF and “SynthEx” (G0AH524N)

FWO projects; the Dutch Research Council (NWO) Talent Pro-

gramme (VI.Veni.222.119); Independent Research Fund Denmark

(10.46540/3120-00041B), DIREC - Digital Research Centre Denmark

(9142-0001B), Villum Investigator Grant S4OS (37819); and the ISF

grant (1679/21). This work was done in part while Anna Lukina

was visiting the Simons Institute for the Theory of Computing.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

581

https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952

Composing Reinforcement Learning Policies, with Formal Guarantees AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In ICML, Vol. 70. PMLR, 22–31. http://proceedings.mlr.

press/v70/achiam17a.html

[2] Parand Alizadeh Alamdari, Guy Avni, Thomas A. Henzinger, and Anna Lukina.

2020. Formal Methods with a Touch of Magic. In FMCAD. IEEE, 138–147. https:

//doi.org/10.34727/2020/ISBN.978-3-85448-042-6_21

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In

AAAI. AAAI Press, 2669–2678. https://doi.org/10.1609/aaai.v32i1.11797

[4] Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. 2022.

A Framework for Transforming Specifications in Reinforcement Learning. In

Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday (LNCS, Vol. 13660). Springer, 604–624. https:

//doi.org/10.1007/978-3-031-22337-2_29

[5] Guy Amir, Michael Schapira, and Guy Katz. 2021. Towards Scalable Verification

of Deep Reinforcement Learning. In FMCAD. IEEE, 193–203. https://doi.org/10.

34727/2021/ISBN.978-3-85448-046-4_28

[6] Edoardo Bacci, Mirco Giacobbe, and David Parker. 2021. Verifying Reinforcement

Learning up to Infinity. In IJCAI. ijcai.org, 2154–2160. https://doi.org/10.24963/

IJCAI.2021/297

[7] Thom S. Badings, Licio Romao, Alessandro Abate, David Parker, Hasan A. Poon-

awala, Mariëlle Stoelinga, and Nils Jansen. 2023. Robust Control for Dynamical

Systems with Non-Gaussian Noise via Formal Abstractions. J. Artif. Intell. Res.
76 (2023), 341–391. https://doi.org/10.1613/jair.1.14253

[8] Akhil Bagaria, Jason K. Senthil, and George Konidaris. 2021. Skill Discovery for

Exploration and Planning using Deep Skill Graphs. In ICML (PMLR, Vol. 139).
PMLR, 521–531. http://proceedings.mlr.press/v139/bagaria21a.html

[9] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

Press.

[10] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable

Reinforcement Learning via Policy Extraction. In NeurIPS. 2499–2509. https://

proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-

Abstract.html

[11] Asger Horn Brorholt, Peter Gjøl Jensen, Kim Guldstrand Larsen, Florian Lorber,

and Christian Schilling. 2023. Shielded reinforcement learning for hybrid systems.

In AISoLA (LNCS, Vol. 14380). Springer, 33–54. https://doi.org/10.1007/978-3-

031-46002-9_3

[12] Asger Horn Brorholt, Kim Guldstrand Larsen, and Christian Schilling. 2025.

Compositional shielding and reinforcement learning for multi-agent systems. In

AAMAS.
[13] Steven Carr, Nils Jansen, and Ufuk Topcu. 2021. Task-Aware Verifiable RNN-

Based Policies for Partially Observable Markov Decision Processes. J. Artif. Intell.
Res. 72 (2021), 819–847.

[14] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. 2006.

Markov Decision Processes with Multiple Objectives. In STACS (LNCS, Vol. 3884).
Springer, 325–336. https://doi.org/10.1007/11672142_26

[15] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. 2003. Discounting

the Future in Systems Theory. In ICALP (LNCS, Vol. 2719). Springer, 1022–1037.
https://doi.org/10.1007/3-540-45061-0_79

[16] Florent Delgrange, Ann Nowé, and Guillermo A. Pérez. 2022. Distillation of RL

Policies with Formal Guarantees via Variational Abstraction of Markov Decision

Processes. In AAAI. AAAI Press, 6497–6505. https://doi.org/10.1609/aaai.v36i6.

20602

[17] Florent Delgrange, Ann Nowé, and Guillermo A. Pérez. 2023. Wasserstein Auto-

encoded MDPs: Formal Verification of Efficiently Distilled RL Policies with Many-

sided Guarantees. In ICLR. OpenReview.net. https://openreview.net/pdf?id=

JLLTtEdh1ZY

[18] Damien Ernst, Pierre Geurts, and Louis Wehenkel. 2005. Tree-based batch mode

reinforcement learning. JMLR 6, Apr (2005), 503–556.

[19] Jie Fu and Ufuk Topcu. 2014. Probably Approximately Correct MDP Learning

and Control With Temporal Logic Constraints. In Robotics: Science and Systems
X. https://doi.org/10.15607/RSS.2014.X.039

[20] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Belle-

mare. 2019. DeepMDP: Learning Continuous Latent Space Models for Repre-

sentation Learning. In ICML, Vol. 97. PMLR, 2170–2179. http://proceedings.mlr.

press/v97/gelada19a.html

[21] Mirco Giacobbe, Mohammadhosein Hasanbeig, Daniel Kroening, and Hjalmar

Wijk. 2021. Shielding Atari Games with Bounded Prescience. In AAMAS. ACM,

1507–1509. https://doi.org/10.5555/3463952.3464141

[22] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2020.

Cautious Reinforcement Learning with Logical Constraints. In AAMAS. 483–491.
https://doi.org/10.5555/3398761.3398821

[23] Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström,

Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zint-

graf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane,

Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Marcello Restelli,

Peter Vamplew, and Diederik M. Roijers. 2022. A practical guide to multi-

objective reinforcement learning and planning. AAMAS 36, 1 (2022), 26. https:

//doi.org/10.1007/S10458-022-09552-Y

[24] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Sil-

ver. 2018. Rainbow: Combining Improvements in Deep Reinforcement Learning.

In AAAI. AAAI Press, 3215–3222. https://doi.org/10.1609/AAAI.V32I1.11796

[25] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-

edge in a Neural Network. CoRR abs/1503.02531 (2015). http://arxiv.org/abs/

1503.02531

[26] Bojun Huang. 2020. Steady State Analysis of Episodic Reinforcement

Learning. In NeurIPS. https://proceedings.neurips.cc/paper/2020/hash/

69bfa2aa2b7b139ff581a806abf0a886-Abstract.html

[27] Kishor Jothimurugan, Osbert Bastani, and Rajeev Alur. 2021. Abstract Value

Iteration for Hierarchical Reinforcement Learning. In AISTATS, Vol. 130. PMLR,

1162–1170. http://proceedings.mlr.press/v130/jothimurugan21a.html

[28] Sebastian Junges and Matthijs T. J. Spaan. 2022. Abstraction-Refinement for

Hierarchical Probabilistic Models. In CAV (LNCS, Vol. 13371). Springer, 102–123.
https://doi.org/10.1007/978-3-031-13185-1_6

[29] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech

Jaskowski. 2016. ViZDoom: A Doom-based AI research platform for visual

reinforcement learning. In CIG. IEEE, 1–8. https://doi.org/10.1109/CIG.2016.

7860433

[30] Bettina Könighofer, Roderick Bloem, Rüdiger Ehlers, and Christian Pek. 2022.

Correct-by-Construction Runtime Enforcement in AI - A Survey. In Principles of
Systems Design - Essays Dedicated to Thomas A. Henzinger on the Occasion of His
60th Birthday (LNCS, Vol. 13660). Springer, 650–663. https://doi.org/10.1007/978-

3-031-22337-2_31

[31] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.

2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstrac-

tion and Intrinsic Motivation. InNeurIPS. 3675–3683. https://proceedings.neurips.
cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html

[32] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. 2022. Exploration

in deep reinforcement learning: A survey. Inf. Fusion 85 (2022), 1–22. https:

//doi.org/10.1016/J.INFFUS.2022.03.003

[33] Minghuan Liu, Menghui Zhu, and Weinan Zhang. 2022. Goal-Conditioned Re-

inforcement Learning: Problems and Solutions. In IJCAI. ijcai.org, 5502–5511.
https://doi.org/10.24963/IJCAI.2022/770

[34] László Lovász and Peter Winkler. 1995. Exact Mixing in an Unknown Markov

Chain. Electron. J. Comb. 2 (1995). https://doi.org/10.37236/1209

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari

with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). http://arxiv.org/

abs/1312.5602

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529–533. https://doi.org/10.1038/nature14236

[37] Satya Prakash Nayak, Lucas Neves Egidio, Matteo Della Rossa, Anne-Kathrin

Schmuck, and Raphaël M. Jungers. 2023. Context-triggered Abstraction-based

Control Design. IEEE Open Journal of Control Systems 2 (2023), 277–296. https:

//doi.org/10.1109/OJCSYS.2023.3305835

[38] Andrew Y. Ng, Daishi Harada, and Stuart Russell. 1999. Policy Invariance Under

Reward Transformations: Theory and Application to Reward Shaping. In ICML.
Morgan Kaufmann, 278–287.

[39] Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. 2022.

Hierarchical Reinforcement Learning: A Comprehensive Survey. ACM Comput.
Surv. 54, 5 (2022), 109:1–109:35. https://doi.org/10.1145/3453160

[40] Amir Pnueli and Roni Rosner. 1989. On the Synthesis of a Reactive Module. In

POPL. ACM Press, 179–190. https://doi.org/10.1145/75277.75293

[41] James Gary Propp and David BruceWilson. 1998. How to Get a Perfectly Random

Sample from a Generic Markov Chain and Generate a Random Spanning Tree of

a Directed Graph. J. Algorithms 27, 2 (1998), 170–217. https://doi.org/10.1006/

JAGM.1997.0917

[42] Martin L. Puterman. 1994. Markov decision processes: Discrete stochastic dynamic
programming. Wiley. https://doi.org/10.1002/9780470316887

[43] Melrose Roderick, Christopher Grimm, and Stefanie Tellex. 2018. Deep Abstract

Q-Networks. In AAMAS. 131–138. http://dl.acm.org/citation.cfm?id=3237409

[44] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser.

2009. Automatic device driver synthesis with termite. In SOSP. ACM, 73–86.

https://doi.org/10.1145/1629575.1629583

[45] Richard Serfozo. 2009. Basics of Applied Stochastic Processes. Springer Berlin

Heidelberg. https://books.google.be/books?id=JBBRiuxTN0QC

[46] Aivar Sootla, Alexander I. Cowen-Rivers, Taher Jafferjee, Ziyan Wang,

David Henry Mguni, Jun Wang, and Haitham Ammar. 2022. Sauté RL: Almost

Surely Safe Reinforcement Learning Using State Augmentation. In ICML, Vol. 162.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

582

http://proceedings.mlr.press/v70/achiam17a.html
http://proceedings.mlr.press/v70/achiam17a.html
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_21
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_21
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_28
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_28
https://doi.org/10.24963/IJCAI.2021/297
https://doi.org/10.24963/IJCAI.2021/297
https://doi.org/10.1613/jair.1.14253
http://proceedings.mlr.press/v139/bagaria21a.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://doi.org/10.1007/978-3-031-46002-9_3
https://doi.org/10.1007/978-3-031-46002-9_3
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1609/aaai.v36i6.20602
https://doi.org/10.1609/aaai.v36i6.20602
https://openreview.net/pdf?id=JLLTtEdh1ZY
https://openreview.net/pdf?id=JLLTtEdh1ZY
https://doi.org/10.15607/RSS.2014.X.039
http://proceedings.mlr.press/v97/gelada19a.html
http://proceedings.mlr.press/v97/gelada19a.html
https://doi.org/10.5555/3463952.3464141
https://doi.org/10.5555/3398761.3398821
https://doi.org/10.1007/S10458-022-09552-Y
https://doi.org/10.1007/S10458-022-09552-Y
https://doi.org/10.1609/AAAI.V32I1.11796
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2020/hash/69bfa2aa2b7b139ff581a806abf0a886-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/69bfa2aa2b7b139ff581a806abf0a886-Abstract.html
http://proceedings.mlr.press/v130/jothimurugan21a.html
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1007/978-3-031-22337-2_31
https://doi.org/10.1007/978-3-031-22337-2_31
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://doi.org/10.1016/J.INFFUS.2022.03.003
https://doi.org/10.1016/J.INFFUS.2022.03.003
https://doi.org/10.24963/IJCAI.2022/770
https://doi.org/10.37236/1209
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/OJCSYS.2023.3305835
https://doi.org/10.1109/OJCSYS.2023.3305835
https://doi.org/10.1145/3453160
https://doi.org/10.1145/75277.75293
https://doi.org/10.1006/JAGM.1997.0917
https://doi.org/10.1006/JAGM.1997.0917
https://doi.org/10.1002/9780470316887
http://dl.acm.org/citation.cfm?id=3237409
https://doi.org/10.1145/1629575.1629583
https://books.google.be/books?id=JBBRiuxTN0QC

AAMAS ’25, May 19 – 23, 2025, Detroit, Michigan, USA Florent Delgrange , Guy Avni , Anna Lukina , Christian Schilling , Ann Nowé , and Guillermo A. Pérez

PMLR, 20423–20443. https://proceedings.mlr.press/v162/sootla22a.html

[47] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press. https://www.worldcat.org/oclc/37293240

[48] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and

Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.

Artif. Intell. 112, 1-2 (1999), 181–211. https://doi.org/10.1016/S0004-3702(99)

00052-1

[49] Zikang Xiong, Ishika Agarwal, and Suresh Jagannathan. 2022. HiSaRL: A Hierar-

chical Framework for Safe Reinforcement Learning. In SafeAI (CEUR Workshop
Proceedings, Vol. 3087). CEUR-WS.org. https://ceur-ws.org/Vol-3087/paper_17.

pdf

[50] Cambridge Yang, Michael L. Littman, and Michael Carbin. 2021. Reinforcement

Learning for General LTL Objectives Is Intractable. CoRR abs/2111.12679 (2021).

arXiv:2111.12679 https://arxiv.org/abs/2111.12679

[51] Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. 2023. Safe

Reinforcement Learning via Probabilistic Logic Shields. In IJCAI. ijcai.org, 5739–
5749. https://doi.org/10.24963/ijcai.2023/637

[52] Dorde Zikelic, Mathias Lechner, Thomas A. Henzinger, and Krishnendu Chatter-

jee. 2023. Learning Control Policies for Stochastic Systems with Reach-Avoid

Guarantees. In AAAI. AAAI Press, 11926–11935. https://doi.org/10.1609/AAAI.

V37I10.26407

[53] Djordje Žikelić, Mathias Lechner, Abhinav Verma, Krishnendu Chatterjee,

and Thomas A Henzinger. 2023. Compositional Policy Learning in Stochastic

Control Systems with Formal Guarantees. In NeurIPS. http://papers.nips.

cc/paper_files/paper/2023/hash/95827e011b9e899f189a01fe2f4ef316-Abstract-

Conference.html

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

583

https://orcid.org/0000-0003-2254-0596
https://orcid.org/0000-0001-5588-8287
https://orcid.org/0000-0001-9525-0333
https://orcid.org/0000-0003-3658-1065
https://orcid.org/0000-0001-6346-4564
https://orcid.org/0000-0002-1200-4952
https://proceedings.mlr.press/v162/sootla22a.html
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://ceur-ws.org/Vol-3087/paper_17.pdf
https://ceur-ws.org/Vol-3087/paper_17.pdf
https://arxiv.org/abs/2111.12679
https://arxiv.org/abs/2111.12679
https://doi.org/10.24963/ijcai.2023/637
https://doi.org/10.1609/AAAI.V37I10.26407
https://doi.org/10.1609/AAAI.V37I10.26407
http://papers.nips.cc/paper_files/paper/2023/hash/95827e011b9e899f189a01fe2f4ef316-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95827e011b9e899f189a01fe2f4ef316-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95827e011b9e899f189a01fe2f4ef316-Abstract-Conference.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 Obtaining Low-Level RL policies
	4.1 Quantifying the quality of the abstraction
	4.2 PAC estimates of the abstraction quality
	4.3 Obtaining latent policies during training

	5 Obtaining a Planner
	6 Case Studies
	7 Conclusion
	Acknowledgments
	References

