
Parameterized Algorithms for Multiagent Pathfinding on Trees
Argyrios Deligkas

Royal Holloway, University of London
Egham, United Kingdom

argyrios.deligkas@rhul.ac.uk

Eduard Eiben
Royal Holloway, University of London

Egham, United Kingdom
eduard.eiben@rhul.ac.uk

Robert Ganian
TU Wien

Vienna, Austria
rganian@gmail.com

Iyad Kanj
DePaul University

Chicago, United States
ikanj@cdm.depaul.edu

M. S. Ramanujan
University of Warwick

Coventry, United Kingdom
R.Maadapuzhi-

Sridharan@warwick.ac.uk

ABSTRACT

The classicalMultiagent Pathfinding problem has been exten-
sively studied not only within the artificial intelligence research
community, but also by scholars in the areas of theoretical com-
puter science and computational geometry. The problem asks for a
minimum-makespan schedule that routes 𝑘 agents (or robots) from
their starting points to their destinations in a graph, while avoiding
collisions, and is known to be NP-hard even on the fundamental
class of trees. In this article we present two fixed parameter algo-
rithms parameterized by 𝑘 : the first yields a collision-free schedule
on trees whose makespan deviates from the optimum by at most
an additive polynomial function of 𝑘 , and the second solvesMulti-
agent Pathfinding optimally on the class of irreducible trees, i.e.,
trees with no vertices of degree 2. Both results rely on novel tools
and insights into the properties of optimal schedules.

KEYWORDS

Multiagent Pathfinding; Trees; Parameterized Complexity
ACM Reference Format:

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ra-
manujan. 2025. Parameterized Algorithms for Multiagent Pathfinding on
Trees. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

INTRODUCTION

Finding an efficient and collision-free routing of a set of agents (or,
equivalently, robots) through a known environment is one of the
most important and central tasks in multiagent planning, and arises
naturally in a variety of real-world applications including, e.g.,
robotics [26], aircraft towing [19], warehouse management [18, 27]
and digital entertainment [23]. The task is commonly formalized
and studied as theMultiagent Pathfinding problem (MAPF)1,
where the environment is modeled as an 𝑛-vertex graph and each
agent has a designated starting vertex and a designated destination
1Also known as the Coordinated Motion Planning problem [11].

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), A. El Fallah Seghrouchni, Y. Vorobeychik, S. Das, A. Nowe (eds.), May 19
– 23, 2025, Detroit, Michigan, USA. © 2025 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org).

sr

sg

sb

tr

tb

tg

Figure 1: Left: An example instance of Multiagent

Pathfinding on a tree 𝑇 with three agents (marked in red,

blue and green). Each agent’s starting and destination ver-

tex is marked with a full circle and full square, respectively.

This particular instance admits a schedule with makespan

12. Right: An example of an irreducible tree.

vertex. At every time step, each agent can either wait or move from
its current position in the graph to a neighboring vertex, but no
vertex or edge can be used by more than a single agent at the same
time step. In the most common formalization of MAPF, we seek
a schedule which routes all the agents to their destinations while
minimizing the number of required time steps, i.e., the makespan [9,
12, 28].

The problem defined above has been extensively studied, and
is considered highly intractable in the classical sense. Indeed, not
only is the problem NP-hard on general graphs, but also on solid
grids [6, 21] and trees [12]. In terms of applications, the need to solve
MAPF in such settings arises not only when tasked with navigating
robots through tight spaces such as caves and mines, but also, e.g.,
in entertainment (e.g., game challenges). Given the aforementioned
general intractability of the problem, a number of heuristic ap-
proaches have been proposed, including SAT-based algorithms [25],
scheduling techniques [2] and A*-based algorithms [13]—see also
the dedicated survey [24]. An example instance of the problem on
trees is provided in Figure 1 (left).

An alternative approach that can yield algorithms with guaran-
tees on both running times and quality of identified solutions is
the fixed-parameter tractability paradigm [4, 8]. There, one asks
whether the problem can be solved in time 𝑓 (𝑘) · 𝑛O(1) (FPT-time)
where 𝑓 is a computable function of some specified parameter 𝑘 ; al-
gorithms with running time of this form are called fixed-parameter
algorithms.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

584

https://orcid.org/0000-0002-6513-6748
https://orcid.org/0000-0003-2628-3435
https://orcid.org/0000-0002-7762-8045
https://orcid.org/0000-0003-1698-8829
https://orcid.org/0000-0002-2116-6048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

The most obvious choice of the parameter for MAPF is the
number of agents. Unfortunately, the vast majority of the tech-
niques developed for designing fixed-parameter algorithms—such
as bounded search trees, iterative compression and color coding—
do not translate to this setting due to its temporal nature, and this
is witnessed by the fixed-parameter intractability of the problem on
general graphs (as established by Fioravantes et al. (2024); see also
the closely-related work on temporal paths [16]). Hence, research
in this direction has focused on establishing the fixed-parameter
tractability of MAPF in natural and arguably simple settings, where
the underlying graph is a tree or a solid grid [9, 11, 12, 14, 15].

Eiben, Ganian andKanj (2023) employed a combination of problem-
specific insights and integer programming techniques to design a
fixed-parameter algorithm for MAPF on solid grids, but their ap-
proach strongly relies on the fact that large instances on solid grids
provide ample “free space” for a small number of agents to navigate
through.While subsequent works have obtained fixed-parameter al-
gorithms for other objective functions [5] or parameterizations [12]
of MAPF on tree-like networks, the existence of a fixed-parameter
algorithm for the classical variant of the problem on trees was left
open by all of the aforementioned works and has been explicitly
posed as an open question in the latest of these [5, Section 7].

In this article, we obtain a fixed-parameter algorithm which,
given an 𝑛-vertex tree instance of MAPF with 𝑘 agents, computes
in time 2O(𝑘2) · 𝑛O(1) a schedule whose makespan is only an addi-
tive polynomial function of 𝑘 away from the optimum. In a typical
usage scenario where 𝑘 is much smaller than both the makespan
and the tree, this algorithm can be seen as “almost exact”. At the
same time, the fixed-parameter running time seems necessary to ob-
tain such a “near-optimal” schedule: the recent NP-hardness result
of Fioravantes et al. (2024) on trees is based on an approximation-
preserving reduction from a token swapping problem on stars for
which the existence of even multiplicative 2-approximation algo-
rithms is a prominent open question [1]. As our second result, we
obtain an exact algorithm forMAPF restricted to irreducible trees,
i.e., trees with no vertices of degree 2 (see Figure 1 (right)).

Technical Contributions and Proof Overview

Both of the obtained algorithms are highly non-trivial and are, in
fact, very different from each other: the former is easy to describe
and implement but requires a highly non-trivial analysis to estab-
lish correctness, while the difficulty of the latter lies in the heavy
algorithmic machinery that is used to find an exact schedule. Below,
we provide an overview of each of these results, focusing on the
main ideas, while leaving the technical details for the respective
sections.

The First Result. A core ingredient in our fixed-parameter
additive-approximation algorithm for MAPF on trees is a novel
adaptation of conflict-based search—a technique that has been suc-
cessfully used in heuristics for MAPF [3, 22]—to the parameterized
setting. Informally, in conflict-based search one detects conflicts (i.e.,
collisions) between agents in advance and uses branching as well
as search techniques to find an alternative schedule which avoids
that collision. Our algorithm uses exhaustive branching techniques
in order to obtain tight bounds on the optimality of the solution,

and—crucially—only invokes conflict-based search in highly con-
trolled situations in order to avoid exceeding our runtime bounds
and guarantees.

On a high level, the algorithm can be described as follows. First, it
processes the input tree𝑇 to compute the set of havens—connected
subtrees centered at certain degree-3 vertices which allow for agents
to move from any starting configuration in the haven to any target
configuration in the same haven in at most O(𝑘3)-many time steps.
While the notion of havens is not new [5], this is the first time they
are used in the classical makespan-minimization setting; intuitively,
every vertex of degree at least 3 is either the center of some haven,
or it behaves essentially as a “leaf” in 𝑇 .

Second, the algorithm computes an initial pseudoschedule for the
agents, which may at this point contain conflicts. For agents whose
starting position 𝑠 and destination 𝑡 are both near some haven2, the
pseudoschedule simply uses the unique 𝑠-𝑡 path in𝑇 . For each agent
whose starting position (and/or destination) does not lie near to a
haven—due to being in the middle of some long path of degree-2
vertices—we apply exhaustive branching to determine which of
the at most 2 nearest havens it visits first (last) in a hypothetical
optimal schedule. While there are some technical difficulties related
to the aforementioned “leaf-like” vertices that require amore careful
treatment of this branching step, the end result is a pseudoschedule
that has correctly identified the first and last haven for each agent.

Third, the algorithm iteratively refines the initial pseudoschedule
by following it until we detect a collision. If the collision occurs in
the vicinity of a haven, we use the properties of the haven to resolve
that collision while only incurring an additive loss of 𝑓 (𝑘) time
steps compared to a hypothetical optimal solution. If the collision
does not occur near any haven, such a reroutingmay be impossible—
so instead, we exploit the structural properties of the instance to
argue that in this case the collision occurred in the middle of a long
path of degree-2 vertices and that a hypothetical solution must have
one of the agents cross the path first. We then apply conflict-based
branching to determine which of the agents will wait at one of the
nearest havens, and alter the affected pseudoschedules accordingly.
Crucially, in the proof of correctness, we show that for each pair of
agents, the number of times we branch and the number of times we
incur the aforementioned delay compared to a hypothetical optimal
solution are both bounded by a constant.

The SecondResult. Unfortunately, the approach outlined above
does not translate to the computation of a schedule with minimum
makespan. Indeed, the central idea used above is that collisions near
havens are sufficiently “cheap” to resolve, but a truly makespan-
optimal solution may in fact need to avoid such collisions by tem-
porarily keeping some of the agents very far from the haven. Hence,
the techniqueswe use to obtain our exact fixed-parameter algorithm
differ from those used in the approximation setting.

For the following description, let 𝑓1, 𝑓2 and 𝑓3 be some non-trivial,
sufficiently large computable functions which will be specified later.
In a first preparatory stage, the algorithm uses known polynomial
bounds on the makespan of a hypothetical schedule [14] to iterate
over the target makespan 𝜆 of the sought-after solution. It also
applies a pruning argument to safely reduce the maximum degree
of the irreducible input tree. The algorithm then carefully partitions
2i.e., having distance bounded by some function of the parameter

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

585

the agent set into small-slack and large-slack agents: the former
contains agents which must follow the shortest (i.e., unique) path
to their destination in all but at most 𝑓1 (𝑘) “deviating” time steps
in order to achieve makespan 𝜆, and for the latter we guarantee
that they can deviate from their shortest path in at least 𝑓2 (𝑘) more
time steps than any small-slack agent.
With these preparations in place, we prove that, assuming our guess
of 𝜆 is correct, there must exist an optimal schedule with the prop-
erty that at each time step 𝑥 ≤ 𝜆, each agent is confined to an
𝑓3 (𝑘)-sized ball centered around the 𝑥-th (or final) vertex on the
unique path from its source to its destination. The algorithm uses
this, along with the previously-established degree bound, to con-
struct an FPT-sized “state-graph-like” representation of all possible
positions of the agents at each time step, and finds the sought-after
schedule by searching for a shortest path in this representation.
As in the previous case, establishing this result requires not only
formalizing the above ideas but also dealing with a range of addi-
tional technical difficulties—for instance, establishing the existence
of an optimal schedule with the aforementioned property is far
from trivial.

PRELIMINARIES

We assume basic knowledge of graph theory [7], approximation
and the notion of fixed-parameter tractability [4, 8]. Unless specified
otherwise, every graph considered in this work is simple and undi-
rected. For two integers 𝑖 < 𝑗 , we use [𝑖, 𝑗] and [𝑖] as shorthand for
the sets {𝑖, 𝑖 + 1, . . . , 𝑗} and [1, 𝑖], respectively.

A tree T is a connected acyclic graph, and a tree is irreducible
if all of its non-leaf vertices have degree at least 3. For a subgraph
𝐻 of T (where 𝐻 = T is possible), we denote by 𝑉 (𝐻) and 𝐸 (𝐻)
the vertex-set and edge-set of 𝐻 , respectively. For two vertices
𝑢, 𝑣 ∈ 𝑉 (T), denote by dist(𝑢, 𝑣) the length of the unique 𝑢-𝑣 path
in T . Let 𝑢 ∈ 𝑉 (T) and 𝐻 be a subgraph of T (𝐻 could be T).
Let deg𝐻 (𝑢) denote the degree of 𝑢 in 𝐻 . For 𝜌 ∈ N, we denote by
𝐵(𝑢, 𝜌), the ball centered at𝑢 and of radius 𝜌 , that is, 𝐵(𝑢, 𝜌) = {𝑣 ∈
𝑉 (T) | 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 𝜌}. A path 𝑃 in T is a 2-path if 𝑃 is an induced
path of degree-2 vertices in T (see, e.g., the 𝑠𝑔-𝑡𝑟 path in Figure 1
(left)); observe that 2-paths do not occur in irreducible trees.

Problem Definition. We follow the standard problem definition
forMultiagent Pathfinding restricted to the class of trees. Apart
from the input tree T , each instance is provided with a set R =

{𝑅1, 𝑅2, . . . , 𝑅𝑘 } of𝑘 agents. Each𝑅𝑖 ∈ R is represented by a starting
vertex 𝑠𝑖 and a destination vertex 𝑡𝑖 in𝑉 (T), and we assume all the
𝑠𝑖 ’s to be pairwise distinct and all the 𝑡𝑖 ’s to be pairwise distinct (as
otherwise the instance may be immediately rejected). At each time
step, each agent may either move to an adjacent vertex or stay at
its current vertex.

We use a discrete time frame [0, 𝑡], 𝑡 ∈ N, to reference the
sequence of moves of the agents and in each time step 𝑥 ∈ [0, 𝑡]
every agent remains stationary or moves. The shortest path for
an agent 𝑅𝑖 is the unique 𝑠𝑖 -𝑡𝑖 path in T . A route for agent 𝑅𝑖 is
a sequence𝑊𝑖 = (𝑢0, . . . , 𝑢𝑡) of vertices in T such that 𝑢0 is the
starting vertex 𝑠𝑖 of 𝑅𝑖 , 𝑢𝑡 = 𝑡𝑖 , and for each 𝑖 ∈ [𝑡] it holds that
𝑢𝑖−1 = 𝑢𝑖 or 𝑢𝑖−1𝑢𝑖 is an edge in T . The vertex 𝑢𝑖 is the position
of 𝑅𝑖 at time step 𝑖 . For 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , two routes𝑊𝑖 = (𝑢0, . . . , 𝑢𝑡)
and𝑊𝑗 = (𝑣0, . . . , 𝑣𝑡) are conflicting (or in conflict) if there exists

some time step 𝑥 such that𝑢𝑥 = 𝑣𝑥 or𝑢𝑥−1𝑢𝑥 = 𝑣𝑥−1𝑣𝑥 . A schedule
Γ for R is a set of pairwise non-conflicting routes {𝑊𝑖 | 𝑖 ∈ [𝑘]},
during a time interval [0, 𝜆]. The integer 𝜆 is called the makespan
of Γ. Using the introduced terminology, we formalize our problem
of interest below.

Multiagent Pathfinding on Trees (Tree-MAPF)

Input: An 𝑛-vertex tree T , an integer 𝑘 and a set R =

{𝑅𝑖 = (𝑠𝑖 , 𝑡𝑖) | 𝑖 ∈ [𝑘]} of agents.
Task: Compute a schedule forR ofminimummakespan

(or decide that none exists).

Note that the feasibility component of Tree-MAPF (i.e., deciding
whether a schedule exists at all) can be resolved in linear time [15]
and that the minimum makespan is known to be upper-bounded by
O(𝑛3) [14]. However, a polynomial-time algorithm for Tree-MAPF
is excluded by the NP-hardness of deciding whether there exists a
schedule with makespan at most a given integer 𝜆 [12]. We remark
that without loss of generality, we assume that at each time step
there exists at least one agent that made a move.

FPT ADDITIVE APPROXIMATION

In this section, we obtain the first main result: a fixed-parameter
algorithm that solves Tree-MAPF up to an additive error that de-
pends purely on the parameter 𝑘 (i.e., the number of agents).

Preparations and Setup

We start by recalling the notion of havens that was recently in-
troduced and used to obtain an approximation algorithm for the
variant of Multiagent Pathfinding, where the aim is to minimize
the total distance traveled as opposed to the makespan. Intuitively,
a haven is a subtree rooted at a high-degree vertex that allows
agents to safely reconfigure themselves in a parameter-bounded
number of moves.

Definition 1 (Deligkas et al. (2024)). A vertex𝑤 ∈ 𝑉 (T) is nice if
there exist three connected subtrees 𝐶1,𝐶2,𝐶3 of T such that: (i) the
pairwise intersection of the vertex sets of any pair of these subtrees is
exactly𝑤 , and (ii) |𝑉 (𝐶1) | ≥ 𝑘 +1, |𝑉 (𝐶2) | ≥ 𝑘 +1, and |𝑉 (𝐶3) | ≥ 2.

If𝑤 is nice, let 𝑥 ∈ 𝑉 (𝐶3) be a neighbor of𝑤 in𝑉 (𝐶3), and define
the haven 𝐻𝑤 of𝑤 to be the subtree of T induced by the vertices in
{𝑥} ∪𝑉 (𝐶1) ∪𝑉 (𝐶2) whose distance from𝑤 is at most 𝑘 .

For a set 𝑆 ⊆ R of agents and a subtree 𝐻 , a configuration of
𝑆 w.r.t. 𝐻 is an injection 𝜄 : 𝑆 −→ 𝑉 (𝐻). The following result
captures the crucial property of havens.

Lemma1 (Deligkas et al. (2024)). Let𝑤 be a nice vertex, let𝐶1,𝐶2,𝐶3
be three subgraphs satisfying conditions (i) and (ii) of Definition 1,
and let 𝐻𝑤 be a haven for 𝑤 . Let 𝑆 ⊆ R be a set of agents forming
a configuration 𝜄 (𝑆) in 𝐻𝑤 . Every configuration 𝜄′ (𝑆) in 𝐻𝑤 can be
obtained from 𝜄 (𝑆) via a sequence of O(𝑘3) moves that take place in
𝐻𝑤 .

While the previously-introduced notion of havens and their
central property play a role in our algorithm for the makespan-
minimization task, the actual approach used to obtain it (and the
difficulties faced) is very different from the one used in the article

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

586

which first introduced this notion [5]. In particular, when mini-
mizing the total distance traveled, one can assume, without loss of
generality, that the agents move sequentially and their conflicts can
thus be resolved in a pairwise and localized manner, and always
near a suitable haven. In our makespan-minimization setting, we do
not have this luxury: several conflicts may need to be resolved simul-
taneously or in an overlapping manner, and—crucially—conflicts
may occur very far from nice vertices and their havens.

To deal with the latter situation, we will need to obtain a better
understanding of vertices which are not “nice” as per Definition 1.
This is achieved in the following lemma.

Lemma 2. Let 𝑣 be a vertex of degree at least 3 in T which is not nice.
Then there exists a neighbor 𝑢 of 𝑣 such that the connected component
of T − 𝑢𝑣 containing 𝑣 has size at most 3𝑘 .

Proof. Suppose that no neighbor 𝑢 of 𝑣 satisfies the property
stated in the lemma, which asked for the connected component of
T −𝑢𝑣 containing 𝑣 to have size at most 3𝑘 . Equivalently, this means
that for every neighbor 𝑢𝑖 of 𝑣 , the connected component 𝐷′

𝑖
of

T −𝑢𝑖𝑣 containing 𝑣 has size at least 3𝑘 +1. Let 𝐷𝑖 be the connected
component of T − 𝑢𝑖𝑣 not containing 𝑣 , and let us assume that the
neighbors 𝑢1, . . . , 𝑢𝜁 of 𝑣 are listed in ascending order based on the
size of these components, i.e., |𝐷1 | ≤ |𝐷2 | ≤ · · · ≤ |𝐷𝜁 |.

With the setup in place, we now construct a witness showing
that 𝑣 is nice. First, we set 𝐶3 := {𝑣,𝑢1}. Let 𝑗 be the smallest
index such that |⋃2≤𝑖≤ 𝑗 𝐷𝑖 | ≥ 𝑘 , and set 𝐶2 := {𝑣} ∪⋃

2≤𝑖≤ 𝑗 𝐷 𝑗 .
Observe that this guarantees |𝐶2 | ≥ 𝑘 +1. Next, we argue that 𝑗 < 𝜁 .
Indeed, if this were not the case, we would have |⋃2≤𝑖≤ 𝑗−1 𝐷𝑖 | ≤ 𝑘

(by the definition of 𝑗) and hence also |𝐷1 | ≤ 𝑘 , and thus we
would arrive at |⋃1≤𝑖≤𝜁−1 𝐷𝑖 | ≤ 2𝑘—a direct contradiction with
𝐷′
𝜁
= {𝑣} ∪⋃

1≤𝑖≤𝜁−1 𝐷𝑖 having size at least 3𝑘 .
Since 𝑗 < 𝜁 , we can proceed to defining𝐶1 := {𝑣}∪⋃𝑗+1≤𝑖≤𝜁 𝐷𝑖 .

To show that 𝑣 is nice and complete the proof, it suffices to argue
that |𝐶1 | ≥ 𝑘 + 1. First, observe that if |𝐷 𝑗 | ≥ 𝑘 then also |𝐷𝜁 | ≥ 𝑘 ,
and in particular |𝐶1 | ≥ 𝑘+1 as desired. For the case where |𝐷 𝑗 | ≤ 𝑘 ,
we recall that |𝐷′

𝑗
| ≥ 3𝑘 + 1 and that 𝐷′

𝑗
is the disjoint union of

𝑣 and all of the individual connected components 𝐷𝑖 , 𝑖 ≠ 𝑗 . The
latter implies that |𝐷′

𝑗
| = |𝐷1 | + |

(⋃
2≤𝑖≤ 𝑗−1 𝐷𝑖

)
| + |𝐶1 |. Since the

first term is upper-bounded by |𝐷 𝑗 | ≤ 𝑘 and the second term is
upper-bounded by 𝑘 as well due to the definition of 𝑗 , we obtain
that |𝐶1 | ≥ 𝑘 + 1, as desired. □

Intuitively, Lemma 2 implies that—assuming 𝑘 is sufficiently
small compared to 𝑛—every higher-degree vertex which is not nice
essentially acts as a “complicated leaf”, as almost all vertices in the
tree lie in the direction of precisely one of its incident edges. Using
this fact, we can directly solve all instances which do not contain
any nice vertex whatsoever. We provide this result separately, as
our main algorithm will assume the existence of at least one nice
vertex in the tree.

Lemma 3. Tree-MAPF restricted to instances which do not contain
any nice vertex can be solved optimally in time 𝑘O(𝑘) · 𝑛, and in
particular is fixed-parameter tractable.

Proof Sketch. We use Lemma 2 to show that the tree T con-
sists of a long 2-path 𝑃 plus some small branching vertices near the
endpoints 𝑝1, 𝑝2 of that path. Our algorithm exhaustively branches

to decide, for each agent which starts (or has a destination) far from
the endpoints of 𝑃 , which out of 𝑝1 and 𝑝2 it will visit first (or last).
In each branch, we can safely send the agents along the path until
they reach that endpoint and essentially vacate the path 𝑃 of all
agents. At that point (or, more specifically, as soon as agents are
only traversing 𝑃 in a single direction), we construct a pruned state
graph 𝐻 which contains the following information about all the
agents in T at a particular time step.

1. The exact positions of all agents which are at distance at
most 3𝑘 from 𝑝1 or 𝑝2.

2. Whether 𝑃 is being traversed by agents exclusively from 𝑝1
to 𝑝2, or from 𝑝2 to 𝑝1.

3. The exact position of the agent 𝑅𝑖 that is traversing 𝑃 and
will reach the endpoint of 𝑃 first (i.e., is the first among the
group of agents traversing 𝑃).

4. For each other agent 𝑅 𝑗 traversing 𝑃 , the exact distance
between 𝑅 𝑗 and 𝑅𝑖 .

Crucially, one can show that there exists a solution with the
property that the maximum distance between 𝑅 𝑗 and 𝑅𝑖 is upper-
bounded by𝑘4, which provides an overall upper bound of 2O(𝑘 log𝑘) ·
𝑛 on the size of the state graph. The result then follows by find-
ing a shortest path from the initial to the final configuration in
𝐻 , obtained after the exhaustive branching described in the first
paragraph. □

The First Algorithm

With the setup in place, we can proceed to the advertised algorith-
mic result.

Theorem 1. There is an 2O(𝑘2) · 𝑛O(1) -time approximation algo-
rithm for Tree-MAPF with an additive error of O(𝑘5).

Proof Sketch. Let I = (T ,R, 𝑘) be an instance of Tree-MAPF
and let OPT be an optimal schedule for I. We begin by checking
that T contains at least one nice vertex; if not, we solve the instance
by invoking Lemma 3. For each 𝑅𝑖 ∈ R, we exhaustively branch
over (i.e., “guess”) the first and last degree-3 vertices that it visits
and the first and last nice vertices that it visits in OPT ; denote
these vertices by init(𝑅𝑖), final(𝑅𝑖), fnice(𝑅𝑖), and lnice(𝑅𝑖),
respectively. We remark that, since T is a tree, for each of these
four vertices there are only at most 2 possible choices, resulting in
a branching factor of at most 2O(𝑘) at this stage.

We will describe the FPT approximation algorithm over FPT-
many rounds. We define an initial route, for each 𝑅𝑖 , denoted 𝜋𝑖 , to
be the walk: 𝑠𝑖 -init(𝑅𝑖)-fnice(𝑅𝑖)-lnice(𝑅𝑖)-final(𝑅𝑖)-𝑡𝑖 . Ob-
serve that by Lemma 2, every degree-3 vertex between fnice(𝑅𝑖)
and lnice(𝑅𝑖) on 𝜋𝑖 must be a nice vertex. Define an event to be a
time step at which two agents collide. We define a schedule Γ𝐴𝑃𝑋
for the agents iteratively as follows. Starting at time step 0, each
𝑅𝑖 (continuously) follows its initial route 𝜋𝑖 . If no collision occurs,
then Γ𝐴𝑃𝑋 is already a valid schedule. Suppose now that two agents
𝑅𝑖 and 𝑅 𝑗 collide (i.e., that there is an event), and let 𝑡 be the first
time step at which an event occurs. Let 𝑣𝑖 and 𝑣 𝑗 be the two ver-
tices at which 𝑅𝑖 and 𝑅 𝑗 are located at time step 𝑡 − 1, i.e., before
they collided. We distinguish the following cases and modify 𝜋𝑖
accordingly.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

587

Case (i). 𝑣𝑖 and 𝑣 𝑗 are both on a 2-path 𝑃 between two nice
vertices𝑤𝑖 ,𝑤 𝑗 , such that 𝑣𝑖 (and 𝑣 𝑗) is at distance at least 𝑘 + 2 from
𝑤𝑖 and 𝑤 𝑗 , and where 𝑅𝑖 and 𝑅 𝑗 are going in opposite directions
on this path.

Observe that in OPT , one of the two agents 𝑅𝑖 , 𝑅 𝑗 must traverse
the whole path 𝑃 before the other agent enters 𝑃 . Therefore, we
branch to determine which of the two agents traverses 𝑃 before
the other agent enters 𝑃 . Without loss of generality, assume that
𝑅𝑖 traverses 𝑃 in the direction 𝑤𝑖 -𝑤 𝑗 before 𝑅 𝑗 enters 𝑃 through
𝑤 𝑗 . Note that, if our guess is correct, then necessarily𝑤 𝑗 appears
on 𝜋 𝑗 before the location of this collision. We modify 𝜋 𝑗 so that
𝑅 𝑗 waits on 𝑃 at the closest vertex to𝑤 𝑗 such that no other agent
waits there already. This waiting is until 𝑅𝑖 collides with 𝑅 𝑗 at this
vertex, which is resolved later. We note that any agent that needs
to traverse 𝑃 from 𝑤 𝑗 to 𝑤𝑖 and enters 𝑃 after 𝑅 𝑗 is also made to
wait on 𝑃 close to𝑤 𝑗 until 𝑅𝑖 arrives.

Case (ii). If 𝑣𝑖 (or 𝑣 𝑗) is at a distance at most 𝑘 from some nice
vertex 𝑛𝑖 , define 𝐵 = 𝐵(𝑛𝑖 , 𝑘 + 3). Repeatedly, do the following: if
there is an agent at distance at most 𝑘 from a vertex in 𝐵, increase
the radius of 𝐵 by 𝑘 . Observe that, since this repetition can occur at
most 𝑘 − 2 times (as two agents are already in 𝐵), at the end of this
repetition, 𝐵 has radius at most 𝑘2 and satisfies that every agent
outside 𝐵 is at distance at least 𝑘 + 1 from every vertex in 𝐵. Now,
we modify the schedule as follows.

We freeze every agent located at a vertex outside of 𝐵. Let 𝑆𝑤𝑎𝑖𝑡

be the subset of agents in 𝐵 that are currently waiting due to an
agent outside of 𝐵 as in Case (i) above.

We define a configuration 𝜄 for the agents in 𝐵 as follows. (A) For
each “waiting” agent 𝑅𝑥 ∈ 𝑆𝑤𝑎𝑖𝑡 , 𝜄 places 𝑅𝑥 at an arbitrary vertex
that is not the destination of any other agent. (B) For each agent
𝑅𝑥 whose destination is in 𝐵, 𝜄 places 𝑅𝑥 on its destination. (C) For
every other agent 𝑅𝑥 in 𝐵, we process these agents in a decreasing
order of the distance between 𝑛𝑖 and their destination 𝑡𝑥 (breaking
ties arbitrarily). Starting from the agent 𝑅𝑥 for which this distance
is maximized, we let 𝑏𝑥 ∈ 𝑉 be the unique vertex on 𝜋𝑥 that has
distance precisely 𝑘 − 𝑞 from the boundary of 𝐵, where 𝑞 is the
index of the agent 𝑅𝑥 w.r.t. the aforementioned order. This ensures
that agents that need to leave 𝐵 are safely placed outside of it, in
the “direction” they need to go, and in an order which respects the
distance to their destination.

We then apply Lemma 1 to achieve configuration 𝜄. We do so
by first moving all agents in 𝐵 to within distance 𝑘 from the nice
vertex, applying Lemma 1, and then rearranging the agents as
desired afterwards. This can be done in O(𝑘3) many steps.

Case (iii). Since T contains at least one nice vertex, Lemma 2
guarantees that if 𝑣𝑖 or 𝑣 𝑗 were to lie on any path 𝑃 ′ between two
nice vertices, every vertex of degree at least 3 on 𝑃 ′ would be nice
as well. Hence, the first two cases completely cover all situations
except for the following Case (iii): Both 𝑣𝑖 and 𝑣 𝑗 are in a subtree
that is rooted at some nice vertex 𝑛𝑖 and no other vertex of this
subtree is nice.

While this case intuitively covers all of the “borderline cases”
that arise from collisions occurring in the peripheries of T , a formal
treatment requires a careful case analysis that distinguishes four
subcases. On a high level, the proof is based on arguing that either
the necessary reconfiguration can be carried out without routing

Figure 2: The caterpillar gadget used in Theorem 2. Top: the

original vertex 𝑣 of degree 2. Bottom: vertex 𝑣 with the cater-

pillar gadget attached

both agents to 𝑛𝑖 or by showing that the agents must reach 𝑛𝑖 in a
hypothetical schedule. We then route the agents accordingly while
performing the necessary reconfigurations along the way.

The running time of the algorithm can be shown to be dominated
by the branching along the 2-paths that happens in Case (i) to
resolve conflicts between pairs of agents. Since the number of such
pairs is O(𝑘2), we can show that there will be at most one conflict
per pair and the branching can be done in 2O(𝑘2) time. In particular,
a careful analysis of the running time over all cases shows that the
algorithm can be implemented to run in 2O(𝑘2)𝑛 time.

Finally, we indicate why the schedule Γ𝐴𝑃𝑋 obtained by the algo-
rithm is within O(𝑘5) additive delay from a hypothetical optimum.
First, observe that no additional delay is incurred in Case (i). In
Case (ii), each potential collision incurs a delay of O(𝑘3) to resolve
by Lemma 1 and the total number of Case-(ii) collisions among the
agents can be upper-bounded by O(𝑘2). Finally, the total additive
delay incurred over all collisions handled under Case (iii) can be
shown to be upper-bounded by O(𝑘4). □

MAPF ON IRREDUCIBLE TREES

While the additive approximation error that occurs in Theorem 1
only depends on the parameter, it is still natural to ask whether the
error can be avoided altogether. In this section, we provide an exact
algorithm for Tree-MAPF when the input trees are irreducible. We
first show that this problem restriction remains hard:

Theorem 2. Tree-MAPF remains NP-complete when restricted
to instances in which the tree is irreducible.

Proof. We reduce from Tree-MAPF on general trees [12]. The
idea is that we can append to each degree 2 vertex 𝑣 a “caterpillar”
whose middle vertex is adjacent to 𝑣 and the main path of the cater-
pillar contains agents that need to go distance 𝜆 in the caterpillar
and are always blocking the neighbor of 𝑣 .

Caterpillar gadget. This gadget (refer to Figure 2), denoted
𝑇𝑐 (𝜆) consists of vertices𝑥0, 𝑥1, 𝑥2, . . . , 𝑥2𝜆, 𝑥2𝜆+1, 𝑦1, 𝑦2, . . . , 𝑦2𝜆 ; the
𝑥-vertices form a path and, for each 𝑖 ∈ [2𝜆], 𝑦𝑖 is connected with
𝑥𝑖 . For every 𝑖 ∈ [𝜆], we create an agent with starting vertex 𝑥𝑖 and
destination 𝑥𝜆+𝑖 . Observe that the makespan of 𝑇𝑐 (𝜆) is 𝜆.

Therefore, given an instance 𝑇𝑔 of Tree-MAPF on general trees
that asks whether the makespan is 𝜆, we construct an irreducible
tree 𝑇𝑖𝑟 as follows. For every vertex 𝑣 of degree 2, we create a

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

588

caterpillar gadget 𝑇𝑐 (𝜆) and we connect vertex 𝑥𝜆 with 𝑣 . Observe
that 𝑇𝑖𝑟 consists by 𝑇𝑔 plus a union of caterpillar gadgets. Clearly,
this construction can be performed in polynomial time.

We claim that𝑇𝑖𝑟 has makespan 𝜆, if and only if𝑇𝑔 has makespan
𝜆. The correctness follows for the fact that no schedule that achieves
makespan 𝜆 on 𝑇𝑖𝑟 can route any of the original agents inside any
caterpillar gadget. Observe that if this happens, then there will
be a “delay” for the agents of the corresponding gadgets that will
increase the makespan by at least one. □

Preparations and Setup for the Exact Algorithm

The approach we use to obtain an exact fixed-parameter algorithm
for Tree-MAPF on irreducible trees does not employ the notions
of nice vertices and havens, as we cannot “afford” to use these to
arbitrarily reconfigure agents in their vicinity—each such reconfig-
uration may lead to an irreversible loss of makespan compared to
the true optimum.

Instead, our algorithm relies on showing the existence of a
“canonical solution” for every yes-instance of the problem,whichwe
can then compute in FPT-time. First, we assume that we are given
a target makespan 𝜆. This assumption follows from the known
cubic upper-bound on the makespan of an optimal schedule [14],
combined with standard enumeration of the makespan (possibly up
to the upper bound), to reduce Tree-MAPF to a decision problem.

Second, we establish and employ the following reduction rule
to bound the maximum degree of the input tree T . We say that
two instances are equivalent if every solution for one instance can
be transformed, in polynomial time, into a solution for the other
instance.

Proposition 1. Let I = (T ,R, 𝑘, 𝜆) be an instance of Tree-MAPF.
In P-time, we can reduce I to an equivalent instance in which the tree
has maximum degree at most 3𝑘 .

Proposition 1 allows us to assume that the instance is provided
with a makespan bound 𝜆 and that the input tree has degree at
most 3𝑘 . Next, we make use of this assumption to prove a sufficient
condition on an optimal schedule that enables us to solve the prob-
lem in FPT-time. This result will be employed as a subroutine in
our main algorithm, and much of the work therein will focus on
ways to correctly restrict our attention to schedules satisfying this
condition.

For a computable function 𝜌 of 𝑘 , let us call a Tree-MAPF in-
stance (T ,R, 𝑘, 𝜆) 𝜌 (𝑘)-ball-restricted if, for every time step 0 ≤
𝑥 ≤ 𝜆 and every agent 𝑅, the position of 𝑅 at time step 𝑥 is con-
fined to 𝐵(𝑣𝑥 , 𝜌 (𝑘)) where 𝑣𝑥 ∈ 𝑉 (T) can be computed from 𝑥 in
polynomial time.

Lemma 4. Let 𝜌 (𝑘) be a computable function. The restriction of
Tree-MAPF to instances which are 𝜌 (𝑘)-ball-restricted can be solved
in time 𝜆 · (3𝑘)𝑘 ·𝜌 (𝑘) · |T |O(1) .

Proof. By Proposition 1, we may assume that every vertex in
T has degree at most 3𝑘 . By assumption, for every agent 𝑅𝑖 and
every time step 0 ≤ 𝑥 ≤ 𝜆, 𝑅𝑖 is confined to a ball of size 𝑓 (𝑘) =
O((3𝑘)𝜌 (𝑘)), consisting of all vertices in T of distance at most
𝜌 (𝑘) from a vertex in T (𝑣𝑥) that can be determined in polynomial
time. Therefore, at each time step, there are at most 𝑓 (𝑘)𝑘 many

possible configurations for the agents, where a configuration is a
tuple specifying the positions of all agents. Now, we can construct
a directed configuration graph 𝐺T , whose vertices are pairs of the
form (𝑥,𝐶), where 0 ≤ 𝑥 ≤ 𝜆, is a time step and 𝐶 is a possible
configuration of the agents at time step 𝑥 , and such that there is an
edge from (𝑥,𝐶) to (𝑥+1,𝐶′), if𝐶 can yield𝐶′ in a singlemove of the
agents. Deciding whether there is a schedule 𝑆 for the agents from
the starting positions to the destination positions with makespan
𝜆, reduces to deciding whether a path from (0, (𝑠1, 𝑠2, . . . , 𝑠𝑘)) to
(𝜆, (𝑡1, 𝑡2, . . . , 𝑡𝑘)) exists in𝐺T . Note that the number of vertices of
𝐺T is at most 𝜆 · 𝑓 (𝑘)𝑘 , and we can decide the existence of such a
path in O(|𝑉 (𝐺T) | + |𝐸 (𝐺T) |) time. □

Slack: A Useful Measure of Agent Urgency

On an intuitive level, our algorithm employs different treatments to
agents that need to reach their destinations “urgently” and agents
that can afford to “wait” for longer periods of time without vio-
lating the makespan constraint. To partition the agents into these
groups, we will employ the notion of slack that was introduced for
Multiagent Pathfinding in the setting of solid grids [9]. While
the definition is precisely the same as the one proposed in the pre-
vious work, the way we use it is entirely different. The structure
of solid grids guarantees plenty of “room” for large-slack agents to
avoid small-slack agents and the movement of small-slack agents
was handled by an encoding into an Integer Linear Program [9,
Subsection 3.2]. On the other hand, on trees, large-slack agents
have very little room to maneuver and their potential collisions
with small-slack agents need to be handled using more careful,
combinatorial insights.

Definition 2. Let I = (T ,R, 𝑘, 𝜆) be an instance of Tree-MAPF.
The slack of an agent 𝑅𝑖 ∈ R, denoted slack(𝑅𝑖), is 𝜆 − dist(𝑠𝑖 , 𝑡𝑖).

Proposition 2. Let I = (T ,R, 𝑘, 𝜆) be an instance of Tree-MAPF
and let 𝜎 (𝑘) be a function. If slack(𝑅𝑖) ≤ 𝜎 (𝑘), for every 𝑖 ∈ [𝑘],
then I can be solved in FPT-time.

Proof. For any agent 𝑅𝑖 and for any time step 0 ≤ 𝑥 ≤ 𝜆, 𝑅𝑖 is
confined to the ball of radius 𝜎 (𝑘) centered at the unique vertex
of distance min(𝑥, dist(𝑠𝑖 , 𝑡𝑖)) from 𝑠𝑖 on the unique 𝑠𝑖 -𝑡𝑖 path of T .
Hence, Lemma 4 applies. □

Proposition 2 follows from Lemma 4 and allows us to restrict our
attention to instances containing at least some large-slack agents.

We next formally identify an appropriate threshold for the slack
that determines which agents are small-slack and which are large-
slack. Note that given 𝜆, the slack of every agent is known.

Lemma 5. Given an instance I = (T ,R, 𝑘, 𝜆) of Tree-MAPF and
a computable function 𝑔 : N𝑁 →
𝑛𝑎𝑡𝑁 , in time FPT in 𝑘 , we can either decide the instance I, or parti-
tion the agents in R into two sets 𝑆 and 𝐿 such that

• 𝐿 ≠ ∅,
• each agent in 𝑆 has slack at most 𝑔(𝑘)𝑘+1, and
• each agent in 𝐿 has slack at least 𝑔(𝑘) times the slack of any
agent in 𝑆 .

Proof. Let us sort the agents in a nondecreasing order of their
slack. Let 𝑖 ∈ [𝑘] be the smallest index (w.r.t. the sorted list) of an

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

589

agent with slack at least 𝑔(𝑘)𝑖+1. If no such agent exists, then all
agents have slack at most 𝑔(𝑘)𝑘+1 and we can solve the instance in
FPT time by Proposition 2. Otherwise, we let 𝑆 = {𝑅1, 𝑅2, . . . , 𝑅𝑖−1}
(defined as the empty set if 𝑖 = 1) and 𝐿 = {𝑅𝑖 , 𝑅𝑖+1, . . . , 𝑅𝑘 }. Note
that by the choice of 𝑖 , all agents in 𝑆 have slack at most that of
𝑅𝑖−1, which is at most 𝑔(𝑘) (𝑖−1)+1 = 𝑔(𝑘)𝑖 , and all agents in 𝐿 have
slack at least that of 𝑅𝑖 , which is at least 𝑔(𝑘)𝑖+1 and the lemma
follows. □

In the above lemma, 𝑆 is the set of small-slack agents and 𝐿 is the
set of large-slack agents. Our last two preparatory lemmas establish
two important properties of small-slack agents. The first shows that
every subtree with sufficiently many high-degree vertices contains
many vertices that are not visited by any small-slack agent in some
optimal solution. The main algorithm uses this result to guarantee
the existence of “safe” waiting points for large-slack agents.

Lemma 6. Let I = (T ,R, 𝑘, 𝜆) be a yes-instance of Tree-MAPF in
which T is irreducible and let Γ be a solution to I. Let 𝑆 ⊆ R be a set
of agents, each of slack at most 𝜎 (𝑘) in Γ, for some function 𝜎 , and
let 𝐻 be a subtree of T such that the number of vertices with degree
at least 3 in 𝐻 is at least 𝑞. Then at least (𝑞 − 𝑘 · 𝜎 (𝑘)) vertices in 𝐻
are not visited by any agent in 𝑆 during Γ.

The final preparatory lemma establishes that since small-slack
agents must more-or-less follow the route to their destination, they
cannot interfere with any part of a path in T for too long.

Lemma 7. Let 𝑆 ⊆ R be a set of agents each of slack at most
𝜎 (𝑘). Moreover, let 𝑃 be a path in T , 𝑇 be a time interval and |𝑇 |
denote its length. Then there is a subinterval of 𝑇 of length at least
|𝑇 |/(𝑘 · (|𝑃 | + 𝜎 (𝑘)) + 1) during which 𝑃 is devoid of any agent in 𝑆 .

The FPT Algorithm on Irreducible Trees

We are now ready to establish our second main result:

Theorem 3. There is a fixed-parameter algorithm which solves
Tree-MAPF on irreducible trees to optimality.

Proof. Let the given target makespan be 𝜆. By Lemma 4, it suf-
fices to show that every yes-instance of Tree-MAPF has a solution
in which the position of each agent at every time step is confined
to a ball whose center can be computed in polynomial time and
whose radius is a computable function of 𝑘 .

Let I = (T ,R, 𝑘, 𝜆) be a given yes-instance. By Proposition 1,
we may assume that every vertex in T has degree at most 3𝑘 . By
Lemma 5, we may assume that R is partitioned into two sets, 𝑆 and
𝐿, such that each agent in 𝑆 has slack at most 𝜎 (𝑘) and each agent in
𝐿 has slack at least 𝜌 (𝑘) = 𝑔(𝑘) ·𝜎 (𝑘), where 𝑔(𝑘) is “large-enough”
computable function of our choice, to be determined later. Note also
that the fact that 𝐿 is nonempty implies that the overall makespan
𝜆 is large (at least 𝜌 (𝑘)). Without loss of generality, we will also
assume that |T | is large (i.e., larger than any chosen function of 𝑘),
as otherwise, the instance can be solved in FPT-time by brute force.

For 𝑅𝑖 ∈ R, denote by 𝑃𝑖 the unique 𝑠𝑖 -𝑡𝑖 path in T . For any time
step 0 ≤ 𝑥 ≤ 𝜆, denote by 𝑃𝑖 (𝑥) the unique vertex of 𝑃𝑖 at distance
min(𝑥, |𝑃𝑖 |) from 𝑠𝑖 . Clearly, for any small-slack agent 𝑅𝑖 ∈ 𝑆 and
any 0 ≤ 𝑥 ≤ 𝜆, 𝑅𝑖 is confined to 𝐵(𝑃𝑖 (𝑥), 𝜎 (𝑘)) at time step 𝑥 .
We will show next that there is a solution to I in which every

large-slack agent 𝑅𝑖 ∈ 𝐿, at time step 0 ≤ 𝑥 ≤ 𝜆, is confined to
𝐵(𝑃𝑖 (𝑥), 𝜌 (𝑘)). This will complete the proof.

Consider any solution Γ to I. As mentioned above, every agent
𝑅𝑖 ∈ 𝑆 at time step 0 ≤ 𝑥 ≤ 𝜆 is confined to 𝐵(𝑃𝑖 (𝑥), 𝜎 (𝑘)) ⊆
𝐵(𝑃𝑖 (𝑥), 𝜌 (𝑘)), and its route in Γ will not be altered. We will now
show how to modify Γ so that the agents in 𝐿 satisfy that property
as well. Choose a function 𝛽 (𝑘) = 𝜔 ((𝑘 · 𝜎 (𝑘))𝑘2 ·𝜎 (𝑘)2).

For any 𝑅𝑖 ∈ 𝐿, 𝑖 ∈ [𝑘], during the first (resp. last) 𝛽 (𝑘) time
steps in Γ, 𝑅𝑖 covers positions that are within distance 𝛽 (𝑘) from 𝑠𝑖
(resp. 𝑡𝑖). Let 𝐹𝑖𝑟𝑠𝑡𝑖 and 𝐿𝑎𝑠𝑡𝑖 be the two subtrees of T visited by
𝑅𝑖 during the first and last 𝛽 (𝑘) time steps in Γ, respectively. (The
vertices/edge of 𝐹𝑖𝑟𝑠𝑡𝑖 and 𝐿𝑎𝑠𝑡𝑖 may have been possibly visited
multiple times.) Define 𝐸𝑖 to be the extension of 𝑃𝑖 , which consists
of 𝑃𝑖 + 𝐹𝑖𝑟𝑠𝑡𝑖 +𝐿𝑎𝑠𝑡𝑖 plus, for each vertex 𝑣 whose degree in 𝐹𝑖𝑟𝑠𝑡𝑖 +
𝐿𝑎𝑠𝑡𝑖 + 𝑃𝑖 is 2, a unique neighboring vertex 𝑢 of 𝑣 that is not on
𝑃𝑖 + 𝐹𝑖𝑟𝑠𝑡𝑖 + 𝐿𝑎𝑠𝑡𝑖 and the edge 𝑢𝑣 . The vertex 𝑢 is called a pendant
vertex. Note that 𝐸𝑖 is well defined since T is an irreducible tree.

We will modify Γ so that the route of 𝑅𝑖 , 𝑖 ∈ [𝑘], is confined to 𝐸𝑖
and satisfies that, at any time step 0 ≤ 𝑥 ≤ 𝜆, the position of 𝑅𝑖 in
𝐸𝑖 is in the ball 𝐵(𝑃𝑖 (𝑥), 𝜌 (𝑘)). For the rest of the proof, it helps to
consider 𝜌 (𝑘) to be much larger than 𝛽 (𝑘). (In fact, 𝜌 (𝑘) = Ω(𝛽 (𝑘))
with a large multiplicative constant would suffice.)

Define a safe vertex to be a vertex in T that no agent in 𝑆 visits
during Γ. Observe that, for each 𝑖 ∈ [𝑘], since 𝑃𝑖 is a path and
since each of 𝐹𝑖𝑟𝑠𝑡𝑖 and 𝐿𝑎𝑠𝑡𝑖 has size at most 𝛽 (𝑘), the number
of vertices in 𝐸𝑖 with no pendant vertices attached to them is at
most |𝐹𝑖𝑟𝑠𝑡𝑖 | + |𝐿𝑎𝑠𝑡𝑖 | ≤ 2𝛽 (𝑘) + 2 (the plus 2 is to account for the
endpoints of 𝑃𝑖). Furthermore, for every agent in 𝑆 , the number
of pendant vertices that it visits is at most 𝜎 (𝑘)/2 + 2 (each time
such an agent visits a pendant vertex it incurs a slack of at least
2, except possibly for the first and last such vertices). Therefore,
after noting that no two pendant vertices are adjacent to the same
vertex in 𝐸𝑖 , we conclude that any subtree of 𝐸𝑖 of size 𝑠 contains
a large number of pendant vertices that are safe, to be precise, at
least (𝑠 − 2(𝛽 (𝑘) + 1) − 𝑘 (𝜎 (𝑘) + 4))/2.

Consider an agent 𝑅𝑖 ∈ 𝐿 and consider its extension 𝐸𝑖 . We
divide the routing of 𝑅𝑖 in the modified schedule into three phases.
The first phase starts at time step 0, and ends when 𝑅𝑖 reaches a
designated safe vertex. The second phase starts after that, routes
𝑅𝑖 from a safe vertex to another (safe vertex), and ends when 𝑅𝑖
reaches the last safe vertex at distance at most 𝑘 · 𝜎 (𝑘) from its
destination 𝑡𝑖 . The third and last phase starts after the second phase
is complete and ends at time step 𝜆, when 𝑅𝑖 reaches its destination
𝑡𝑖 . The fact that we have sufficiently many safe vertices will be used
to show that all three phases can be completed.

Phase 1. We route 𝑅𝑖 during the first phase, considering two
cases based on the size of 𝐹𝑖𝑟𝑠𝑡𝑖 .
Case 1: If |𝐹𝑖𝑟𝑠𝑡𝑖 | > 2𝑘 (𝜎 (𝑘) + 1), then either 𝐸𝑖 contains at least
𝑘 · 𝜎 (𝑘) + 𝑘 vertices that are either leaves in 𝐹𝑖𝑟𝑠𝑡𝑖 or pendant
vertices attached to 𝐹𝑖𝑟𝑠𝑡𝑖 , or at least 𝑘𝜎 (𝑘) + 𝑘 vertices of degree
at least 3 in 𝐹𝑖𝑟𝑠𝑡𝑖 . In the former case, and since the number of
pendant and leaf-vertices in 𝐸𝑖 traversed by all the agents in 𝑆 is at
most 𝑘 ·𝜎 (𝑘), it follows that the number of safe vertices in 𝐹𝑖𝑟𝑠𝑡𝑖 or
attached to 𝐹𝑖𝑟𝑠𝑡𝑖 is at least 𝑘 , and hence, 𝑅𝑖 , and all the agents in
𝐿 that are present in 𝐹𝑖𝑟𝑠𝑡𝑖 during the first phase, can be assigned
safe vertices in 𝐹𝑖𝑟𝑠𝑡𝑖 (or attached to it) to stay at during the first

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

590

phase. That is, we can either find a safe vertex that is not visited by
any other agent in 𝐿 or we can achieve such an assignment. In the
latter case, the same conclusion follows from Lemma 6.
Case 2: Suppose now that |𝐹𝑖𝑟𝑠𝑡𝑖 | ≤ 2𝑘 (𝜎 (𝑘) +1) ≤ 4𝑘𝜎 (𝑘). If there
exists a vertex 𝑣𝑖 ∈ 𝐹𝑖𝑟𝑠𝑡𝑖 at which 𝑅𝑖 waits for Ω(𝑘 · 𝜎 (𝑘))3 time
steps during the first 𝛽 (𝑘) steps, let 𝑇 be a time interval during
which𝑅𝑖 waits at 𝑣𝑖 this many steps, and consider the path 𝑣𝑖 -𝑡𝑖 inT ;
let 𝑃 be the subpath of the 𝑣𝑖 -𝑡𝑖 path that starts at 𝑣𝑖 and has length
|𝐹𝑖𝑟𝑠𝑡𝑖 | + 2𝑘𝜎 (𝑘). By our assumption on |𝐹𝑖𝑟𝑠𝑡𝑖 |, |𝑃 | = O(𝑘𝜎 (𝑘)).
Moreover, more than 𝑘 vertices on 𝑃 have pendant vertices that are
safe (since the agents in 𝑆 can visit at most 𝑘𝜎 (𝑘) pendant vertices).
Applying Lemma 7, we conclude that there is a subinterval 𝑇 ′ ⊆ 𝑇

of length more than |𝑃 | during which 𝑃 is devoid of agents in 𝑆 .
Therefore, 𝑅𝑖 can be routed to a safe pendant vertex on 𝑃 during
𝑇 ′ (while avoiding the agents in 𝐿 if any).

Suppose now that 𝑅𝑖 never waits more than O((𝑘 · 𝜎 (𝑘))3) time
steps at any vertex in 𝐹𝑖𝑟𝑠𝑡𝑖 during the first 𝛽 (𝑘) many time steps.
By the choice of 𝛽 (𝑘), it can be easily verified that there exists a
vertex 𝑣𝑖 that 𝑅𝑖 revisits at least Ω((𝑘 · 𝜎 (𝑘))2) many times. Let 𝑃
be the path defined above, and observe that there must exist two
time instances, 𝑡1, 𝑡2 at which 𝑅𝑖 visits 𝑣𝑖 and such that𝑇 ′ = [𝑡1, 𝑡2]
is devoid of agents in 𝑆 and satisfying |𝑇 ′ | > |𝑃 |. (This is because
the same agent can be at |𝑃 | during at most |𝑃 | +𝜎 (𝑘) many revisits
of 𝑣𝑖 by 𝑅𝑖 .) Again, we can route 𝑅𝑖 to a safe pendant vertex on 𝑃

during 𝑇 ′ (while avoiding agents in 𝐿 if any).
Phase 2. We route each agent 𝑅𝑖 ∈ 𝐿 from a safe vertex on 𝐸𝑖 to
another safe vertex on 𝐸𝑖 as follows. Let 𝑅𝑖 ∈ 𝐿 be an agent and
suppose that 𝑅𝑖 is located at a safe vertex 𝑣 at the beginning of
Phase 2. Define 𝑃𝑣 to be the path from 𝑣 to 𝑡𝑖 plus a pendant vertex,
chosen from 𝐸𝑖 (which must exist), attached to every internal vertex
in 𝑃𝑣 . We route 𝑅𝑖 along 𝑃𝑣 to the farthest pendant safe vertex𝑤 in
the direction of 𝑡𝑖 that 𝑅𝑖 can go to, moving nonstop (and avoiding
agents in 𝐿), until it becomes within a distance of 𝑘 · 𝜎 (𝑘) from an
agent in 𝑆 or from its destination. Note that such a pendant safe
vertex must exist, since the agents in 𝑆 can visit fewer than 𝑘 · 𝜎 (𝑘)
pendant vertices during Γ. If no such vertex𝑤 exists, then 𝑣 must
be already within distance 𝑘 · 𝜎 (𝑘) from an agent in 𝑆 , in which
case 𝑅𝑖 will wait at 𝑣 until it can achieve the above; note that the
waiting time of 𝑅𝑖 at any safe vertex is O(𝑘2 ·𝜎 (𝑘)). 𝑅𝑖 then repeats.
Note that such a waiting scenario cannot happen more than 𝑘 ·𝜎 (𝑘)
many times, as after that 𝑅𝑖 would never encounter any agent in 𝑆 .
When 𝑅𝑖 is routed to𝑤 , we possibly avoid other agents in 𝐿 along
the way (using pendant vertices), and incurring a slack of at most
O(𝑘) in the process. Phase 2 continues until each agent 𝑅𝑖 in 𝐿 is
within distance at most 𝑘 · 𝜎 (𝑘) from 𝑡𝑖 . Since the slack of each
agent in 𝐿, 𝜌 (𝑘), is much larger than 𝛽 (𝑘), each agent in 𝐿 still has
large slack (larger than 𝛽 (𝑘)) when Phase 2 is complete.
Phase 3. We assume that 𝑅𝑖 is located at a safe pendant vertex 𝑡 ′

𝑖
on 𝑃𝑣 ⊆ 𝐸𝑖 that is within a distance of 𝑘 · 𝜎 (𝑘) from 𝑡𝑖 ; let 𝑃 ′𝑖 = 𝑡 ′

𝑖
𝑡𝑖 .

The arguments for routing 𝑅𝑖 in Phase 3 are essentially symmetrical
to those in Phase 1. The only difference is showing that we can
route 𝑅𝑖 from 𝑡 ′

𝑖
so that it arrives to a vertex𝑤𝑖 at time step 𝑥 such

that 𝑅𝑖 is at𝑤𝑖 at time step 𝑥 in Γ. 𝑅𝑖 will then follow the schedule
Γ after time step 𝑥 . We again distinguish two cases, whereas the
formal details of these are analogous to the corresponding ones in
Phase 1:

• If |𝐿𝑎𝑠𝑡𝑖 | is “large”, then we establish the existence of a safe vertex
𝑤𝑖 in 𝐿𝑎𝑠𝑡𝑖 that 𝑅′𝑖 will be located at time step 𝑓𝑖 during the last 𝛽 (𝑘)
many steps in Γ. Since the remaining slack of 𝑅𝑖 is large (much
larger than 𝛽 (𝑘) > |𝐿𝑎𝑠𝑡𝑖 |), we can find a time interval during
which 𝑅𝑖 can be routed to𝑤𝑖 without colliding with any agents in
𝑆 , and while avoiding the agents in 𝐿. 𝑅𝑖 stays at𝑤𝑖 until time step
𝑓𝑖 , where from that point on it follows Γ.
• Suppose now that |𝐿𝑎𝑠𝑡𝑖 | is “small”. Similarly to the arguments
made in Phase 1, either there exists a vertex 𝑤𝑖 ∈ 𝐿𝑎𝑠𝑡𝑖 that 𝑅𝑖
waits at for a long time during the last 𝛽 (𝑘) many steps, or that it
revisits many times during the last 𝛽 (𝑘) time steps. Again, we can
find a time interval, where 𝑅𝑖 can be routed from 𝑡 ′

𝑖
to𝑤𝑖 without

collision, so that it arrives to it at the same time step as when it is
there in Γ; 𝑅𝑖 then follows Γ afterwards.

From the above, it follows that each agent reaches its destina-
tion. Moreover, the route of each agent in 𝑆 remains unchanged. It
suffices to show that each agent in 𝐿 is confined to 𝐵(𝑃𝑖 (𝑥), 𝜌 (𝑘)).
This is clearly the case in Phase 1. By Lemma 7, each vertex can
be occupied by an agent in 𝑆 for at most 𝜎 (𝑘) many times steps.
Moreover, if a vertex on a path of 𝑅𝑖 is occupied, then this can
happen at most 𝑘 · 𝜎 (𝑘) many times. It follows from the above that
each agent in 𝐿 is delayed at 3𝛽 (𝑘) many steps, and hence resides
in the desired ball. As for Phase 3, by construction each agent in 𝐿

during that time interval resides in a ball of radius at most a small
function of 𝛽 (𝑘) from its destination.

We note that, in some of the above arguments, we did not ex-
plicitly include the other agents in 𝐿 in our consideration since the
agents in 𝐿 have sufficient slack to wait at separate safe pendant
vertices and to reconfigure among themselves. □

CONCLUDING REMARKS

The two presented algorithmic results substantially advance our
understanding of the fundamentalMultiagent Pathfinding prob-
lem on trees— a setting that is both foundational and routinely en-
countered in heuristic approaches [10, 17, 20]. The main question
left open by our work is whether one could have the “best of both
worlds”: a fixed-parameter algorithm that solves Tree-MAPF to
optimality on all trees. We conjecture that such an algorithm does
indeed exist, and in fact Theorem 3 can be generalized to also solve
all trees without 2-paths of length exceeding an arbitrary fixed
function of 𝑘 . Still, obtaining an exact fixed-parameter algorithm
on the class of all trees remains beyond our current understanding
and is far from a simple corollary of our techniques: the notion of
havens that forms one of the two central pillars for Theorem 1 does
not translate to the exact setting, while the way we decouple the
schedule of large-slack agents from that of small-slack agents (in
particular via the use of Lemma 6) will not work in the same way
on general trees.

ACKNOWLEDGMENTS

A. Deligkas was supported by UKRI EPSRC (EP/X039862/1). R. Ga-
nian was supported by the Vienna Science and Technology Fund
(WWTF, project 10.47379/ICT22029) and the Austrian Science Fund
(FWF, 10.55776/Y1329 and 10.55776/COE12). I. Kanj was supported
by from DePaul URC Grants 606601 and 350130.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

591

REFERENCES

[1] Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch,
ZuzanaMasárová,Mikhail Rudoy, Virginia VassilevskaWilliams, andNicoleWein.
2022. Hardness of Token Swapping on Trees. In 30th Annual European Symposium
on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany (LIPIcs,
Vol. 244), Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:15. https:
//doi.org/10.4230/LIPICS.ESA.2022.3

[2] Roman Barták, Jiri Svancara, and Marek Vlk. 2018. A Scheduling-Based Approach
to Multi-Agent Path Finding with Weighted and Capacitated Arcs. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, Elisabeth André, Sven
Koenig, Mehdi Dastani, and Gita Sukthankar (Eds.). International Foundation for
Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 748–756.
http://dl.acm.org/citation.cfm?id=3237494

[3] Eli Boyarski, Ariel Felner, Pierre Le Bodic, Daniel Damir Harabor, Peter J. Stuckey,
and Sven Koenig. 2021. f-Aware Conflict Prioritization & Improved Heuristics
For Conflict-Based Search. In Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press,
12241–12248. https://doi.org/10.1609/AAAI.V35I14.17453

[4] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized
Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3

[5] Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanu-
jan. 2024. Parameterized Algorithms for Coordinated Motion Planning: Mini-
mizing Energy. In 51st International Colloquium on Automata, Languages, and
Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia (LIPIcs, Vol. 297), Karl
Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 53:1–53:18. https://doi.org/10.4230/
LIPICS.ICALP.2024.53

[6] Erik D. Demaine and Mikhail Rudoy. 2018. A simple proof that the (n2-1)-puzzle
is hard. Theor. Comput. Sci. 732 (2018), 80–84. https://doi.org/10.1016/J.TCS.2018.
04.031

[7] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics,
Vol. 173. Springer.

[8] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized
Complexity. Springer. https://doi.org/10.1007/978-1-4471-5559-1

[9] Eduard Eiben, Robert Ganian, and Iyad Kanj. 2023. The Parameterized Com-
plexity of Coordinated Motion Planning. In 39th International Symposium on
Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA (LIPIcs,
Vol. 258), Erin W. Chambers and Joachim Gudmundsson (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 28:1–28:16. https://doi.org/10.4230/LIPICS.
SOCG.2023.28

[10] Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian
Scheffer. 2023. Connected coordinated motion planning with bounded stretch.
Auton. Agents Multi Agent Syst. 37, 2 (2023), 43. https://doi.org/10.1007/S10458-
023-09626-5

[11] Sándor P Fekete, Phillip Keldenich, Dominik Krupke, and Joseph SB Mitchell.
2022. Computing coordinated motion plans for robot swarms: The cg: shop
challenge 2021. ACM Journal of Experimental Algorithmics (JEA) 27 (2022), 1–12.

[12] Foivos Fioravantes, Dusan Knop, Jan Matyás Kristan, Nikolaos Melissinos, and
Michal Opler. 2024. Exact Algorithms and Lowerbounds for Multiagent Path
Finding: Power of Treelike Topology. In Thirty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (Eds.). AAAI Press,
17380–17388. https://doi.org/10.1609/AAAI.V38I16.29686

[13] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 4,
2 (1968), 100–107. https://doi.org/10.1109/TSSC.1968.300136

[14] Daniel Kornhauser, Gary L.Miller, and Paul G. Spirakis. 1984. Coordinating Pebble
Motion on Graphs, the Diameter of Permutation Groups, and Applications. In
25th Annual Symposium on Foundations of Computer Science, West Palm Beach,
Florida, USA, 24-26 October 1984. IEEE Computer Society, 241–250. https://doi.
org/10.1109/SFCS.1984.715921

[15] Athanasios Krontiris, Ryan Luna, and Kostas E. Bekris. 2013. From Feasibility
Tests to Path Planners for Multi-Agent Pathfinding. In Proceedings of the Sixth
Annual Symposium on Combinatorial Search, SOCS 2013, Leavenworth,Washington,
USA, July 11-13, 2013, Malte Helmert and Gabriele Röger (Eds.). AAAI Press, 114–
122. https://doi.org/10.1609/SOCS.V4I1.18289

[16] Pascal Kunz, Hendrik Molter, and Meirav Zehavi. 2023. In Which Graph Struc-
tures Can We Efficiently Find Temporally Disjoint Paths and Walks?. In Pro-
ceedings of the Thirty-Second International Joint Conference on Artificial Intelli-
gence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China. ijcai.org, 180–188.
https://doi.org/10.24963/IJCAI.2023/21

[17] Duong Le and Erion Plaku. 2019. Multi-Robot Motion Planning With Dynamics
via Coordinated Sampling-Based Expansion Guided by Multi-Agent Search. IEEE
Robotics Autom. Lett. 4, 2 (2019), 1868–1875. https://doi.org/10.1109/LRA.2019.
2898087

[18] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Ku-
mar, and Sven Koenig. 2021. Lifelong Multi-Agent Path Finding in Large-Scale
Warehouses. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 11272–11281.
https://doi.org/10.1609/AAAI.V35I13.17344

[19] Robert Morris, Corina S. Pasareanu, Kasper Søe Luckow, Waqar Malik, Hang Ma,
T. K. Satish Kumar, and Sven Koenig. 2016. Planning, Scheduling and Monitoring
for Airport Surface Operations. In Planning for Hybrid Systems, Papers from the
2016 AAAI Workshop, Phoenix, Arizona, USA, February 13, 2016 (AAAI Technical
Report, Vol. WS-16-12), Daniele Magazzeni, Scott Sanner, and Sylvie Thiébaux
(Eds.). AAAI Press. http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/
view/12611

[20] Erion Plaku, Kostas E. Bekris, Brian Y. Chen, Andrew M. Ladd, and Lydia E.
Kavraki. 2005. Sampling-Based Roadmap of Trees for Parallel Motion Planning.
IEEE Trans. Robotics 21, 4 (2005), 597–608. https://doi.org/10.1109/TRO.2005.
847599

[21] Daniel Ratner andManfred K.Warmuth. 1990. NxN Puzzle and Related Relocation
Problem. J. Symb. Comput. 10, 2 (1990), 111–138. https://doi.org/10.1016/S0747-
7171(08)80001-6

[22] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artif. Intell. 219 (2015), 40–66.
https://doi.org/10.1016/J.ARTINT.2014.11.006

[23] Jamie Snape, Stephen J. Guy, Jur van den Berg, Ming C. Lin, and Dinesh
Manocha. 2012. Reciprocal Collision Avoidance and Multi-Agent Navigation for
Video Games. In Multiagent Pathfinding, Papers from the 2012 AAAI Workshop,
MAPF@AAAI 2012, Toronto, Ontario, Canada, July 22, 2012 (AAAI Technical Report,
Vol. WS-12-10), Ariel Felner, Nathan R. Sturtevant, Kostas E. Bekris, and Roni
Stern (Eds.). AAAI Press. http://www.aaai.org/ocs/index.php/WS/AAAIW12/
paper/view/5247

[24] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták,
and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants, and Bench-
marks. In Proceedings of the Twelfth International Symposium on Combinatorial
Search, SOCS 2019, Napa, California, 16-17 July 2019, Pavel Surynek and William
Yeoh (Eds.). AAAI Press, 151–158. https://doi.org/10.1609/SOCS.V10I1.18510

[25] Pavel Surynek. 2010. An Optimization Variant of Multi-Robot Path Planning
Is Intractable. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, Maria Fox and
David Poole (Eds.). AAAI Press, 1261–1263. https://doi.org/10.1609/AAAI.V24I1.
7767

[26] Manuela M. Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal. 2015.
CoBots: Robust Symbiotic Autonomous Mobile Service Robots. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, Qiang Yang and Michael J.
Wooldridge (Eds.). AAAI Press, 4423. http://ijcai.org/Abstract/15/656

[27] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Mag. 29, 1
(2008), 9–20. https://doi.org/10.1609/AIMAG.V29I1.2082

[28] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington,
USA, Marie desJardins and Michael L. Littman (Eds.). AAAI Press, 1443–1449.
https://doi.org/10.1609/AAAI.V27I1.8541

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

592

https://doi.org/10.4230/LIPICS.ESA.2022.3
https://doi.org/10.4230/LIPICS.ESA.2022.3
http://dl.acm.org/citation.cfm?id=3237494
https://doi.org/10.1609/AAAI.V35I14.17453
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPICS.ICALP.2024.53
https://doi.org/10.4230/LIPICS.ICALP.2024.53
https://doi.org/10.1016/J.TCS.2018.04.031
https://doi.org/10.1016/J.TCS.2018.04.031
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPICS.SOCG.2023.28
https://doi.org/10.4230/LIPICS.SOCG.2023.28
https://doi.org/10.1007/S10458-023-09626-5
https://doi.org/10.1007/S10458-023-09626-5
https://doi.org/10.1609/AAAI.V38I16.29686
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/SFCS.1984.715921
https://doi.org/10.1109/SFCS.1984.715921
https://doi.org/10.1609/SOCS.V4I1.18289
https://doi.org/10.24963/IJCAI.2023/21
https://doi.org/10.1109/LRA.2019.2898087
https://doi.org/10.1109/LRA.2019.2898087
https://doi.org/10.1609/AAAI.V35I13.17344
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12611
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12611
https://doi.org/10.1109/TRO.2005.847599
https://doi.org/10.1109/TRO.2005.847599
https://doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1016/J.ARTINT.2014.11.006
http://www.aaai.org/ocs/index.php/WS/AAAIW12/paper/view/5247
http://www.aaai.org/ocs/index.php/WS/AAAIW12/paper/view/5247
https://doi.org/10.1609/SOCS.V10I1.18510
https://doi.org/10.1609/AAAI.V24I1.7767
https://doi.org/10.1609/AAAI.V24I1.7767
http://ijcai.org/Abstract/15/656
https://doi.org/10.1609/AIMAG.V29I1.2082
https://doi.org/10.1609/AAAI.V27I1.8541

	Abstract
	Introduction
	Technical Contributions and Proof Overview

	Preliminaries
	FPT Additive Approximation
	Preparations and Setup
	The First Algorithm

	MAPF on Irreducible Trees
	Preparations and Setup for the Exact Algorithm
	Slack: A Useful Measure of Agent Urgency
	The FPT Algorithm on Irreducible Trees

	Concluding Remarks
	References

