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ABSTRACT
Agents in mixed-motive coordination problems such as Chicken

may fail to coordinate on a Pareto-efficient outcome. Safe Pareto

improvements (SPIs) were originally proposed to mitigate miscoor-

dination in cases where players lack probabilistic beliefs as to how

their agents will play a game; agents are instructed to behave so

as to guarantee a Pareto improvement on how they would play by

default. More generally, SPIs may be defined as transformations of

strategy profiles such that all players are necessarily better off un-

der the transformed profile. In this work, we investigate the extent

to which SPIs can reduce downsides of miscoordination between

expected utility-maximizing agents. We consider games in which

players submit computer programs that can condition their deci-

sions on each other’s code, and use this property to construct SPIs

using programs capable of renegotiation. We first show that under

mild conditions on players’ beliefs, each player always prefers to

use renegotiation. Next, we show that under similar assumptions,

each player always prefers to be willing to renegotiate at least to

the point at which they receive the lowest payoff they can attain in

any efficient outcome. Thus subjectively optimal play guarantees

players at least these payoffs, without the need for coordination on

specific Pareto improvements.
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1 INTRODUCTION
Artificially intelligent (AI) systems will increasingly advise or make

decisions on behalf of humans, including in interactions with other

agents. Thus there is a need for research on cooperative AI [2, 5]:
How can we design AI systems that are capable of interacting with

other players in ways that lead to high social welfare? One way

that AI systems assisting humans could fail to cooperate is by fail-

ing to coordinate on one of several Pareto-efficient equilibria. This

risk is especially large in bargaining problems, where players have
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different preferences over Pareto-efficient equilibria (think of the

game of Chicken). These problems are particularly prone to misco-

ordination, where each player uses a strategy that is part of some

Pareto-efficient equilibrium, but collectively the players’ strategies

are not an equilibrium. Bargaining problems are ubiquitous, in-

cluding in high-stakes negotiations over climate change, nuclear

proliferation, or military disputes, making them a crucial area of

study for cooperative AI.

We will explore how the ability of AI systems to condition their

decisions on each other’s inner workings could reduce downsides of

miscoordination in bargaining problems. The literature on program
equilibrium has shown how games played by computer programs

that can read each other’s source code admit more cooperative

equilibria in other challenges for cooperation such as the Prisoner’s

Dilemma [16, 18, 26]. Safe Pareto improvements (SPIs) [19] were
proposed as a mitigation for inefficiencies in settings where players

have delegates play a game on their behalf, and have Knightian

uncertainty (i.e., lack probabilistic beliefs [15]) about how their del-

egates will play. Under an SPI, players change their default policies

so as to guarantee Pareto improvement on the default outcome. For

example, consider two parties 𝐴 and 𝐵 who would by default go

to war over some territory. They might instruct their delegates to,

instead, accept the outcome of a lottery that allocates the territory

to 𝐴 with the probability that 𝐴 would have won the war.

We will consider the extent to which SPIs can mitigate inefficien-

cies from miscoordination when (i) players do have probabilistic

beliefs and maximize subjective expected utility and (ii) games are

played by computer programs that can condition on their coun-

terparts’ source code. Our goal is to establish guarantees against

miscoordination in the well-studied program game setting. Relax-

ations of standard assumptions in this setting — e.g., players can

precisely read each other’s programs’ source code, can syntactically

verify if a program follows some template [26], and participate

in the program game in the first place — are left to future work.

While this is an idealized framework, insights from studying pro-

gram games could be applied to more realistic interactions between

actors with some degree of conditional commitment ability. For

example, countries engaging in climate negotiations might write

bills that specify when the country would be bound to some policies

conditional on the terms of other countries’ bills [11]. And, smart

contracts implemented on a blockchain could execute commitments

to transactions conditional on other actors’ contracts [25, 27].

Our contributions are as follows:

(1) We construct SPIs in the program game setting using pro-

grams that renegotiate. Such programs have a “default” pro-

gram; check if their default played against their counterparts’

defaults results in an inefficient outcome; and, if so, call a
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renegotiation routine in an attempt to Pareto-improve on the

default outcome. We examine when renegotiation would be

used by players who optimize expected utility given their be-

liefs about what programs their counterparts will use (i.e., in

subjective equilibrium [14]). Under mild assumptions on play-

ers’ beliefs, we show that SPIs are always used in subjective

equilibrium (Propositions 1 and 2).

(2) We show that due to the ability to renegotiate, under mild as-

sumptions on players’ beliefs, players always weakly prefer

programs that guarantee them at least the lowest payoff they

can obtain on the Pareto frontier (Theorem 3). Following Ra-

bin [21], we call this payoff profile the Pareto meet minimum
(PMM). Thus we provide for this setting a (partial) solution
to the “SPI selection problem” identified by Oesterheld and

Conitzer [19] (hereafter, “OC”), i.e., the problem that players

must coordinate among SPIs in order to Pareto-improve on

default outcomes. The intuition for this is: The PMM is the

most efficient point such that, no matter how aggressively

the players bargain, no one expects to risk getting a worse

deal by being willing to renegotiate to that point.

2 RELATEDWORK
Program equilibrium and commitment games. We build on pro-

gram games, where computer players condition their actions on

each other’s source code. Prior work has shown that the ability of

computer-based agents to condition their decisions on their coun-

terparts’ programs can enable more efficient equilibria [4, 6, 12, 16–

18, 22, 26]. For example, McAfee [17]’s program “If other player’s
code == my code: Cooperate; Else: Defect” is a Nash equilibrium

of the program game version of the one-shot Prisoner’s Dilemma

in which both players cooperate. (See also the literature on com-

mitment games, e.g., Forges [9], Kalai et al. [13].) However, this

literature focuses on the Nash equilibria of program games, rather

than studying failure to coordinate on a Nash equilibrium as we do.

Coordination problems and equilibrium selection. There are large
theoretical and empirical literatures on how agents might coordi-

nate in complete information bargaining problems (see Schuessler

and Van der Rijt [24] and references therein). Most closely re-

lated to this paper is the literature on whether communication

before playing a simultaneous-move game can improve coordina-

tion [3, 7, 8, 10, 21]. Rabin [21] considers solution concepts for

games with pre-play communication called negotiated equilibrium
(NGE) and negotiated rationalizability (NGR), where NGE assumes

that players know their counterpart’s strategies exactly (up to ran-

domization). Rabin shows that under NGE players are guaranteed at

least their PMM payoff in bargaining problems, whereas under NGR

they are not. NGR is closer to the notion of subjective equilibrium

used in our paper, which allows players to have possibly-inaccurate

beliefs about what programs their counterparts will use. Santos

[23] shows results analogous to Rabin [21]’s under cheap talk with

alternating (rather than simultaneous) announcements. Finally, OC

proposed safe Pareto improvements for mitigating inefficiencies

from coordination failures. We discuss OC and its connections to

the present work at greater length in Section 3.2.

3 MISCOORDINATION AND SAFE PARETO
IMPROVEMENTS IN PROGRAM GAMES

In this section, we introduce the program games framework and

subjective equilibrium, the solution concept that is our focus in this

paper. Then we review OC’s safe Pareto improvements, and show

how they can be constructed in our setting using renegotiation.

Section 5 contains a table summarizing the notation used in this sec-

tion and Section 4. Throughout the paper, our formalism will be for

games with two players, for ease of exposition. See supplementary

material
1
for full proofs of our results in the more general 𝑛-player

formalism. The extension to 𝑛 players doesn’t introduce qualita-

tively new challenges. Intuitively, since players submit programs

independently of each other, we can apply the same arguments to

the profile of counterparts for a given player, as we did to the single

counterpart in the two-player case.

3.1 Setup: Program Games and Subjective
Equilibrium

Two players 𝑖 = 1, 2will play a “base game” of complete information

𝐺 = (A = 𝐴1 × 𝐴2, (𝑢1, 𝑢2)). Let 𝐴𝑖 be the set of possible actions

for player 𝑖 , and let 𝑢𝑖 (𝒂) be player 𝑖’s payoff in𝐺 when the players

follow an action profile 𝒂 = (𝑎1, 𝑎2). Write u(𝒂) = (𝑢1 (𝒂), 𝑢2 (𝒂)),
and refer to the set of payoff profiles attainable by some 𝒂 in A as

the feasible set. Throughout, we use the index 𝑗 for the player

𝑗 ≠ 𝑖 . For payoff profiles x and y, write x ⪰ y if 𝑥𝑖 ≥ 𝑦𝑖 for all 𝑖 ,

and x ≻ y if 𝑥𝑖 > 𝑦𝑖 for all 𝑖 .

A program game𝐺 (P) is a game in which a strategy is a program

that maps the profile of other players’ programs to an action in𝐺 .
2

This way, each player’s program implements a commitment to an

action conditional on the others’ programs. Assume the action sets

of 𝐺 are continuous; this is practically without loss of generality,

because our program game setting can be extended to a setting

where players can use correlated randomization (see, e.g., Kalai

et al. [13]). Here, P = 𝑃1 × 𝑃2, where 𝑃𝑖 is a set of computable

functions from 𝑃 𝑗 to 𝐴𝑖 . We assume that all programs in 𝑃𝑖 halt

against all programs in 𝑃 𝑗 , for each 𝑖 , as is standard in program

game literature (see, e.g., Oesterheld [18], Oesterheld and Conitzer

[19], Tennenholtz [26]). (Each 𝑃𝑖 can be viewed as player 𝑖’s “default”

program set, which we will extend in Section 3.2 with a set of

programs that have a special structure.)

Player 𝑖’s program is 𝑝𝑖 ∈ 𝑃𝑖 . For a program profile p = (𝑝1, 𝑝2),
abusing notation, let the action profile played in the base game by

players with a given program profile be 𝒂(p) = (𝑝1 (𝑝2), 𝑝2 (𝑝1)).
After all programs are simultaneously submitted, the induced action

profile 𝒂(p) is played in 𝐺 . Thus the payoff for player 𝑖 in 𝐺 (P)
resulting from the program profile p is𝑈𝑖 (p) = 𝑢𝑖 (𝒂(p)).

To capture the possibility of miscoordination, we do not assume

a Nash equilibrium is played. Instead, each player 𝑖 has beliefs as to

what program 𝑝 𝑗 the other player will use, distributed according

to a probability distribution 𝛽𝑖 (whose support may be a superset

of 𝑃 𝑗 ).
3
Then, a subjective equilibrium [14] is a profile of programs

1
Available online at https://arxiv.org/abs/2403.05103.

2
We restrict to deterministic programs for ease of exposition; the extension to proba-

bilistic programs, as in, e.g., Kalai et al. [13], is straightforward.

3
Allowing for 𝛽𝑖 to be supported on a superset of 𝑃 𝑗 will be important when we

consider extensions of players’ program sets with SPIs in Section 3.2.
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Table 1: Payoff matrix for the Scheduling Game

Slot 1 Slot 2 Slot 3

Slot 1 3, 1 0, 0 0, 0

Slot 2 0, 0 1, 3 0, 0

Slot 3 0, 0 0, 0 1, 1

and beliefs such that each player’s program maximizes expected

utility with respect to their beliefs:

Definition 1. Let p∗ = (𝑝∗
1
, 𝑝∗

2
) and 𝜷 = (𝛽1, 𝛽2) be profiles of

programs and beliefs, respectively, in 𝐺 (P). We say (p∗, 𝜷) is a
subjective equilibrium of 𝐺 (P) if, for each 𝑖 ,

𝑝∗𝑖 ∈ argmax

𝑝𝑖 ∈𝑃𝑖
E𝑝 𝑗∼𝛽𝑖𝑈𝑖 (p) .

Subjective equilibrium is, of course, a weaker solution concept

than Nash equilibrium (or even rationalizable strategies [1, 20]).

The results in this paper that follow will be stronger than showing

that a given strategy is used in some subjective equilibrium. Instead,

we will construct strategies such that, for any beliefs players might

have under some assumptions, and any program profile they con-

sider using, our strategies are individually (weakly) preferred by

players over that program profile — and are thus used in a subjective

equilibrium associated with those beliefs. Therefore, considering

subjective equilibrium will make our results stronger than if we had

assumed players’ beliefs satisfied a Nash equilibrium assumption.

The base games we are interested in are bargaining problems,
where players can miscoordinate in subjective equilibrium if they

are sufficiently confident their counterparts will play favorably to

them. This is possible even when players are capable of conditional

commitments as in program games:

Example 3.1. (Miscoordination in subjective equilibrium)
Suppose two principals delegate to AI assistants to negotiate on

their behalf over the time for a meeting. Call this the Scheduling

Game (Table 1). The principals meet if and only if the AIs agree

on one of three possible time slots. Each principal 𝑖 most prefers

slot 𝑖 , but would rather meet at slot 3 than not at all. Suppose each

player 𝑖 thinks 𝑗 is sufficiently likely to use
4 𝑝𝐶

𝑗
= “Slot 𝑖 if other

player’s code == ‘always Slot 𝑖’; Else: Slot 𝑗”. Intuitively, this program
“demands” the player’s best outcome, except against 𝑝𝐷

𝑖
= “always

Slot 𝑖”, which exploits this program. Each player might believe the

other is likely to use 𝑝𝐶
𝑗
because it can both exploit programs that

yield to its demand and avoid miscoordinating with 𝑝𝐷
𝑖
. Then it

is subjectively optimal for each player to submit 𝑝𝐷
𝑖
. The pair of

programs (𝑝𝐷
1
, 𝑝𝐷

2
) played in a subjective equilibrium under these

beliefs results in the maximally inefficient (Slot 1, Slot 2) outcome.

3.2 Constructing Safe Pareto Improvements via
Renegotiation

Informally, safe Pareto improvements (SPIs) [19] are transforma-

tions f of strategy profiles — in our case, program profiles p — such

that, for any p, all players are at least as well off under f(p) as

4
Abusing notation, we write “𝑝𝑖 = ⟨pseudocode for 𝑝𝑖 ⟩” to describe programs 𝑝𝑖 .

under p. OC focus on transformations induced by payoff transfor-

mations, and they formally define SPIs accordingly. However, they

note that probability-1 Pareto improvements on players’ default

strategies can be achieved with other kinds of instructions besides

having delegates play a game with transformed payoffs (see OC,

pg. 14). Thus in this paper we define SPIs to be general transforma-

tions of strategy profiles that guarantee Pareto improvement:

Definition 2. For a program game 𝐺 (P), let f : P → P′ be a

function of program profiles, written f(p) = (𝑓1 (𝑝1), 𝑓2 (𝑝2)), for
some joint program space P′ = 𝑃 ′

1
×𝑃 ′

2
.
5
Then f is an SPI for𝐺 (P)

if, for all program profiles p, we haveU(f(p)) ⪰ U(p); and for some

program profile p, there is some 𝑖′ such that𝑈𝑖′ (f(p)) > 𝑈𝑖′ (p).

A natural approach to constructing an SPI is to construct pro-

grams that, when they are all used against each other, map the ac-

tion profile returned by default programs to a Pareto improvement

whenever the default programs would have otherwise miscoordi-

nated (i.e., the action profile is inefficient). We call this construction

“renegotiation,” and call mappings of action profiles to Pareto im-

provements “renegotiation functions.”
6

Definition 3. Call rn : A→ A a renegotiation function if:

(1) For every 𝒂, u(rn(𝒂)) ⪰ u(𝒂).
(2) For some 𝒂 and some 𝑖′, 𝑢𝑖′ (rn(𝒂)) > 𝑢𝑖′ (𝒂).

And let R be the set of all renegotiation functions for the given

game 𝐺 .

We jointly define the spaces of renegotiation programs 𝑃 rn
𝑖
(rn𝑖 )

for 𝑖 = 1, 2 as those programs with the structure of Algorithm 1, for

some:

• renegotiation function rn𝑖 and
• “default program” 𝑝def

𝑖
∈ 𝑃𝑖 \ 𝑃 rn𝑖 (rn

𝑖 ).
(Note that the definition of Algorithm 1 for a given player 𝑖 ref-

erences the sets of programs given by Algorithm 1 for the other
player 𝑗 , so this definition is not circular.) For any program pro-

file p ∈ 𝑃 rn
1
(rn1) × 𝑃 rn

2
(rn2) and any renegotiation function rn, we

write pdef = (𝑝def
1

, 𝑝def
2
) and rn(𝒂) = (rn1 (𝒂), rn2 (𝒂)).

Renegotiation programs work as follows: Consider the “default

outcome,” the action profile given by all players’ default programs if

they all use renegotiation programs (line 2). Against any program 𝑝 𝑗
such that the players’ renegotiation functions (if any) don’t all

return the same Pareto improvement on the default outcome, 𝑝𝑖 ∈
𝑃 rn
𝑖
(rn𝑖 ) plays according to its default program 𝑝def

𝑖
(lines 6 and 8 in

Algorithm 1). Against a program profile that is willing to renegotiate

to the same Pareto improvement, however, 𝑝𝑖 plays its part of the

Pareto-improved outcome (line 4).

It is easy to see that any possible Pareto improvement (i.e., any

possible mapping provided by a renegotiation function) can be

implemented as an SPI via renegotiation programs:

Proposition 1. Let rn be a renegotiation function. For 𝑖 = 1, 2,

define 𝑓𝑖 : 𝑃𝑖 → 𝑃 rn
𝑖
(rn) such that, for each 𝑝𝑖 ∈ 𝑃𝑖 , 𝑓𝑖 (𝑝𝑖 ) is of the

form given in Algorithm 1 with 𝑓𝑖 (𝑝𝑖 )def = 𝑝𝑖 . Then, the function

f : p ↦→ (𝑓1 (𝑝1), 𝑓2 (𝑝2)) is an SPI.

5
The assumption above that programs halt against each other extends toP′ .

6
Compare to section “Safe Pareto improvements under improved coordination” in OC.
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Algorithm 1 Renegotiation program 𝑝𝑖 ∈ 𝑃 rn𝑖 (rn
𝑖 ), for some 𝑝def

𝑖

Require: Counterpart program 𝑝 𝑗

1: if 𝑝 𝑗 ∈ 𝑃 rn𝑗 (rn
𝑗 ) for some rn𝑗 ∈ R then ⊲ Check that 𝑝 𝑗

renegotiates

2: �̂� ← 𝒂(pdef)
3: if rn𝑖 (�̂�) = rn𝑗 (�̂�) then
4: return rn

𝑖
𝑖
(�̂�) ⊲ Play renegotiation action

5: else
6: return 𝑎𝑖 ⊲ Play default against others’ defaults

7: else
8: return 𝑝def

𝑖
(𝑝 𝑗 ) ⊲ Play default

Proof. This follows immediately from the definitions of rene-

gotiation function, Algorithm 1, and SPI. □

Example 3.2. (SPI using renegotiation) In Example 3.1, the

players miscoordinated in the Scheduling Game. However, each

player 𝑖 might reason that, if they were to renegotiate with 𝑗 , a

renegotiation function that is fair enough to both players that they

would both be willing to use it is: Map each outcome where players

choose different slots to the symmetric (Slot 3, Slot 3) outcome. So,

they could be better off using transformed versions of their defaults

that renegotiate in this way.

3.3 Incentives to Renegotiate
When is the use of renegotiation guaranteed in subjective equi-

librium in program games? SPIs by definition make all players

(weakly) better off ex post, but it remains to show that players pre-

fer to renegotiate ex ante. Intuitively, one might worry that players

will choose not to accept a Pareto improvement in order to avoid

losing bargaining power.

It is plausible that, all else equal, players prefer strategies that ad-

mit more opportunities for coordination. So, suppose players always

prefer a renegotiation program over a non-renegotiation program if

their expected utility is unchanged. Then Proposition 2 shows that,

under a mild assumption on players’ beliefs, each player always

prefers to transform their default program into some renegotiation
program. That is, each player 𝑖 always prefers to use a program in

𝑃 rn
𝑖

=
⋃

rn 𝑃
rn

𝑖
(rn) (so their program profile is in Prn = 𝑃 rn

1
× 𝑃 rn

2
).

For this result, we assume (Assumption 4) the following holds

for any program profile p given by (a) a program used by some

player 𝑖 in subjective equilibrium and (b) a program in the support

of player 𝑖’s beliefs: If the programs in p don’t renegotiate with

each other, then, a program should respond equivalently to any

renegotiation program as it would respond to that program’s default.

This is because it seems implausible that players would respond

differently to renegotiation programs that do not respond differently

to them (in particular, “punish” renegotiation), all else equal.

Assumption 4. We say that players with beliefs 𝜷 are certain
that renegotiation won’t be punished if the following holds.

Take any renegotiation function rn ∈ R; any renegotiation program
𝑝𝑖 ∈ 𝑃 rn𝑖 (rn); and any 𝑝 𝑗 in the support of 𝛽𝑖 such that the programs

in p don’t renegotiate with each other. (I.e., there is no rn𝑗 such
that 𝑝 𝑗 ∈ 𝑃 rn𝑗 (rn

𝑗 ) where rn𝑗 (𝒂(pdef)) = rn(𝒂(pdef)).) Then:

(1) 𝑝 𝑗 (𝑝𝑖 ) = 𝑝 𝑗 (𝑝def𝑖
).

(2) If 𝑝def
𝑖

is used in subjective equilibrium with respect to 𝛽𝑖 ,

and 𝑝 𝑗 ∈ 𝑃 rn𝑗 , we have 𝑝def
𝑖
(𝑝 𝑗 ) = 𝑝def

𝑖
(𝑝def

𝑗
).

Proposition 2. Let 𝐺 (P) be any program game. Let 𝜷 be any

belief profile satisfying the assumption that players are certain that

renegotiation won’t be punished (Assumption 4). And, for some

arbitrary renegotiation function rn, for each 𝑖 and 𝑝𝑖 ∈ 𝑃𝑖 , let 𝑓 ∗𝑖 (𝑝𝑖 )
be the program of the form in Algorithm 1 with 𝑓 ∗

𝑖
(𝑝𝑖 )def = 𝑝𝑖 .

Then, for every subjective equilibrium (p∗, 𝜷) of𝐺 (P∪Prn) where
𝑝∗
𝑖′ ∉ 𝑃 rn

𝑖′ for some 𝑖′, there exists p′ ∈ Prn
such that:

(1) For all 𝑖 ,

𝑝′𝑖 =

{
𝑝∗
𝑖
, if 𝑝∗

𝑖
∈ 𝑃 rn

𝑖
(rn𝑖 ) for some rn𝑖 ;

𝑓 ∗
𝑖
(𝑝∗

𝑖
), else.

(2) (p′, 𝜷) is a subjective equilibrium of 𝐺 (P ∪ Prn).

Proof Sketch. For any non-renegotiation program for player 𝑖 ,

construct a renegotiation program by letting this program be the

default of Algorithm 1. If the other players’ programs don’t renego-

tiate to the same outcome as 𝑖’s program, then 𝑖 uses their default,

so by the no-punishment assumption they achieve the same payoff

as in the original subjective equilibrium. Otherwise, renegotiation

Pareto-improves on the default, so the player is better off using the

renegotiation program. □

4 THE SPI SELECTION PROBLEM AND
CONDITIONAL SET-VALUED
RENEGOTIATION

To Pareto-improve on the default outcome, the renegotiation pro-

grams defined in Section 3.2 require players to coordinate on the

renegotiation function. So does renegotiation just reproduce the

same coordination problem it was intended to solve? This is a

general problem for SPIs, referred to by OC as the “SPI selection

problem.”
7

Here, we argue that, although in part the players’ initial bargain-

ing problem recurs in SPI selection, players will always renegotiate

so that each attains at least the worst payoff they can get in any

efficient outcome. Following Rabin [21] we call the profile of these

payoffs the Pareto meet minimum (PMM). Player 𝑖’s Pareto
meet projection (PMP) (Fig. 1) maps each outcome to the set of

Pareto improvements such that, first, each player’s payoff is at least

the PMM, and second, the payoff of 𝑗 ≠ 𝑖 is not increased except

up to the PMM. We will prove our bound by arguing that if players

attempt to negotiate a Pareto improvement on an outcome, they

always at least weakly prefer to be willing to negotiate to the PMP

of that outcome.

Definition 5. Let 𝐸 be the set of Pareto-efficient action profiles

in 𝐺 . Then the Pareto meet minimum (PMM) payoff profile is

7
OC give a brief informal characterization of an idea similar to our proposed par-

tial solution to SPI selection (p. 39): “To do so, a player picks an instruction that is

very compliant (“dove-ish”) w.r.t. what SPI is chosen, e.g., one that simply goes with

whatever SPI the other players demand as long as that SPI cannot further be safely

Pareto-improved upon.” However, our approach does not require complying with

whatever SPI the other player demands.
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𝑥

𝑦

𝑥

𝑦

𝑥

𝑦

P1’s PMP

P2’s PMP

PMM

Figure 1: Illustration of the Pareto meet projection (PMP)
of three different outcomes (black points) in the Schedul-
ing Game, for each player. Gray points represent payoffs at
each pure strategy profile. Each black point is mapped via a
player’s PMP (black arrows) to a set containing a) the “near-
est” point in the Pareto meet and b) all points better for the
given player and no better for the other player than (a).

uPMM = (min𝒂∈𝐸 𝑢1 (𝒂),min𝒂∈𝐸 𝑢2 (𝒂)). Player 𝑖’s Pareto meet
projection (PMP) of an action profile 𝒂 is the set PMP𝑖 (𝒂) of
action profiles �̃� such that 𝑢𝑖 (�̃�) ≥ max{𝑢PMM

𝑖
, 𝑢𝑖 (𝒂)} and 𝑢 𝑗 (�̃�) =

max{𝑢PMM

𝑗
, 𝑢 𝑗 (𝒂)}.

We’ll start by giving an informal description of the algorithm

we will use to prove the guarantee, called conditional set-valued
renegotiation (CSR). Next, we’ll describe different components

of the algorithm in more depth. Finally, we’ll formally present the

algorithm and the guarantee.

4.1 Overview of CSR
If players want to increase their chances of Pareto-improving via

renegotiation, without necessarily accepting renegotiation out-

comes that heavily favor their counterpart, they can report to each

other multiple renegotiation outcomes they each would find ac-

ceptable and take Pareto improvements on which they agree. CSR

implements such an approach. Like Algorithm 1, CSR involves

default programs, and checks whether the default programs of a

profile of CSR algorithms result in an efficient outcome. If not, CSR

moves to a renegotiation procedure that works as follows:

(1) Renegotiation using conditional sets. At this stage, pro-
grams “announce” sets of points that Pareto-improve on the

default and that they are willing to renegotiate to, condi-

tional on the other player’s program (see shaded regions in

Fig. 2). If these sets overlap, the procedure continues to the

second step; otherwise the players revert to their defaults.

The intuition for using sets at this stage is that (we will
argue) this way a player can use a program that is willing

to renegotiate to a payoff above their PMM payoff, without

risking miscoordination if the other player does not also

choose this new payoff precisely (see Fig. 2). Renegotiation

sets that condition on the other player’s renegotiation set

function are crucial to the result that players are guaranteed

their PMM payoff. This is because unconditionally adding

an outcome to the renegotiation set might provide Pareto

improvements against some possible counterpart program,

but make the outcome worse against some other possible
counterpart program (see Example 4.2).

(2) Choosing a point in the agreement set. Call the intersec-
tion of the sets players announced at the previous stage the

“agreement set.” At this stage, a “selection function” chooses

an outcome from the Pareto frontier of the agreement set,

which the players play instead of their miscoordinated de-

fault outcome. (Section 4.2 discusses how players coordinate

on the selection function, without needing to solve a further

bargaining problem.)

4.2 Components of CSR
4.2.1 Set-valued renegotiation. To avoid the need to coordinate on

an exact renegotiation function, players can use functions that map

miscoordinated outcomes to sets of Pareto improvements they each

find acceptable. (In examples, we’ll abuse terminology by referring

to action profiles by their corresponding payoff profiles.) Then, we

suppose the players follow some rule (a selection function) for
choosing an efficient outcome from their agreement set.

Definition 6. Let C (A) be the set of closed subsets of A.
8
Let-

tingR𝑖
be a set of functions fromR𝑗 ×A to C(A), a function RN𝑖 ∈

R𝑖
is a set-valued renegotiation function if, for all RN𝑗 ∈ R𝑗

:

(1) For all 𝒂 ∈ A and 𝒂′ ∈ RN𝑖 (RN𝑗 , 𝒂), we have u(𝒂′) ⪰ u(𝒂).
(2) For some 𝒂 and some 𝒂′ ∈ RN𝑖 (RN𝑗 , 𝒂), we have 𝑢𝑖′ (𝒂′) >

𝑢𝑖′ (𝒂) for some 𝑖′.

A function sel : C(A) → A is a selection function if sel(𝑆) is
Pareto-efficient among points in 𝑆 .9 A selection function is tran-
sitive if, for all 𝑆, 𝑆 ′ such that u(x) ⪰ u(sel(𝑆)) for all x ∈ 𝑆 ′, we
have u(sel(𝑆 ∪ 𝑆 ′)) ⪰ u(sel(𝑆)).

One might worry that by assuming a fixed selection function,

we still haven’t avoided the need for coordination. However, note

that there is no bargaining problem involved in coordinating on a

selection function. To see this, consider two players who intended

to use renegotiation programs with different selection functions.

Each player could switch to using a program that used the other

player’s selection function, and modify their set-valued renegotia-

tion function so as to guarantee the same outcome as if the other

player switched to their selection function. (See Appendix B in sup-

plementary material
10

for a formal argument.) So the players are

indifferent as to which selection function is used. (Coordinating on

a selection function is a pure coordination problem, however; com-

pare to the problem of coordinating on the programming language

used in syntactic comparison-based program equilibrium [26].) In

8
I.e., closed with respect to the topology on A induced by the Euclidean distance

𝑑 (𝒂, 𝒂′ ) = | |u(𝒂) − u(𝒂′ ) | | .
9
Because each 𝑆 ∈ C(A) is closed, some points in 𝑆 are guaranteed to be Pareto-

efficient among points in 𝑆 .
10
Available online at https://arxiv.org/abs/2403.05103.
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𝑥

𝑦

𝑥

𝑦
P1’s set

P2’s set

Figure 2: Set-valued renegotiation in the Scheduling Game,
for two possible player 2 renegotiation sets. Black points
represent renegotiation outcomes (mapped from the misco-
ordination outcome (0, 0)). If player 1 uses the renegotiation
set shown here, they can achieve a Pareto improvement even
if players don’t reach the Pareto frontier (left), while still
allowing for their best possible outcome (right).

the results that follow, we will show that players can guarantee the

PMM no matter which (transitive) selection function they use.

Example 4.1. (Set-valued renegotiation) Suppose players in the

Scheduling Game (Table 1) miscoordinate at 𝒂 = (0, 0). The two
plots in Fig. 2 illustrate set-valued renegotiation for two possible

player 2 renegotiation sets RN2 (RN1, 𝒂), and a fixed player 1 rene-

gotiation set RN1 (RN2, 𝒂). Black points indicate the corresponding

renegotiation outcomes. Player 1 thinks it’s likely that the only effi-

cient outcome player 2 is willing to renegotiate to is their own most

preferred outcome (1, 3) (topmost gray point, left plot). But player 1

believes that with positive probability player 2’s renegotiation set

will also include player 1’s most preferred outcome (3, 1) (black

point, right plot). Player 1’s best response given these beliefs may

be to choose a set-valued renegotiation function RN1
that maps

(0, 0) to a set including both (3, 1) and all outcomes Pareto-worse

than (3, 1), i.e., the set depicted in Fig. 2. This way, they still achieve

a Pareto improvement if player 2 has the smaller set (left plot), and

get their best payoff if player 2 has the larger set (right plot).

4.2.2 Conditional renegotiation sets. We saw that renegotiation

sets allow a player to achieve Pareto improvements against a wider

variety of other players than is possible with renegotiation func-

tions. However, suppose a player could not condition their renegoti-

ation set on the other player’s program. Then, by adding a point to

their renegotiation set in attempt to Pareto-improve against some

possible players, theymight lock themselves out of a better outcome

against other possible players.

Example 4.2. (Failure of unconditional renegotiation sets)
Suppose that in the Scheduling Game, Player 1 uses an uncondi-

tional set-valued renegotiation function RN1
. Fig. 3 shows their

set RN1 (RN2, 𝒂) for the miscoordination outcome 𝒂 = (0, 0). Sup-
pose player 1 instead considers using RN1

′
such that for all RN2

,

their renegotiation set is RN1
′ (RN2, 𝒂) = RN1 (RN2, 𝒂) ∪ {uPMM}.

For both player 2 renegotiation sets shown in the figure, the players

renegotiate to (i.e., the selection function chooses) the PMM (star).

Then, player 1 is better off than under the default renegotiation

outcome (black point) in the case in the left plot, but worse off in

𝑥

𝑦

𝑥

𝑦 P1’s set

P2’s set

PMM

Figure 3: Two possible renegotiation procedures in the Sched-
uling Game, for different player 2 renegotiation sets. Player 1
might add the PMM (star) to their unconditional renegoti-
ation set. In the case in the left plot, player 1 is no worse
off by adding the PMM to their set. But in the case in the
right plot, if player 1 adds the PMM, they might do worse if
the selection function chooses the PMM instead of the black
point that would have otherwise been achieved.

the case in the right plot. But if player 1 had access to conditional

renegotiation sets, they could instead use an RN1
′
that includes the

PMM only against the player 2 set in the left plot.

4.2.3 Renegotiation sets that guarantee the PMM. How can a player

guarantee a payoff better than some miscoordination outcome,

without losing the opportunity to bargain for their most-preferred

outcome? Suppose player 𝑖 considers using a set-valued renegoti-

ation function that doesn’t guarantee the PMM. That is, against

some counterpart program, the resulting outcome 𝒂 is worse for

at least one player than their least-preferred efficient outcome (i.e.,

their PMM payoff). Then:

(1) As we will argue in Theorem 3, under mild assumptions,

player 𝑖 is no worse off also including PMP𝑖 (𝒂) in their rene-

gotiation set. So, if player 𝑗 also follows the same incentive to

include PMP𝑗 (𝒂) in their renegotiation set, these programs

will guarantee at least the PMM. (Notice that players’ ability

to guarantee the PMM depends on conditional renegotiation

sets, for the reasons discussed in Example 4.2.)

(2) On the other hand, if 𝑖 thinks the selection functionmight not

choose their optimal outcome in the agreement set, 𝑖 will not
prefer to include outcomes strictly better for player 𝑗 than

those in PMP𝑖 (𝒂). For example, in Fig. 2, RN1 (RN2, (0, 0))
includes all outcomes Pareto-worse than PMP1 ((0, 0)). This
set safely guarantees the PMM against a player who also uses

a set of this form, and gives player 1 their best possible out-

come against theRN2
in the right plot. But ifRN1 (RN2, (0, 0))

in the right plot included additional outcomes, which would

be worse for player 1 than player 1’s best possible outcome,

the selection functionmight choose an outcome that is worse

for player 1 than otherwise. (This is why, when we construct

strategies for the proof of Theorem 3, we add the entire PMP

even though it is sufficient to only add the point in the PMP

that minimizes the player’s payoff.)

Finally, here is the formal definition of CSR programs. For a

set-valued renegotiation function RN𝑖
, we define the space of CSR
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programs 𝑃RN
𝑖
(RN𝑖 ) as the space of programs with the structure

of Algorithm 2, for some default 𝑝def
𝑖

. (Let RRN
be the set of all set-

valued renegotiation functions, and for each 𝑖 let the space of all CSR

programs be 𝑃RN
𝑖

=
⋃

RN𝑖 ∈RRN 𝑃
RN

𝑖
(RN𝑖 ). Let PRN = 𝑃RN

1
× 𝑃RN

2
.)

The selection function sel is given to the players (and we suppress

dependence of 𝑃RN
𝑖

on sel for simplicity).

Algorithm 2 Conditional set-valued renegotiation program 𝑝𝑖 ∈
𝑃RN
𝑖
(RN𝑖 ), for some 𝑝def

𝑖

Require: Counterpart program 𝑝 𝑗

1: if 𝑝 𝑗 ∈ 𝑃RN𝑗 (RN
𝑗 ) for some RN𝑗 ∈ RRN then

2: �̂� ← 𝒂(pdef)
3: 𝐼 ← RN1 (RN2, �̂�) ∩ RN2 (RN1, �̂�) ⊲ Agreement set

4: if 𝐼 ≠ ∅ then
5: �̂� ← sel(𝐼 ) ⊲ Renegotiation outcome

6: return 𝑎𝑖 ⊲ Play renegotiation outcome, or default

7: else
8: return 𝑝def

𝑖
(𝑝 𝑗 )

4.3 Guaranteeing PMM Payoffs Using CSR
Similar to the assumption in Section 3.3, suppose players always

include more outcomes in their renegotiation sets if their expected

utility is unchanged. So in particular, to show that in subjective

equilibrium players use programs that guarantee at least the PMM,

it will suffice to show that they weakly prefer these programs.

Then, we will show in Theorem 3 that under mild assumptions

on players’ beliefs, for any program that does not guarantee a player

at least their PMM payoff, there is a corresponding CSR program the

player prefers that does guarantee their PMM payoff. We prove this

result by constructing programs identical to the programs players

would otherwise use, except that these new programs’ renegotiation

sets for each outcome include their PMP of the outcome they would

have otherwise achieved. For a program 𝑝𝑖 , we call this modified

program the PMP-extension of 𝑝𝑖 (Definition 7).

This result requires two assumptions on players’ beliefs and

the structure of programs used in subjective equilibrium (Assump-

tions 8i and 8ii), analogous to Assumption 4 of Proposition 2:

(1) Assumption 8i is equivalent to Assumption 4 applied to CSR

programs rather than renegotiation programs: For any pro-

gram used in subjective equilibrium or in the support of

a player’s beliefs, if that program never renegotiates, it re-

sponds identically to counterpart CSR programs as to their

defaults.

(2) Informally, Assumption 8ii says that players believe that,

with probability 1: If a CSR program is modified only by

adding PMP points to its renegotiation set, the only changes

the counterparts would prefer to make are those that also

add PMP points. The intuition for this assumption is: For any

possible default renegotiation outcome, the PMP-extension,

by definition, doesn’t add any points that make the coun-

terpart strictly better off than that outcome while making

the focal player worse off (see Fig. 4). So, similar to Assump-

tion 8i, the counterpart doesn’t have an incentive to make

changes to their renegotiation set that would make the focal

𝑥

𝑦
𝒂(pdef)
RN1 (RN2, 𝒂(pdef))
RN2 (RN1, 𝒂(pdef))
𝒂(p)
PMP1 (𝒂(p))

Figure 4: Illustration of the argument for Theorem 3. By
default, the renegotiation outcome is the black circle, 𝒂(p).
Player 1 considers whether to add to their renegotiation
set RN1 (RN2, 𝒂(pdef)) the black striped segment PMP1 (𝒂(p)).
Player 1 is certain that player 2 would not change their set
RN2 (RN1, 𝒂(pdef)) in response to this addition in a way that
would make player 1 worse off (Assumption 8). This is be-
cause the only change player 1 has made is to add outcomes
that make both players weakly better off than 𝒂(p) and do
not make player 2 strictly better off.

player worse off. (This argument wouldn’t work if player 𝑖

also added outcomes that are better for 𝑗 than their PMP-

extension. This is because, as noted in the previous section, 𝑗

would then have an incentive to exclude 𝑖’s most-preferred

outcome from 𝑗 ’s renegotiation set.)

For Theorem 3 we also assume the selection function is transitive.

This is an intuitive property: If outcomes are added to the agree-

ment set that make all players weakly better off than the default

renegotiation outcome, the new renegotiation outcome should be

weakly better for all players.

The remainder of this subsection provides the formal details for

the statement of Theorem 3, and a sketch of the proof.

Definition 7. For any 𝑝𝑖 ∈ 𝑃RN
𝑖
(RN𝑖 ) for some RN𝑖

, the PMP-

extension 𝑝𝑖 ∈ 𝑃RN𝑖 (R̃N
𝑖 ) is the program identical to 𝑝𝑖 except: for

all 𝑝 𝑗 ∈ 𝑃RN𝑗 (RN
𝑗 ) for some RN𝑗

, writing p̃𝑖 = (𝑝𝑖 , 𝑝 𝑗 ), we have

R̃N
𝑖 (RN𝑗 , 𝒂(p̃𝑖

def

)) = RN𝑖 (RN𝑗 , 𝒂(p̃𝑖
def

)) ∪ PMP𝑖 (𝒂(p)) .

Assumption 8. We say that players with beliefs 𝜷 are (i) cer-
tain that CSR won’t be punished and (ii) certain that PMP-
extension won’t be punished if the following hold:

(i) Suppose either 𝑝𝑖 is in a subjective equilibrium of𝐺 (P∪PRN),
or 𝑝𝑖 is in the support of 𝛽 𝑗 . Suppose 𝑝𝑖 ∉ 𝑃RN

𝑖
. Then for any

𝑝 𝑗 ∈ 𝑃RN𝑗 , we have 𝑝𝑖 (𝑝 𝑗 ) = 𝑝𝑖 (𝑝def𝑗
).

(ii) Let 𝑝 𝑗 ∈ 𝑃RN𝑗 (RN
𝑗 ) be in the support of 𝛽𝑖 , and take any 𝑝𝑖 ∈

𝑃RN
𝑖
(RN𝑖 ) with PMP-extension 𝑝𝑖 . For all 𝒂, we have that

RN𝑗 (R̃N𝑖
, 𝒂) = RN𝑗 (RN𝑖 , 𝒂) ∪𝑉 for some 𝑉 ⊆ PMP𝑖 (𝒂(p)).

Theorem 3. Let𝐺 (P) be a program game, and sel be any transitive
selection function. Suppose the action sets of 𝐺 are continuous, so

that for any 𝒂 ∈ A, player 𝑖’s PMP of that action profile PMP𝑖 (𝒂) is
nonempty. Let 𝜷 be any belief profile satisfying the assumption that

players are (i) certain that CSR won’t be punished and (ii) certain

that PMP-extension won’t be punished (Assumption 8).
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Then, for any subjective equilibrium (p, 𝜷) of𝐺 (P∪PRN) where
𝑈𝑖 (p) < 𝑢PMM

𝑖
for some 𝑖 , there exists p′ such that:

(1) For all 𝑖 , 𝑝′
𝑖
is the PMP-extension of 𝑝𝑖 .

(2) U(p′) ⪰ uPMM
.

(3) (p′, 𝜷) is a subjective equilibrium of 𝐺 (P ∪ PRN).
Proof Sketch. Assumption 8i implies that players always use

CSR programs. Consider any renegotiation outcome 𝒂 worse for

some player than the PMM, which is achieved by player 𝑖’s “old”

program against some counterpart. By Assumption 8ii, player 𝑗

doesn’t punish 𝑖 for adding their PMP of that outcome, PMP𝑖 (𝒂),
to their renegotiation set (in their “new” program). So the rene-

gotiation outcome of the new program against 𝑗 is only different

from that of the old program if 𝑗 is also willing to renegotiate to

some outcome in PMP𝑖 (𝒂). But in that case, because the selection

function is transitive, the new renegotiation outcome is no worse

for 𝑖 than under the old program. Therefore, each player always

prefers to replace a given program with its PMP-extension, and

when all players use PMP-extended programs, the Pareto frontier

of their agreement set only includes outcomes guaranteeing each

player their PMM payoff. □

Remark: Notice that the argument above does not require that

players refrain from using programs that implement other kinds of

SPIs, besides PMP-extensions. First, the PMP-extension can be con-

structed from any default program, including, e.g., a CSR program

whose renegotiation set is only extended to include the player’s best

outcome, not their PMP (call this a “self-favoring extension”). And

if a player’s final choice of program is their self-favoring extension,

they are still incentivized to use the PMP-extension within their

default program.

Second, while it is true that an analogous argument to the proof

of Theorem 3 could show that a player is weakly better off ex ante
using a self-favoring extension than not extending their renego-

tiation set at all, this does not undermine our argument. This is

because, as we claimed at the start of this section, it is reasonable

to assume that among programs with equal expected utility, each

player prefers to also include their PMP. But wouldn’t the player

also prefer an even larger renegotiation set that includes outcomes

that Pareto-dominate the PMM as well? No, because those out-

comes will be worse for that player and better for their counterpart

than the player’s most-preferred outcome, such that the counter-

part would have an incentive to make the player worse off (i.e., it’s

plausible that Assumption 8ii would be violated).

We can now formalize the claim that CSR is an SPI that partially

solves SPI selection: The mapping from programs p to instances of

Algorithm 2 withp as defaults, for any profile (RN1,RN2) used in

subjective equilibrium under the assumptions of Theorem 3, is an

SPI that guarantees players their PMM payoffs.

Proposition 4. For 𝑖 = 1, 2, for some selection function sel, define
𝑓 RN

𝑖

𝑖
: 𝑃𝑖 → 𝑃RN

𝑖
(RN𝑖 ) such that, for each 𝑝𝑖 ∈ 𝑃𝑖 , 𝑓 RN

𝑖

𝑖
(𝑝𝑖 ) is of

the form given in Algorithm 2 with 𝑓 RN
𝑖

𝑖
(𝑝𝑖 )

def

= 𝑝𝑖 . Then, under

the assumptions of Theorem 3, for any (RN1,RN2), pdef such that

for all RN𝑗
, PMP𝑖 (𝒂(p)) ⊆ RN𝑖 (RN𝑗 , 𝒂(p)):

(1) The function fRN : p ↦→ (𝑓 RN1

1
(𝑝1), 𝑓 RN

2

2
(𝑝2)) is an SPI.

(2) For all 𝑖 ,𝑈𝑖 (fRN (pdef)) ≥ max{𝑈𝑖 (pdef), 𝑢PMM

𝑖
}.

Proof. This follows immediately from the argument used to

prove Theorem 3. □

Table 2: Key notation

Symbol Description (page introduced)

𝒂(p) action profile in the base game played by players

with the given program profile (2)

rn𝑖 renegotiation function for player 𝑖 (maps an action

profile to a Pareto-improved action profile) (3)

RN𝑖
set-valued renegotiation function for player 𝑖

(maps 𝑗 ’s set-valued renegotiation function and

an action profile to a set of Pareto-improved

action profiles) (5)

R,RRN
sets of all renegotiation functions and set-valued

renegotiation functions, respectively (3, 6)

𝑃 rn
𝑖
(rn𝑖 ) set of renegotiation programs (Algorithm 1) that

use the renegotiation function rn𝑖 (3)
𝑃RN
𝑖
(RN𝑖 ) set of conditional set-valued renegotiation

programs (Algorithm 2) that use the set-valued

renegotiation function RN𝑖
(6)

𝑝def
𝑖

default program for a program 𝑝𝑖 in 𝑃 rn
𝑖

or 𝑃RN
𝑖

(3)

sel selection function (maps a set of action profiles to

an action profile that is efficient within that set) (5)

uPMM
Pareto meet minimum (5)

PMP𝑖 Pareto meet projection for player 𝑖 (maps an

action profile to a particular set of Pareto-improved

action profiles) (5)

5 DISCUSSION
Using renegotiation to construct SPIs in program games is a rich

and novel area, with many directions to explore. To name a few:

• Which plausible conditions would violate our assumptions

about players’ beliefs used for the PMM guarantee?

• What do unilateral SPIs [19] look like in this setting?

• When are SPIs used in sequential, rather than simultaneous-

move, settings? In particular, in sequential settings, the first-

moving player’s decision whether to use a renegotiation

program could signal private information to the second-

moving player.

• We have assumed complete information about payoffs; using

ideas from DiGiovanni and Clifton [6]’s framework for pro-

gram games in the presence of private information, it should

also be possible to construct SPIs in incomplete information

settings.

• How can this theory inform real-world AI system design?
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