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ABSTRACT
Teams of Unmanned Ground Vehicles (UGVs) and drones are often

proposed for various patrolling applications, where drones quickly

move from one point of interest to the next while UGVs act as

moving base stations that can both recharge and ferry around the

drones. In this paper, we look at how to plan collaborative actions

between drones and UGVs for a patrolling mission over an indef-

inite time horizon. We demonstrate how to form a second-order

cone (SOC) program that finds optimal solutions, in polynomial

time, to a variant of the larger problem where the order of drone

and UGV actions are fixed. We propose two algorithms that use

our SOC program to find locally optimal solutions while consid-

ering the limited energy of both UGVs and drones. Our numerical

simulation results show that both of our algorithms yield a greater

than 50% improvement in solution quality when compared to a

baseline method from the literature. Additionally, we demonstrate

the authenticity of our problem setup through a proof-of-concept

experiment on a physical UGV and drone testbed.
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1 INTRODUCTION
Unmanned aerial vehicles (UAVs - commonly referred to as drones)

are fast and agile but have limited energy. Alternatively, unmanned

ground vehicles (UGVs) have larger battery storage and can be used

to recharge drones but are slower and may struggle to traverse

Distribution Statement A. Approved for public release: distribution is unlimited.

This work was supported in part by the Journeyman Fellowship (W911NF-24-2-0140).

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

rough terrain. These two platforms, when paired together, can

serve as an autonomous monitoring and patrolling team where the

drone is able to quickly move from one Point of Interest (PoI) to

the next while the UGV acts as a moving base station that can both

recharge and ferry around hitchhiking drones.

Path finding and rendezvous planning for drone-UGV teams is

a well studied area of interest within the robotics community. A

large body of this research focuses on minimizing the maximum

latency that a PoI is visited, often referred to minimizing the “worst

latency”. However, we argue that prioritizing the PoI with the

worst latency does not accurately represent how well a team is

patrolling a set of PoIs and may lead to other PoIs being ignored.

Consider a scenario where robots must routinely inspect equipment

at a petroleum refinery for hazardous air pollutant leaks [1, 29].

Ignoring a leak for too long will not only lead to a larger pollutant

spill, but may cause the leak to become worse over time. Therefore,

the penalty for neglecting any individual inspection site should

grow exponentially with time. In applications where a penalty can

be assigned for neglecting any individual PoI, such as security,

maintenance inspections, or sanitation, we argue that minimizing

the rate the penalty is accrued over an indefinite time horizon

should be preferred over minimizing the maximum latency.

Additionally, previous works have failed to consider how to plan

for long-term or indefinite deployments taking into account energy

requirements of these platforms. Moreover, many existing works

on this subject tend to simplify models for energy consumption

and energy transfer from the UGV to the drone, or ignore energy

constraints all together. This article seeks to fill this gap in the

existing literature.

In this work, we address the problem of planning patrolling routes
over indefinite time horizons for energy-constrained drone and UGV
teams, where UGVs can transfer energy to and ferry around hitch-
hiking drones. Our unique contributions include a Second-Order
Cone program for finding local optimum in polynomial time for

drone-UGV team monitoring problems, a framework for solving

drone-UGV team monitoring problems that considers energy shar-

ing and UGV energy constraints, and a taxonomy of drone-UGV

team monitoring problems.

2 LITERATURE REVIEW
In this section we define a taxonomy for Drone-UGV monitoring

problems and then summarize algorithms for these problems.
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2.1 Related Drone-UGV Problems
In this article, we look at a Drone-UGV teams monitoring problem

where mixed drone-UGV teams must visit a set of PoIs. The specific

application may vary widely, such as agriculture monitoring, border

patrolling, sanitation, environmental monitoring, maintenance in-

spections, or perimeter patrolling, and may involve different types

of tasks at each PoI, such as taking images, taking a sensor measure-

ment, or collecting data from wireless nodes, but the fundamental

planning problem remains the same: find paths that visit each PoI

while optimizing some metric.

Variations of the PoI visiting problem can be classified based on

a variety of factors. These factors include:

(1) the number of times a PoI is visited (fixed visit requirement

– F, or repeated visits indefinitely – I),
(2) the considered metric (minimizing completion time – T, min-

imizing maximum latency – L, minimizing distance – D, or
some other metric – O),

(3) which vehicle can visit a PoI (drone only – C, or drone and
UGV – B), and

(4) what support the ground vehicle provides to the drone (en-

ergy transfer only – E, position transfer only – P, or both
energy and position transfer – H – a.k.a hitchhiking).

Note that the difference between the T and L metrics is that mini-

mizing completion time (T) considers the time required to visit all
PoIs while minimizing maximum latency (L) considers the time to

visit the single most neglected PoI. Metric T tends to occur when

there is only a single robot (e.g. a single drone) that is visiting PoIs,

while metric L tends to come up when there are more than one

robot visiting PoIs in parallel (e.g. multiple drones), although these

trends are not strictly followed. Examples of other, less common

metrics (O) include time penalties [18] and average latency [30].

The majority of existing work falls within F:T variations of the

problem. Works looking at minimizing completion time for fixed

visits where only drones can visit PoIs (F:T:C) include [7, 14, 31, 32].

The natural extension to this scenario setup is to allow UGVs to

also visit PoIs (F:T:B), as seen in [11, 19, 21]. An example where

distance is used as a metric instead of time (the F:D:C variation)

can be found in [22].

Work on indefinite PoI monitoring with drone-UGV teams, often

termed patrolling, is more sparse. Examples where drones are re-

sponsible for visiting PoIs while minimizing completion time (I:T:C)

are found in [16, 17] while minimizing maximum latency examples

(I:L:C) are seen in [13, 25]. In [18], they consider a patrolling prob-

lem where both the drone and UGV can visit PoIs while using a

penalty that is measured at the end of a fixed time period (I:O:B).

There are also many examples of minimizing maximum latency in

patrolling problems outside of drone-UGV teams, such as [6, 23, 24],

which fall into the generalized multi-robot patrolling problem [3].

How UGVs are used in path finding problems vary across both

fixed visit and repeated visits scenarios. Works that only use the

UGV for energy transfer (E) include [11, 17–19, 21, 22, 31, 32]. The

more complex hitchhiking setup, where the UGV can both recharge

and ferry about drones, is less common but seen in [7, 13, 14, 25].

In this work, we consider a variation of the Drone-UGV teams PoI

monitoring problem where PoIs are visited indefinitely by drones

that hitchhike off of the UGV while minimizing the rate that a

penalty is accumulated for neglecting PoIs (I:O:C:H). To the best

of our knowledge, we are the first to consider this variation of

the Drone-UGV teams PoI monitoring problem. Perhaps the most

similar work to ours is found in [13, 25], where they have a similar

problem setup but are minimizing the maximum latency (I:L:C:H).

Although minimizing maximum latency may be preferable for cer-

tain applications, we argue that this metric is less desirable in

applications where a penalty can be assigned for neglecting any in-

dividual PoI. We prove that minimizing the maximum latency does

not decrease the penalty accumulation rate and use the algorithm

proposed in [25] as our baseline in this paper.

Furthermore, none of the summarized existing literature con-

siders limited onboard energy for the UGV. This is particularly

problematic for indefinite patrolling problems, where the UGV will

eventually run out of energy. Additionally, all existing works as-

sume that energy transfer from the UGV to the drone is completed at

a fixed time interval. Although this assumption may be reasonable

for scenarios where “energy transfer” refers to swapping batteries,

the time required to recharge drone batteries will depend on how

much energy was consumed by the drone prior to recharging. In

this work, we consider the limited energy of both drones and UGVs

and incorporate a model for wirelessly recharging drones on a UGV.

2.2 Path-Finding Algorithms
There are many approaches to solving the different variations of

the Drone-UGV teams PoI monitoring problem. The most common

approach is to first find routes for UGVs then build drone routes

off of static UGV routes, as seen in [7, 13, 21, 22, 25], although

some have considered UGV and drone routing as separate problems

and focus on finding rendezvous points [2, 11, 32]. An example of

planning routes together is found in [31].

Regardless of how these problems are broken up, these algo-

rithms usually run iteratively [7, 19, 21], where different sub-problems

are addressed individually on each iteration. The iterative approach

commonly uses Integer Programming [7, 16, 19, 31], though Integer

Programs do not run in polynomial time. A common method for

separating the work done by different robots is to use a cluster algo-

rithm, as seen in [14, 22] or other partitioning algorithms [13, 25].

Finding routes themselves is often treated as a Traveling Salesman

Problem, for which there are well studied polynomial time solutions

and complete solutions [8].

In this work, we propose a Second-Order Cone (SOC) program to

optimize routes for both drones and UGVs together. The advantage

to formulating this problem as a SOC program is that they can

be solved to optimality in polynomial time. Both of our proposed

algorithms to the Team-PITH problem utilize this SOC program.

The second algorithm runs iteratively, solving the SOC program and

the TSP repeatedly, while the first algorithm shows the effectiveness

of the SOC program without iterations.

3 PROBLEM FORMULATION
We consider a problem where collaborative teams of UGVs and

drones must repeatedly visit PoIs with the objective of reducing the

time that any PoI is left unattended. For this problem, we are given

𝑚𝑔 UGVs,𝑚𝑎 drones, and 𝑛 PoIs that must be routinely visited by

one (or more) of the drones. Let 𝐼 be the set of all PoIs, 𝑅𝑎 be the
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set of drones, and 𝑅𝑔 be the set of UGVs, where |𝐼 | = 𝑛, |𝑅𝑎 | =𝑚𝑎 ,

and |𝑅𝑔 | =𝑚𝑔 . Each UGV has an assigned team of drones that can

land and launch off of the UGV and recharge from the UGV. Let 𝐷 𝑗

be the set of drones assigned to UGV 𝑗 . We assume that all 𝐷 𝑗 are

fixed and leave mixing UGV-drone teams to future work.

In the following subsections we mathematically define a pa-

trolling kernel and the penalty accrued for leaving a PoI unmoni-

tored, discuss energy models for both drones and UGVs, including

wireless energy transfer from a UGV to a drone, and formally define

the Team-PITH Problem.

3.1 Patrolling Kernels
To define a patrolling route for each robot, we use sequences of

actions that dictate what each vehicle does. We define action 𝑖 as

the tuple 𝑎𝑖 = {(𝑥𝑖 , 𝑦𝑖 ), 𝑡𝑖 , 𝜍}, where:
• (𝑥𝑖 , 𝑦𝑖 ) are the x, y-coordinates where the action takes place,

• 𝑡𝑖 is the time that the action is completed, and

• 𝜍 represents the actions type, defined over a set of possible

action types for each robot type.

For drones, action types include take-off, visit-PoI, return-to-UGV
and land. For UGVs, action types include launch-drone, receive-drone,
return-to-base and swap-battery. Let 𝐴𝑔

𝑗
be a sequence of actions

for UGV 𝑗 and 𝐴𝑎
𝑘
be a sequence of actions for drone 𝑘 . Note that

consecutive pairs of actions in an action sequence may require the

robot to move from one location to the next and perform some

procedure at that location. For example, a launch-drone action 𝑎𝑖
at some (𝑥𝑖 , 𝑦𝑖 ) position followed by a receive-drone action 𝑎𝑖+1 at
a different (𝑥𝑖+1, 𝑦𝑖+1) position will require the UGV to physically

move from (𝑥𝑖 , 𝑦𝑖 ) to (𝑥𝑖+1, 𝑦𝑖+1) and wait for the drone to land

before action 𝑎𝑖+1 can be considered complete. We say that an

action sequence, 𝐴
𝑔

𝑗
or 𝐴𝑎

𝑘
, is valid if every consecutive pair of

actions in the action sequence adhere to the dynamic limitations of

the robot and allow time for the actions type to be completed.

Each time a drone performs a take-off action followed by some

number of visit-PoI actions, a return-to-UGV action, and a land
action, it is termed a sortie (that is, a complete drone flight). We

formally define a drone sortie as the tupleT𝑘 = {𝑠𝑎𝑘 ,𝑒 𝑎𝑘 , 𝐼𝑘 }, where
• 𝑠𝑎𝑘 is the take-off action that starts the sortie,

• 𝑒𝑎𝑘 is the land action that ends the sortie, and

• 𝐼𝑘 is a sequence of PoIs that the drone will visit along the

sortie.

Each 𝐴𝑎
𝑘
can contain multiple T𝑘 .

We define a patrolling kernel as the set S = {𝐴𝑔, 𝐴𝑎}, where
• 𝐴𝑔

is a set of UGV action sequences, and

• 𝐴𝑎
is a set of drone action sequences.

Observe that certain drone and UGV actions will be correlated. For

example, if drone 𝑘 is launching from UGV 𝑗 , then there should be

a take-off action 𝑎𝑘 ∈ 𝐴𝑎
𝑘
that corresponds with some launch-drone

action 𝑎 𝑗 ∈ 𝐴𝑔

𝑗
where 𝑡𝑘 = 𝑡 𝑗 for 𝑡𝑘 ∈ 𝑎𝑘 , 𝑡 𝑗 ∈ 𝑎 𝑗 . We say that S is

consistent if take-off and land actions in 𝐴𝑎
have a corresponding

launch-drone and receive-drone action in 𝐴𝑔
.

3.2 Penalty Accumulation Rate
In this work, we propose imposing a penalty for neglecting a PoI

and increasing how much penalty is applied as time passes. The
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Figure 1: Examples of Instantaneous Penalty for PoIs.

idea is to prevent the robots from ignoring a PoI for too long while

also factoring in to the objective how often all PoIs are monitored.

Let the instantaneous penalty be linearly proportional to the

units of time of the PoI latency. That is, for each hour that passes

that we do not remove trash from a trash bin, the rate that we

gain a penalty grows by one unit. The instantaneous penalty resets

to zero each time a PoI is visited. An example of this is shown in

Figure 1, where three PoIs are visited over varying intervals and

the instantaneous penalty grows linearly with time. Suppose that a

robot removed the trash every 𝑡𝑖 hours. The total penalty that we

gain over 𝑡𝑖 hours will be
∫ 𝑡𝑖
0

𝑡 𝑑𝑡 = 1

2
𝑡2
𝑖
. The total penalty gained

at any given time is the area under the latency lines, which is the

black line in Figure 2.

We chose hours as our unit of time because it lends itself well to

something easily interpretable by humans (removing trash every 5

hours is more tangible than saying every 18,000 seconds), but one

could switch to any other unit of time (seconds, days, galactic-years)

as is appropriate for the application and the following math would

still apply.

Given patrolling kernel S, we define a PoI visit sequence as

𝑆𝑣
𝑖
= {𝑡𝑖

1
, 𝑡𝑖
2
, · · · , 𝑡𝑖

𝐿
} for each PoI 𝑖 ∈ 𝐼 , where each 𝑡𝑖

𝑙
is the time

lapsed in hours from the beginning of S until 𝑖 is visited by a drone

in an action sequence in S for the 𝑙𝑡ℎ time, for 𝑙 ∈ {1, 2, · · · , 𝐿}. We

assume that the patrolling kernel S, and all 𝑆𝑣
𝑖
, will be repeated

indefinitely. From visit sequence 𝑆𝑣
𝑖
, we can derive the latency

sequence of kernel S as 𝑆𝐿
𝑖
= {𝑡𝑖

1
, (𝑡𝑖

2
− 𝑡𝑖

1
), · · · , (𝑡𝑖

𝐿
− 𝑡𝑖

𝐿−1)}, which
gives us the latency intervals that 𝑖 is visited in. From Figure 1,

𝑆𝐿
1
= {11}, 𝑆𝐿

2
= {4, 8} and 𝑆𝐿

3
= {6}.
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Figure 2: Point of Interest penalty accumulation example.
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The penalty accumulated for a single PoI by the end of a latency

sequence will be

𝐹𝑝 (𝑆𝐿𝑖 ) =
∑
𝑡𝑙 ∈𝑆𝐿𝑖

(𝑡𝑙 )2
2

. (1)

The average rate that penalty across all PoIs is accrued as patrolling

continues indefinitely will then be

𝑃𝐴𝑅(S) =
∑
𝑖∈𝐼

1

𝑡𝑖
𝐿

𝐹𝑝 (𝑆𝐿𝑖 ) . (2)

We term (2) the Penalty Accumulation Rate (PAR). From Figure 1,

𝑃𝐴𝑅(S) = ( 112
2
) ( 1

11
) + ( 42+82

2
) ( 1

12
) + ( 62

2
) ( 1

6
) = 11.833, which is

the slope of the pink dashed line in Figure 2.

Using PAR as a metric gives us a way to check how well a given

S addresses all PoIs, as oppose to using minimizing the maximum

latency, which does not tell us how well a patrolling kernel is

monitoring the non-maximum latency PoIs. In fact, we can make a

strong distinction between these two metrics:

Theorem 1. Minimizing the maximum latency across all PoIs does
not always reduce PAR.

Proof. By example, suppose that we found a new patrolling

kernel S′ with latency sequences 𝑆𝐿
1
= {10}, 𝑆𝐿

2
= {10} and 𝑆𝐿

3
=

{8}. KernelS′ has amaximum latency of 10whileS has amaximum

latency of 11. However, 𝑃𝐴𝑅(S′) = 14 ≮ 𝑃𝐴𝑅(S) = 11.833. □

3.3 Robot Energy Models
To formulate our patrolling problem, we require accurate models for

UGV energy consumption, drone energy consumption, and wireless

energy transfer from a UGV to a drone.

Energy models for UGVs: Previous works have shown that

the rate that a UGV consumes energy (in watts) depends on the

speed of the vehicle and can broadly be modeled as:

P𝑔 (𝑣) = 𝑐1𝑣 + 𝑐2 (3)

where 𝑣 is the speed that the vehicle is moving at (in meters per

second), and 𝑐1 and 𝑐2 are constants. An example of this model

is found in [10], where they experimentally found 𝑐1 = 464.8 and

𝑐2 = 156.3 for a standard Clearpath™ Warthog UGV.

Energy models for drones: Similarly, works such as [15, 33]

have shown that the power consumption on drones also depends

on the speed of the drone and can generally be approximated as:

P𝑎 (𝑣) = 𝑐3𝑣
3 + 𝑐4𝑣2 + 𝑐5𝑣 + 𝑐6 (4)

where 𝑐3, 𝑐4, 𝑐5 and 𝑐6 are again constants. An example of this model

is found in [26] where they experimentally determined these values

for a custom build hexacopter. We experimentally found 𝑐3 = 0, 𝑐4 =

0, 𝑐5 = −1.695 and 𝑐6 = 396.74 on the custom built drone found in

Section 6. In addition to Equation (3), we assume that launching

and receiving a drone will consume a constant amount of energy.

Let
𝑙 𝐽𝑘 and

𝑟 𝐽𝑘 be the energy required to launch and receive drone

𝑗 , respectively.

Wireless energy transfer from UGVs to drones: Unmanned

ground vehicles can hold significantly larger volumes of usable

energy when compared to drones, making them ideal for sharing

stored energywith their energy-limited drone teammates. To charge

a drone’s battery, we charge at constant current up to a “crossover

point”, 𝐸∗ (in joules), where energy transfer slows down. After

reaching 𝐸∗ jules, we apply a constant voltage until the battery is

full. Therefore, the relationship between energy transferred per

unit of time can be modeled as:

𝐸𝑡 (𝑡) =
{
𝑐7𝑡

2 + 𝑐8𝑡 0 ≤ 𝑡 ≤ 𝑡∗

𝐸∗ + 𝑃∗
𝛼 (1 − 𝑒

−𝛼 (𝑡−𝑡∗) ) 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥

(5)

where 𝑡 is the charge time in seconds, 𝑡∗ is the time required to

reach the crossover point 𝐸∗, 𝑃∗ is the power level at 𝐸∗, and 𝛼, 𝑐7
and 𝑐8 are all constants determined by battery and hardware char-

acteristics.

From Equation (5), we find that the time required to recharge a

drone after consuming 𝐸 joules will be:

𝑡𝑐 (𝐸) =


−𝑐8+

√
𝑐2
8
+4𝑐7𝐸

2𝑐7
𝐸𝑚𝑖𝑛 ≤ 𝐸 < 𝐸∗

𝑡∗ − 𝑙𝑛
(
1+ 𝛼

𝑃∗ (𝐸
∗−𝐸)

)
𝛼 𝐸∗ ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥

(6)

where 𝐸𝑚𝑖𝑛 is the minimum allowable energy level that the battery

can safely be discharged to and 𝐸𝑚𝑎𝑥 is the capacity of the bat-

tery. We expect to lose 𝛾 percent of energy in the wireless transfer

process.

Applying Energy Models: As an example on how to apply

these equations, suppose that drone 𝑘 performs sortie T𝑘 and moves

at speed 𝑣𝑘 . The drone will consume

J𝑎 (T𝑘 ) = 𝑙 𝐽𝑘 +
𝑑𝑘

𝑣𝑘
P𝑎 (𝑣𝑘 ) + 𝑟 𝐽𝑘 (7)

joules of energy, where 𝑑𝑘 is the total distance required to travel

from the take-off action to each PoI in 𝐼𝑘 then return to the land
action in T𝑘 . It will then take 𝑡𝑐

(
J𝑎 (T𝑘 )

)
seconds to recharge the

drone on the UGV and the UGV will lose (1 + 𝛾)J𝑎 (T𝑘 ) joules from
its own battery. We say that drone action sequence 𝐴𝑎

𝑘
is safe if

for all consecutive sorties T𝑘 ,T𝑘+1 ∈ 𝐴𝑎
𝑘
, sortie T𝑘+1 does not begin

until 𝑡𝑐
(
J𝑎 (T𝑘 )

)
seconds after sortie T𝑘 ends. That is, 𝐴𝑎

𝑘
is safe if

we fully recharge the drone before launching it again.

Let
𝑚𝑎𝑥 𝐽𝑘 be the maximum usable energy stored on drone 𝑘 .

Each second that the drone is operating it will consume P𝑎 (𝑣𝑘 )
joules per second and can operate for

𝑚𝑎𝑥 𝑡𝑘 =
𝑚𝑎𝑥 𝐽𝑘 − ( 𝑙 𝐽𝑘 + 𝑟 𝐽𝑘 )

P𝑎 (𝑣𝑘 )
(8)

seconds and travel
𝑚𝑎𝑥𝑑𝑘 meters. If the drone consumes all usable

energy on-board, it will take
𝑚𝑎𝑥-𝑐ℎ𝑎𝑟𝑔𝑒𝑡𝑘 = 𝑡𝑐 (𝑚𝑎𝑥 𝐽𝑘 ) seconds to

recharge the battery completely.

In a similar manner, the energy consumed by UGV 𝑗 after com-

pleting action sequence𝐴
𝑔

𝑗
(excluding energy transferred to drones),

will be

J𝑔 (𝐴𝑔

𝑗
) =

𝑑 𝑗

𝑣 𝑗
P𝑔 (𝑣 𝑗 ) (9)

where 𝑑 𝑗 is the total travel distance to complete the actions in 𝐴
𝑔

𝑗

and 𝑣 𝑗 is the speed of the UGV. Let
𝑚𝑎𝑥 𝐽 𝑗 be the maximum usable

energy stored on UGV 𝑗 .

We acknowledge that these energy models abstract other factors

in energy consumption, such as environmental conditions or pay-

load [34]. However, we argue that these aspects could be included

into the models without changing the fundamental approach.
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Figure 3: Example of the ILO algorithm running on a simple input.

3.4 Formal Problem Definition
Given𝑚𝑔 UGVs,𝑚𝑎 drones, and 𝑛 PoIs, find a consistent patrolling
kernel S with valid robot action sequences such that 𝑃𝐴𝑅(S) is
minimized, subject to:

S is consistent (10a)

S is valid (10b)

J𝑔 (𝐴𝑔

𝑗
) +

∑
𝑘∈𝐷 𝑗

(1 + 𝛾)J𝑎 (𝐴𝑎
𝑘
) ≤ 𝑚𝑎𝑥 𝐽 𝑗 , ∀𝐴𝑔

𝑗
∈ S (10c)

J𝑎 (𝐴𝑎
𝑘
) ≤ 𝑚𝑎𝑥 𝐽𝑘 , ∀𝐴𝑎

𝑘
∈ S (10d)

𝐴𝑎
𝑘
is safe, ∀𝐴𝑎

𝑘
∈ S (10e)

We term this the Team Patrolling over Indefinite Time Horizons

(Team-PITH) Problem.

We can show that Team-PITH is NP-Hard through a reduction

from the Traveling Salesman Problem (TSP), a well-known NP-
Hard problem [12].

Theorem 2. The Team-PITH problem is NP-Hard.

Proof. Given graph𝐺 = {𝑉 , 𝐸} as an input to the TSP, where𝑉

is a set of vertices and 𝐸 = 𝑉 ×𝑉 is a set of edges, we can reduce the

TSP to the Team-PITH problem via the following procedure: Set

𝐼 = 𝑉 , place the base station at the center of 𝑉 , and𝑚𝑔 = 𝑚𝑎 = 1

(a single UGV and a single drone). Set
𝑚𝑎𝑥 𝐽𝑘 , the usable energy

onboard the drone, to an arbitrarily high value and set the UGV

speed to 0. After solving the Team-PITH problem, 𝐴𝑎 ∈ S will

contain a closed cycle over the points in 𝐼 , which provides a solution

to the original TSP. Because TSP is NP-Hard, and we provided a

polynomial time reduction from TSP to the Team-PITH problem,

the Team-PITH problem must also be NP-Hard. □

4 PROPOSED ALGORITHMS
In this sectionwe introduce the LaunchOptimizer (LO) and Iterative

Launch Optimizer (ILO) algorithms for the Team-PITH problem and

discuss their individual parts in detail in the subsequent subsections.

We also provide a time complexity analysis on these algorithms.

4.1 Launch Optimizer Algorithms
We will first describe the ILO algorithm then discuss how the more

simplistic LO algorithm differs from this first algorithm. In general,

the ILO algorithm takes an initial solution (Figure 3, panels 1-3),

optimizes drone launch and land locations across each UGV tour

using a SOC program, and then attempts to further improve the

solution by iteratively updating drone sorties and solving the SOC

program again (Figure 3, panel 5).

Listing 1 lays out the details of the ILO algorithm. The algorithm

finds an initial solution, S, using the Initial-Solution() function
on line 1. The details of the Initial-Solution() function are further

discussed in Section 4.2. After finding an initial solution, we create

a temporary new solution S′ that acts as our interim solution

for algorithm steps 2 through 13. For each UGV 𝑗 ∈ 𝑅𝑔 and each

drone 𝑘 ∈ 𝑅𝑎 assigned to UGV 𝑗 , we update interim solution S′ by
attempting to improve the ordering of PoI visit actions for drone 𝑘

in theUpdate-Subtour() function on line 6. Observe that we can form
a closed cycle out of each drone sortie T𝑘 by connecting the take-
off and land locations. We can treat T𝑘 as a Traveling Salesman

Problem (TSP), a well studied problem with both complete and

approximate solutions [27], by setting the set 𝑉 = {𝑠𝑎𝑘 ,𝑒 𝑎𝑘 } ∪ 𝐼𝑘
as vertices, 𝐸 = 𝑉 ×𝑉 as edges and fixing the edge (𝑒𝑎𝑘 ,𝑠 𝑎𝑘 ) to be

in the solution. The Update-Subtour() function improves each set of

drone actions by transforming each sortie into this special instance

of a TSP and solving it using a polynomial time TSP solver [9].

After running the Update-Subtour() function for each drone 𝑘

assigned to UGV 𝑗 , we optimize the location of each launch and

landing action pairs in S′ while adhering to the energy limitations

and recharging time for each drone on the UGV. This is done in

the optimize-launch-land() function on line 8 via a SOC program,

which is further discussed in Section 4.3.

Algorithm 1 Iterative Launch Optimizer Algorithm

Input: PoI set 𝐼 , drone set 𝑅𝑎 , UGV set 𝑅𝑔 , drone-to-UGV set 𝐷 𝑗

Output: Patrolling kernel S
1: S ← Initial-Solution(𝐼 , 𝑅𝑎, 𝑅𝑔, 𝐷 𝑗 )
2: repeat
3: S′ ← S
4: for each 𝑗 ∈ 𝑅𝑔 do
5: for each 𝑘 ∈ 𝐷 𝑗 do
6: S′ ← Update-Subtour(S′, 𝑘)
7: end for
8: S′ ← optimize-launch-land(S′, 𝑗)
9: end for
10: if 𝑃𝐴𝑅(S′) < 𝑃𝐴𝑅(S) then
11: S ← S′
12: end if
13: until S′ does not change
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If the updated interim solutionS′ reduces PAR from the previous

solution S, then we accept the interim solution as the new solution

on line 11 and repeat steps 2 through 13. This procedure repeats

until we no longer see an improvement in the interim solution S′.
As an alternative to the ILO algorithm, the LO algorithm finds

an initial solution using the Initial-Solution() function then runs

the optimize-launch-land() function exactly once for each UGV and

ends. The LO algorithm does not run the Update-Subtour() function.

4.2 Finding an Initial Solution
We use a modified version of the algorithm in [25] to find an initial

solution. The original algorithm runs as follows: (1) break up the

environment into sub-regions using predetermined region sizes, (2)

order sub-regions using a TSP solver, (3) order and divide discrete

nodes by their quadrant angles from the centroid of the sub-region,

and (4) order nodes for each drone using a TSP solver. We modify

this approach by using a VRP solver for steps 1 and 2 then use a

VRP solver in each sub-region to accomplish steps 3 and 4. We also

incorporate UGV energy limitations into the algorithm.

Listing 2 provides details of the Initial-Solution() function. The
algorithm forms 𝑐 =𝑚𝑔 clusters using Lloyd’s k-means clustering

algorithm on line 3. After finding PoI clusters C, the algorithm

treats the centroids of the PoI clusters in C as stops for a Vehicle

Routing Problem with𝑚′ =𝑚𝑔 vehicles [28], which is solved using

the VRP() function on line 4. To implement a VRP solver in the VRP()
function, we further divided the PoI centroids into𝑚′ clusters and
then solve a TSP on each cluster using the Lin-Kernighan-Helsgaun

TSP solver [9], though this method could be swapped out with other

VRP solvers such as [5] and the rest of the Initial-Solution() function
algorithm would remain the same. Figure 3 shows an example of

the PoI clustering and VRP for the UGV steps in panel 2.

For each cluster C′ assigned to UGV 𝑗 , the algorithm solves

another VRP on line 7 that sends each drone assigned to 𝑗 to visit

the PoI in C′ using the centroid of the cluster as the depot for the

Algorithm 2 Initial-Solution Algorithm

Input: PoI set 𝐼 , drone set 𝑅𝑎 , UGV set 𝑅𝑔 , drone-to-UGV set 𝐷 𝑗

Output: Patrolling kernel S
1: 𝑚′ ← |𝑅𝑔 |, 𝑐 ←𝑚′

2: 𝑐 ← max(𝑐,𝑚′)
3: C ← k-means(𝑐)
4: T𝑔 ← VRP(C,𝑚′)
5: for each 𝑗 ∈ 𝑅𝑔 do
6: for each cluster C′ assigned to 𝑗 in T𝑔 do
7: T𝑎 ← VRP(C′, 𝐷 𝑗 )
8: if ∃T𝑘 ∈ T𝑎

such that dist(T𝑘 ) > 𝑚𝑎𝑥𝑑𝑘 then
9: 𝑐 ← 𝑐 + 1, repeat steps 2–8
10: end if
11: end for
12: end for
13: if ∃T𝑗 ∈ T𝑔

such that energy(T𝑗 ) > 𝑚𝑎𝑥𝑑 𝑗 then
14: 𝑚′ ←𝑚′ + |𝑅𝑔 |, repeat steps 2–13
15: end if
16: 𝐴𝑔, 𝐴𝑎 ← Form-Actions(T𝑔,T𝑎)
17: return S = {𝐴𝑔, 𝐴𝑎}

VRP (where the UGV will wait while each drone visits PoI in C′).
After finding a set of drone sorties T𝑎

for cluster C′, the algorithm
verifies that none of the drone sorties T𝑘 ∈ T𝑎

violate drone energy

constraints. If there is a drone sortie that exceeds the drone’s energy

limit, the algorithm increments 𝑐 and restarts. Figure 3 demonstrates

finding drone sorties on a PoI cluster while the UGV waits at the

cluster centroid in panel 3. If there exists a UGV tour that runs a

UGV out of energy, then the algorithm increments𝑚′ by𝑚𝑔 and

restarts. Otherwise, the algorithm forms action sequences that form

a patrolling kernel to the Team-PITH problem.

4.3 Optimizing Launch and Land Actions
The optimize-launch-land() function is given sets of actions for

a drone-UGV team and optimizes the location of each of these

actions via a SOC program while holding a set of assumptions. The

function returns optimal action locations, within the limitations of

the assumptions. These assumptions are:

(1) the order of drone launch and land actions is known a priori,

(2) the drones must recharge completely between consecutive

sorties,

(3) vehicle position accuracy when visiting any given PoI or the

base station can be relaxed to some constant 𝜖 , and

(4) the travel distance limits of any vehicle can be relaxed by 𝜖 .

The Initial-Solution() function assigns an ordering to each drone

sortie, giving us assumption 1. Our Initial-Solution() function pushes
each drone as close as it can to the limit of their operating distance,

meaning that each drone is expected to need a near-full recharge,

validating assumption 2. Furthermore, standard commercially avail-

able GPS have limited accuracy, validating assumption 3, and the

distance that each vehicle will be traveling is far enough that as-

sumption 4 should not impact the validity of a solution.

Given a patrolling kernel S, we formulate a SOC program using

the following variables: For each sortie T𝑘 ∈ S, we create contin-
uous variables (𝑥𝑖 , 𝑦𝑖 ) and (𝑥 𝑗 , 𝑦 𝑗 ) for the location of the launch

and land actions,
𝑠𝑎𝑘 and

𝑒𝑎𝑘 ∈ T𝑘 , respectively. Let (𝑠𝑥𝑘 ,𝑠 𝑦𝑘 ) and
(𝑒𝑥𝑘 ,𝑒 𝑦𝑘 ) be the location of the first and last PoI in 𝐼𝑘 ∈ T𝑘 , respec-
tively, which are continuous variables that we constrain to stay

within an 𝜖 × 𝜖 box centered on their respective PoI. Let
𝑡𝑑𝑘 be the

distance required to traverse sequence 𝐼𝑘 ∈ T𝑘 , which we assume

to be constant. Let continuous variables
𝑠𝑑𝑘 and

𝑒𝑑𝑘 represent the

distance from the launch action,
𝑠𝑎𝑘 , and the land action,

𝑒𝑎𝑘 , to

the first and last PoIs in 𝐼𝑘 , respectively. Let
𝑎𝑡𝑖 be the time required

to perform action 𝑎𝑖 ∈ 𝐴
𝑔

𝑗
and 𝑡𝑘 be the time required for drone

𝑘 to land, both of which are constant. We use 𝑡𝑖 to track the end

time for each action 𝑎𝑖 ∈ 𝐴𝑔

𝑗
. Let variable 𝑡𝑏 specifically be the time

the “end” action is completed (the time that the UGV returns to the

base station). Let 𝑑 𝑗 be the distance from 𝑎𝑖 to 𝑎 𝑗 , for consecutive

actions 𝑎𝑖 and 𝑎 𝑗 ∈ 𝐴𝑔

𝑗
.

We formulate a SOC program to optimize the location of the

launch and land actions as follows:

min 𝑡𝑏 (11)

Subject to

𝑡𝑖 ≥ 𝑡 𝑗 + 𝑚𝑎𝑥-𝑐ℎ𝑎𝑟𝑔𝑒𝑡𝑘 ,∀ launch 𝑎𝑖 after land 𝑎 𝑗 ∈ �̃�𝑎
(12a)
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𝑡𝑖+1 ≥ 𝑡𝑖 +
1

𝑣𝑔
𝑑𝑖+1 + 𝑎𝑡𝑖+1, 𝑖 ∈ {1, 2, · · ·𝑘 − 1} (13a)

𝑡 𝑗 = 𝑡𝑖 +
1

𝑣𝑘
(𝑠𝑑𝑘 +𝑡 𝑑𝑘 + 𝑒𝑑𝑘 ) + 𝑡𝑟 ,∀ 𝑠𝑎𝑘 ,

𝑒 𝑎𝑘 ∈ T𝑘 (13b)

𝑠𝑑2
𝑘
≥ (𝑥𝑖 − 𝑠𝑥𝑘 )2 + (𝑦𝑖 − 𝑠𝑦𝑘 )2,∀T𝑘 (13c)

𝑒𝑑2
𝑘
≥ (𝑥 𝑗 − 𝑒𝑥𝑘 )2 + (𝑦 𝑗 − 𝑒𝑦𝑘 )2,∀T𝑘 (13d)

𝑑2𝑗 ≥ (𝑥𝑖 − 𝑥 𝑗 )
2 + (𝑦𝑖 − 𝑦 𝑗 )2, 𝑖 ∈ {1, 2, · · ·𝑘 − 1}, 𝑗 = 𝑖 + 1 (13e)

𝑚𝑎𝑥𝑑𝑘 ≥ 𝑠𝑑𝑘 +𝑡 𝑑𝑘 + 𝑒𝑑𝑘 , 𝑖 ∈ {1, 2, · · ·𝑘 − 1},∀T𝑘 (13f)

For each drone sortie, constraint (12a) does not allow a drone

to be launched on a consecutive sortie until after it has been fully

recharged (enforcing assumption 2). Constraint (13a) prevents ac-

tion 𝑎𝑖+1 from completing until after action 𝑎𝑖 completes plus the

time required for the UGV to move from 𝑎𝑖 to 𝑎𝑖+1 and perform

action 𝑎𝑖+1. Constraint (13b) forces the end time of a drone sortie to

be equal to the end time of the sortie’s launch action plus the time

required for the drone to traverse the distance of the sortie and

land again. Constraints (13c) and (13d) control the distance of the

start and end leg of each sortie, respectively, while constraint (13e)

controls the total distance from one action to the next in𝐴
𝑔

𝑗
. Finally,

constraint (13f) enforces each drone’s energy constraint.

Observe that constraints (13c), (13d), and (13e) are convex qua-

dratic constraints while all other constraints and the objective are

linear. Therefore, Objective (11) with constants (12a) through (13f)

form a SOC program, which can be solved in polynomial time to

optimality using interior point and the barrier method [4].

4.4 Time Complexity Analysis
The Initial-Solution() function will run the VRP() function 𝑛2 times

in the worst case. The VRP() function depends on the LKH solver,

which has a time complexity of O(𝑛2.2) [8]. If we limit the number

of times that Lloyd’s algorithm iterates to some constant, then the

Initial-Solution() function has a runtime of O(𝑛4.2).
The efficiency of the optimize-launch-land() function depends on

the performance of the solver used, though we know for certainty

that the SOC program can be solved in polynomial time [20]. Let

𝜁 be the time required to run the optimize-launch-land() function.
The LO algorithm will run the Initial-Solution() function once and

the optimize-launch-land() function𝑚𝑔 times, giving it a time com-

plexity of O(𝑛4.2 +𝑚𝑔𝜁 ). If we set an iteration limit of 𝜑 on the

loop starting at line 2 in the ILO algorithm, then the algorithm

will run the Update-Subtour() function 𝜑𝑚𝑎 times and the optimize-
launch-land() function𝜑 times. TheUpdate-Subtour() function again
depends on the LKH solver, which has a runtime of O(𝑛2.2). This
gives the ILO algorithm a time complexity ofO(𝑛4.2+𝜑 (𝑚𝑔𝜁 +𝑛2.2)).
For both algorithms, we expect the number of PoI to be much larger

than the number of UGV (𝑛 ≫ 𝑚𝑔) so we should expect the 𝑛4.2

term from the Initial-Solution() function to dominate the runtime.

5 NUMERICAL SIMULATION RESULTS
We created three test series to evaluate our proposed algorithms.

In the first series, termed the IncreasingNodes tests, we have a fixed
team (1 UGV, 2 drones) and increase the number of PoIs, from five

up to 100 in increments of five, with 50 uniquely generated tests at

each increment. In the second series, termed the IncreasingDrone
tests, we have 50 random PoIs and a single UGV with an increasing

number of drones, from one up to 10 drones in increments of one

with 50 unique tests at each increment. Our final test series has

50 random PoIs and increases the number of drone-UGV teams,

from one team up to 10 in increments of one, where each team

consists of a 1:2 ratio of UGVs to drones. We generated 50 tests at

each increment and term this the IncreasingTeams tests.
As a baseline method, we use the Initial-Solution() function by

itself. This function is a modification of the proposed algorithm in

[13, 25], which was used for a closely related patrolling problem,

and is similar to the proposed solutions in [14, 22].

All algorithms were implemented in C++. We used Gurobi ver-

sion 11.0.3 to solve the SOC program and LKH version 3.0.8. To

promote good research integrity, the source code to our algorithm

has been made open source
1
.

5.1 Algorithm Performance
We ran each algorithm and the baseline on the generated test series

to evaluate their performance. We recorded both the PAR and the

Worst Latency (in hours) metrics.

Figure 4 shows the results for each algorithm on the Increas-
ingNodes tests series. The ILO algorithm shows an average PAR

1
www.github.com/pervasive-computing-systems-group/HitchhikerPatrollingSolver
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Figure 4: IncreasingNodes test series.
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Figure 5: IncreaseDrones test series.
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Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

617



	0
	0.1
	0.2
	0.3
	0.4
	0.5

	10 	25 	40 	55 	70 	85 	100

Co
m
p.
	T
im

e	
(s
)

Number	of	PoI	(n)

Baseline
LO
ILO

	0

	0.1

	0.2

	0.3

	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

Co
m
p.
	T
im

e	
(s
)

Number	of	Teams

Figure 7: Computation times. Figure 8: Prototype setup.
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Figure 9: Drone and UGV paths from field experiment.

reduction of 57.7% and 7.5% against the baseline and LO algorithms,

respectively. The LO algorithm has a PAR reduction of 54.1% com-

pared to the baseline. Results from the IncreasingDrone test series
show similar trends (shown in Figure 5). The ILO algorithm has an

average PAR reduction of 52.0% and 3.4% compared to the baseline

and LO algorithms, respectively. The LO algorithm recorded a 50.3%

PAR reduction compared to the baseline. Finally, Figure 6 shows the

results of the IncreasingTeams test series. The ILO algorithm shows

a PAR reduction of 60.6% and 9.1% compared to the baseline and LO

algorithms, respectively. The LO algorithm records a PAR reduction

of 56.4% compared to the baseline. We see the same performance

trends in Worst Latency that we found in PAR.

5.2 Computation Time
Figure 7 shows computational results as the number of PoI increases

(top graph) and as the number of teams increases (bottom graph).

As the number of PoI increases, the ILO algorithm has an increased

average computation time factor of 3.8 and 2.1 relative to the base-

line and LO algorithms, respectively, while the LO algorithm has

an average computation time factor of 1.9 higher than the baseline.

As the number of teams increases, the ILO algorithm runs with

an average factor of 9.5 and 5.6 slower than the baseline and LO,

respectively, and the LO algorithm runs with an average slowdown

factor of 1.7 relative to the baseline. We note that the computation

time for the LO and baseline approach dropped as the number of

teams increased because having more teams to deploy makes it

easier to find an initial solution, which reduces the number of times

Algorithm 2 must solve an instance of the VRP.

5.3 Results Summary
Our results show that the LO and ILO algorithms produce statisti-

cally significant reductions in both PAR and Worst Latency when

compared against the baseline. We also found a tradeoff in perfor-

mance and computation time between the LO and ILO algorithms.

The ILO algorithm achieves lower PAR compared to the LO algo-

rithm but is more computationally demanding.

The number of PoI has the largest impact on computation time.

The LO and ILO algorithms both have a time complexity of𝑂 (𝑛4.2)

and therefore scale similarly with increasing input size. However,

repeatedly running the TSP solver in the ILO algorithm has a no-

ticeable impact on computation time.

6 PROTOTYPE ON REAL DRONE-UGV TEAM
To demonstrate the Team-PITH problem and to determine limita-

tions of our proposed algorithm, we ran a field prototype of the

considered problem scenario on a physical UGV and drone testbed.

We used a Clearpath™ Warthog and a custom built drone platform.

The Warthog was configured to wirelessly transfer energy to the

drone. We set a series of PoIs in an empty field and had theWarthog

ferry the drone to different launch points.

Figure 8 shows the robots and plan generated by the ILO algo-

rithm and Figure 9 shows the GPS trace of each vehicle. The drone

traveled all assigned routes successfully but the Warthog became

stuck halfway through its assigned route due to issues with its local

planner and did not reach the final rendezvous location. As a result,

the drone had to be manually flown back to the Warthog after the

second sortie. However, the first drone sortie provides a clear exam-

ple of the Team-PITH problem. Possible solutions to deployment

issues include strengthening information sharing between the UGV

and drone and online replanning.

7 CONCLUSIONS
In this article, we introduced the Team-PITH problem and pre-

sented the Launch Optimizer (LO) and Iterative Launch Optimizer

(ILO) algorithms. Given an initial solution, the LO algorithm uses

a Second-Order Cone program to find locally optimal solutions,

which can be solved in polynomial time, while the ILO algorithm

iteratively runs the steps of the LO algorithm mixed with a Travel-

ing Salesman Problem. We demonstrate through experimental data

that the LO and ILO algorithms reduce PAR values by over 50% as

compared to a baseline method from existing literature.

Limitations of this work include ignoring ground obstacles, as-

suming fixed drone-UGV teams, and assumptions on the reliability

of robot movement (as identified in our field experiments). For

future work, we plan to address these limitations (particularly

avoiding ground obstacles and online adaptive planning) as well as

handling limited communication and varying PoI priorities.
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