
Selecting Interlacing Committees
Chris Dong

Technical University of Munich

Munich, Germany

chris.dong@tum.de

Martin Bullinger

University of Oxford

Oxford, United Kingdom

martin.bullinger@cs.ox.ac.uk

Tomasz Wąs

University of Oxford

Oxford, United Kingdom

tomasz.was@cs.ox.ac.uk

Larry Birnbaum

Northwestern University

Evanston, United States

l-birnbaum@northwestern.edu

Edith Elkind

Northwestern University

Evanston, United States

edith.elkind@northwestern.edu

ABSTRACT

Polarization is a major concern for a well-functioning society. Of-

ten, mass polarization of a society is driven by polarizing political

representation, even when the latter is easily preventable. The exist-

ing computational social choice methods for the task of committee

selection are not designed to address this issue. We enrich the stan-

dard approach to committee selection by defining two quantitative

measures that evaluate how well a given committee interconnects

the voters. Maximizing these measures aims at avoiding polarizing

committees. While the corresponding maximization problems are

NP-complete in general, we obtain efficient algorithms for profiles

in the voter-candidate interval domain. Moreover, we analyze the

compatibility of our goals with other representation objectives,

such as excellence, diversity, and proportionality. We identify trade-

offs between approximation guarantees, and describe algorithms

that achieve simultaneous constant-factor approximations.

KEYWORDS

Computational Social Choice; Approval-Based Committee Voting;

Polarization

ACM Reference Format:

Chris Dong, Martin Bullinger, Tomasz Wąs, Larry Birnbaum, and Edith

Elkind. 2025. Selecting Interlacing Committees. In Proc. of the 24th Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS

2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION

In recent years, the increasing prevalence of polarization has been a

major concern, discussed not just by social scientists, but by society

at large, and accompanied by extensive media coverage [20, 27].

Polarization is commonly defined as the division of a group into

clusters of completely different opinions or ideologies. It is a major

concern for the modern society, which has to work towards a con-

sensus when resolving global challenges, such as fighting poverty,

climate change, or pandemics (see [28] and the references therein).

Importantly, polarization can occur as a phenomenon concerning

an entire society or only at the level of political representation, e.g.,
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when considering the distribution of opinions among the delegates

in a parliament. The former is often referred to asmass polarization,

while the latter is known as elite polarization, see, e.g., [1].

Academic literature broadly agrees that the phenomenon of

elite polarization is on the rise. For example, when depicting the

members of the US Congress in terms of their ideology on a scale

ranging from the most liberal to the most conservative, one can

observe a significant shift when comparing the 87th Congress in

the 1960s and the 111th Congress around 2010, see Figure 2.1 in the

book by Fiorina [19]. However, whether the society as a whole is

polarized as well is less clear. Fiorina et al. [20] argue that there is no

conclusive evidence for mass polarization, even when considering

highly sensitive topics such as abortion. For instance, they provide

evidence that the elite polarization among delegates is alreadymuch

higher than the polarization among party identifiers [20, Table 2.1].

They argue that the media play an important role in creating an

inaccurate picture of mass polarization [20]. Indeed, the media can

have a significant effect on the perception of and conclusions drawn

from elite polarization [27].

This view is opposed by Abramowitz and Saunders [1], who

analyze data from the American National Election Studies. They

provide extensive evidence that mass polarization has increased

signficiantly since the 1970s. Moreover, their results suggest mass

polarization based on geography (i.e., different ideologies across

US states) or religious beliefs.

Against this background, we aim to offer a novel perspective

on the intertwined phenomena of mass polarization at the broad

level of a society as a whole and elite polarization at the level of the

society’s political, parliamentary representation. We highlight how

an election can lead to a parliament that is far more polarized than

the society it represents, and we propose quantitative measures that

evaluate a set of representatives according to how well it interlaces

the electorate. We believe that our ideas can be developed to prevent

societies with broadly moderate opinions being represented by

unnecessarily polarized parliaments.

We approach polarized democratic representation through the

lens of social choice theory. In this line of research, parliamentary

elections have been conceptualized as so-called multiwinner voting

rules. Their formal study, especially in the approval-based setting,

in which each voter’s ballot specifies a set of approved candidates,

has received extensive attention in recent years [18, 26].

Example 1.1. As a motivating example, consider the voting sce-

nario illustrated in Figure 1. There are four voters, indicated by the
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Figure 1: A preference profile with four voters 𝑣1, . . . , 𝑣4 is

depicted as hypergraph, where the voters are nodes and the

candidates 𝑏𝑖 , 𝑐 𝑗 are hyperedges connecting the voters ap-

proving them. In this profile, typical multiwinner voting

rules do not distinguish between selecting {𝑐1, 𝑐2, 𝑐3, 𝑐4} and

{𝑐1, 𝑐2, 𝑏1, 𝑏2}.

gray circles, as well as six candidates. Each candidate is represented

by an ellipse that covers the voters approving this candidate. For

instance, candidate 𝑏1 is approved by voters 𝑣1 and 𝑣2, whereas

candidates 𝑐1 and 𝑐3 are both approved by the same set of voters,

namely 𝑣1 and 𝑣3. In practice, this is likely to happen when 𝑐1 and

𝑐3 represent very similar ideologies.

Assume that we want to select a committee consisting of 4 candi-

dates. Two reasonable choices would be to select𝑊 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}

or𝑊
′
= {𝑐1, 𝑐2, 𝑏1, 𝑏2}. Both selections lead to committees in which

each voter approves exactly two selected candidates. Moreover, mul-

tiwinner voting rules typically considered in the literature, such as

Thiele rules and their sequential variants [33], Phragmén’s rule [32],

or the more recently introduced method of equal shares [31], do not

distinguish between these two choices. There is, however, a differ-

ence. While𝑊 divides the electorate into two perfectly separated

subsets of voters,𝑊
′
connects all voters. From the perspective of

polarization,𝑊 looks polarizing while𝑊
′
bridges all voters. Thus,

we need novel voting rules that can tease out this distinction. In

our paper, we aim to provide a principled approach that favors

committees in the spirit𝑊
′
.
1

⊲

We define two simple objectives that aim to measure how well a

committee interlaces the voters. First, we consider maximizing the

number of pairs of voters approving a common candidate (the Pairs

objective). While optimizing this objective leads to the selection

of𝑊
′
in Example 1.1, it can still result in voters being split into

large disconnected clusters (cf. Example 3.1). The reason is that

Pairs only counts direct, but not indirect links. Hence, as a second

objective we count the number of pairs of voters that are connected

by a sequence of candidates (the Cons objective).

While both objectives immediately give rise to voting rules—

select a committee that maximizes Pairs or Cons—we primarily

view them as measures of polarization. Whenever they are high,

polarization in the selected committee is low. Thus, we investigate

the feasibility of maximizing our objectives, both on their own and

in combination with the goals of diversity and proportionality.

1

Of course, while we try to highlight the phenomenon at hand with a simple example,

our construction extends to elections with many voters or candidates: e.g., each voter

in the example might represent a quarter of a large electorate.

We first consider the computational problem of maximizing

Pairs or Cons in isolation (Section 4). Unfortunately, for unre-

stricted preferences this problem is NP-hard. However, we obtain
a polynomial-time algorithm for the structured domain of voter-

candidate interval (VCI) preferences [22], where voters and can-

didates are represented by intervals on the real line and a voter

approves a candidate if and only if their intervals intersect. Such

preferences are reasonable in parliamentary elections where can-

didates can often be ordered on a left-right spectrum and voters

approve candidates that are close to them on this spectrum.

In Section 5, we investigate whether one can select interlac-

ing committees while achieving other desiderata. We first con-

sider excellence, as measured by the approval voting (AV) score, i.e.,

the total number of approvals received by committee members.

There is a straightforward way to obtain what is essentially an

𝛼-approximation of the Pairs objective together with an (1 − 𝛼)-

approximation of the AV score: one can simply use an 𝛼-fraction of

the committee for the former and an (1 − 𝛼)-fraction for the latter.

Unfortunately, it turns out that this simple algorithm is essentially

optimal: We prove that if a voting rule provides an 𝛼-approximation

of the Pairs objective and a 𝛽-approximation of the AV score, then

necessarily 𝛼 + 𝛽 ≤ 1. Next, we look at diversity, as captured by

the Chamberlin–Courant (CC) score, which is the number of voters

who approve at least one candidate in the committee. The CC score

is closely related to the Pairs objective: the former measures the

coverage of voters, while the latter measures the coverage of pairs

of voters. Hence, it is quite surprising that we obtain the same

trade-off as for Pairs and AV. Further, we study the compatibility

with proportionality, as captured by the extended justified represen-

tation axiom (EJR). Again, we show the same tight trade-off: If a

voting rule provides an 𝛼-approximation of the Pairs objective and

a 𝛽-approximation of EJR, then 𝛼 + 𝛽 ≤ 1.

It is more challenging to combine the Cons objective with AV,

CC, EJR, or even Pairs. This is due to an interesting qualitative

difference between Pairs and Cons. While a constant fraction of

the best candidates achieves a constant approximation of Pairs,

for Cons this is not the case. Hence, we obtain worse trade-offs:

If a voting rule provides an 𝛼
2
-approximation of Cons and a 𝛽-

approximation of AV, CC, EJR, or Pairs, then 𝛼 + 𝛽 ≤ 1. Note

that since 𝛼 < 1, it holds that 𝛼
2
< 𝛼 . Hence, for instance, 𝛼

2
=

1

3
and 𝛽 = 1

2
is already impossible. Moreover, for Cons and AV

specifically, the trade-off that we obtain is even more subtle, which

suggests that finding a matching lower bound might be challenging.

Nevertheless, we make first steps towards this goal, by showing that

under suitable domain restrictions there always exists a committee

that achieves a
1

4
-approximation of Cons and a

1

2
-approximation

of AV, CC, EJR, or Pairs, which matches our upper bound.

2 RELATEDWORK

In the existing literature, multiwinner voting rules usually aim

to guarantee the selection of the best candidates based on their

individual quality [3, 14], representation of diverse opinions [8, 15],

or proportional treatment of different groups of interests [29, 31–

33]. An overview of the most common approval-based multiwinner

voting rules is given in the book by Lackner and Skowron [26]. To
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the best of our knowledge, no rules were proposed so far with the

explicit goal of reducing polarization or connecting voters.

A line of research in multiwinner voting looks at the possibility

of combining various objectives as well as their inherent trade-

offs, similar to our study in Section 5. Lackner and Skowron [25]

provide worst-case bounds on AV and CC scores of committees

output by popular voting rules. For ordinal preferences, Kocot et al.

[23] analyze the complexity of finding committees that offer an

optimal combination of approximations of two objectives. Moreover,

a series of works look at AV and CC scores that can be guaranteed

by committees that satisfy proportionality axioms [7, 13, 17].

A number of authors study the relationship between an electoral

system (or, more narrowly, a voting rule) and the way the candidates

choose to strategically place themselves on the political spectrum

[5, 10, 24, 30]. Such an analysis can indicate whether a rule prevents,

or reinforces, polarization. Our approach differs in that we analyze

the direct effect of a voting rule on the polarization caused by a

chosen committee, while the aforementioned works analyze how

preferences evolve based on a given rule.

Delemazure et al. [11] pursue a goal that can be seen as opposite

to ours: selecting a most polarizing committee of size 2; they focus

on ordinal preferences. In a similar vein, Colley et al. [9] proposed

measures of how divisive, or polarizing, a single candidate is.

3 MODEL

We start by introducing key notation and proposing two ways of

measuring how well a committee interconnects the voters. For a

positive integer 𝑘 ∈ N, define (︀𝑘⌋︀ ∶= {1, . . . , 𝑘}.

3.1 Approval-Based Multiwinner Voting

We consider the standard setting of approval-based multiwinner

voting [26]. Given a set of 𝑚 candidates 𝐶 , an election instance

ℰ = (𝑉 ,𝐴,𝑘) consists of a set of 𝑛 voters 𝑉 , an approval profile

𝐴 = (𝐴𝑣)𝑣∈𝑉 with 𝐴𝑣 ⊆ 𝐶 for all 𝑣 ∈ 𝑉 , and a target committee

size 𝑘 ∈ (︀𝑚⌋︀. Intuitively, a voter 𝑣 ∈ 𝑉 approves precisely the

candidates in 𝐴𝑣 . Throughout the paper, we view a profile 𝐴 as a

hypergraph with vertex set 𝑉 , and, for each 𝑐 ∈ 𝐶 , a hyperedge

𝑉𝑐 = {𝑣 ∈ 𝑉 ∶𝑐 ∈ 𝐴𝑣}. In the remainder of this section, we consider

an election instance ℰ = (𝑉 ,𝐴,𝑘) over a candidate set 𝐶 .

Besides the general setting, we also consider structured domains

of spatial one-dimensional preferences. Specifically, we consider

elections where all voters and all candidates can be mapped to

intervals on the real line so that a voter approves a candidate if

and only if their respective intervals intersect. Formally, following

Godziszewski et al. [22], we say that an election (𝑉 ,𝐴,𝑘) belongs to

the voter-candidate interval (VCI) domain if there exist a collection

of positions {𝑥𝑐}𝑐∈𝐶 ∪{𝑥𝑣}𝑣∈𝑉 ⊆ R and a collection of nonnegative

radii {𝑟𝑐}𝑐∈𝐶 ∪ {𝑟𝑣}𝑣∈𝑉 ⊆ R
+
∪ {0} such that for all 𝑣 ∈ 𝑉 , 𝑐 ∈ 𝐶 it

holds that 𝑐 ∈ 𝐴𝑣 if and only if ⋃︀𝑥𝑐 − 𝑥𝑣 ⋃︀ ≤ 𝑟𝑐 + 𝑟𝑣 .

The VCI domain is the most general domain of one-dimensional

approval preferences considered in the literature. In particular, it

generalizes the voter interval (VI) and candidate interval (CI) do-

mains, defined as follows [16]. An election belongs to the voter in-

terval (VI) domain if there is an ordering of the voters 𝑣1, . . . , 𝑣𝑛 such

that each candidate is approved by some interval of this ordering,

i.e., for each 𝑐 ∈ 𝐶 there exist 𝑖, 𝑗 ∈ (︀𝑛⌋︀ such that 𝑉𝑐 = {𝑣𝑖 , . . . , 𝑣 𝑗}.

Similarly, an election belongs to the candidate interval (CI) domain

if there is an ordering of the candidates 𝑐1, . . . , 𝑐𝑚 such that for each

𝑣 ∈ 𝑉 there exist 𝑖, 𝑗 ∈ (︀𝑚⌋︀ such that 𝐴𝑣 = {𝑐𝑖 , . . . , 𝑐 𝑗}. It is easy to

see that the VI and CI domains are contained in the VCI domain.
2

A feasible committee for an instance (𝑉 ,𝐴,𝑘) is a subset𝑊 ⊆

𝐶 with ⋃︀𝑊 ⋃︀ = 𝑘 . A (multiwinner) voting rule 𝑓 takes as input an

instance (𝑉 ,𝐴,𝑘) and outputs a feasible committee 𝑓 (𝑉 ,𝐴,𝑘).

3.2 Classic Committee Selection

A popular classification of multiwinner voting rules is in terms

of the main objective in electing the committee, with three most

commonly studied objectives being excellence, diversity, and pro-

portionality [18].

Both excellence and diversity are defined quantitatively: each

of these objectives is associated with a function that assigns a

numerical score to each feasible committee, with higher scores

associated with better performance. Formally, given an instance

ℰ = (𝑉 ,𝐴,𝑘) and a feasible committee𝑊 , we define

AV(𝑊,ℰ) ∶= ∑
𝑣∈𝑉
⋃︀𝐴𝑣 ∩𝑊 ⋃︀,

CC(𝑊,ℰ) ∶= ⋃︀{𝑣 ∈ 𝑉 ∶ 𝐴𝑣 ∩𝑊 ≠ ∅}⋃︀.

For both objectives (as well as for the two novel objectives de-

fined in Section 3.3) we omit ℰ from the notation when it is clear

from the context. The quantities AV and CC are referred to as, re-

spectively, the approval score and the Chamberlin–Courant score of

committee𝑊 in election ℰ . Intuitively, AV counts the number of

approvals received by the members of𝑊 and is viewed as a measure

of excellence, while CC counts the number of voters represented by

𝑊 , i.e., voters who approve at least one member of𝑊 , and is viewed

as a measure of diversity. The voting rule that outputs a committee

maximizing AV (respectively, CC) is known as the approval voting

rule (respectively, the Chamberlin–Courant rule
3
).

Consider a function 𝑆 that assigns scores to feasible committees

in a given election (e.g., 𝑆 = AV or 𝑆 = CC). Given 𝛼 ∈ (︀0, 1⌋︀, we say

that a committee𝑊
∗
satisfies 𝛼-𝑆 for an election ℰ = (𝑉 ,𝐴,𝑘) if

𝑆(𝑊
∗
,ℰ) ≥ 𝛼 ⋅ max

𝑊 ⊆𝐶,
⋃︀𝑊 ⋃︀=𝑘

𝑆(𝑊,ℰ).

Moreover, we say that a voting rule 𝑓 satisfies 𝛼-𝑆 if for every

election ℰ it holds that 𝑓 (ℰ) satisfies 𝛼-𝑆 for ℰ . For instance, the

Chamberlin–Courant rule satisfies 1-CC.

In contrast, proportionality is typically captured by representa-

tion axioms. A prominent axiom of this type is extended justified

representation (EJR) [2]; intuitively, it states that sufficiently large

groups of voters with similar preferences should be appropriately

represented in the selected committee. We will now define what it

means for a committee to satisfy approximate EJR.

Given an election (𝑉 ,𝐴,𝑘) over 𝐶 and 𝛼 ∈ (0, 1⌋︀, a committee

𝑊 ⊆ 𝐶 is said to satisfy 𝛼-EJR if for every ℓ ∈ (︀𝑘⌋︀ and every subset

2

For instance, given an election ℰ = (𝑉 ,𝐴,𝑘) in VI, as witnessed by voter ordering

𝑣1, . . . , 𝑣𝑛 , we can set 𝑥𝑣𝑖 = 𝑖 and 𝑟𝑣𝑖 = 0 for each 𝑖 ∈ (︀𝑛⌋︀. To position the candidates,

for each 𝑐 ∈ 𝐶 we compute 𝑐
− = min{𝑖 ∶ 𝑐 ∈ 𝐴𝑣𝑖

} and 𝑐+ = max{𝑖 ∶ 𝑐 ∈ 𝐴𝑣𝑖
} and

set 𝑥𝑐 = (𝑐− + 𝑐+)⇑2, 𝑟𝑐 = (𝑐+ − 𝑐−)⇑2. Clearly, these positions and radii certify

that ℰ belongs to the VCI domain. For CI, the construction is similar.

3

Originally, Chamberlin and Courant [8] proposed their rule for linear preferences.

However, the approval variant of this rule is commonly studied in the computational

social choice literature.
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𝑆 ⊆ 𝑉 such that 𝛼 ⋅ ⋃︀𝑆 ⋃︀ ≥ ℓ
𝑘
⋅ ⋃︀𝑉 ⋃︀ and ⋃︀⋂𝑖∈𝑆 𝐴𝑖 ⋃︀ ≥ ℓ there exists at least

one voter 𝑖 ∈ 𝑆 such that ⋃︀𝑊 ∩𝐴𝑖 ⋃︀ ≥ ℓ . We say that a rule 𝑓 satisfies

𝛼-EJR if for every election ℰ it holds that 𝑓 (ℰ) satisfies 𝛼-EJR. By

setting 𝛼 to 1, we obtain the standard EJR axiom.

3.3 Interlacing Committee Selection

We now define two new objectives, which assess committees based

on how well they interlace voters.

Our first objective is the number of pairs of voters that jointly

approve a selected candidate. Given an election ℰ = (𝑉 ,𝐴,𝑘), let

𝑉
(2)
∶= {{𝑢, 𝑣} ⊆ 𝑉 ∶𝑢 ≠ 𝑣} be the set of all voter pairs. We set

Pairs(𝑊,ℰ) ∶= ⋃︀{{𝑢, 𝑣} ∈ 𝑉
(2)
∶𝐴𝑢 ∩𝐴𝑣 ∩𝑊 ≠ ∅}⋃︀.

Note that for every instance ℰ = (𝑉 ,𝐴,𝑘) one can define the

associated pair instance ℰ
(2)
= (𝑉

(2)
,𝐴
(2)

, 𝑘), where 𝐴
(2)
{𝑢,𝑣} =

𝐴𝑢 ∩𝐴𝑣 for every {𝑢, 𝑣} ∈ 𝑉
(2)

. For each instance ℰ and committee

𝑊 ⊆ 𝐶 we have Pairs(𝑊,ℰ) = CC(𝑊,ℰ
(2)
).

While the Pairs objective only considers direct links between

voters, our second objective takes into account indirect connections

as well. Given an instance ℰ = (𝐴,𝑉 ,𝑘) and a subset of candidates

𝑊 ⊆ 𝐶 , we say that two voters 𝑢, 𝑣 ∈ 𝑉 are connected by𝑊 (and

write 𝑢 ∼𝑊 𝑣) if there is a sequence of voters 𝑢 = 𝑣0, 𝑣1, . . . , 𝑣𝑠 = 𝑣

with 𝐴𝑣𝑖−1 ∩𝐴𝑣𝑖 ∩𝑊 ≠ ∅ for every 𝑖 ∈ (︀𝑠⌋︀. To evaluate a committee

𝑊 , we count pairs of voters connected by𝑊 . Formally,

Cons(𝑊,ℰ) ∶= ⨄︀{{𝑢, 𝑣} ∈ 𝑉
(2)
∶𝑢 ∼𝑊 𝑣}⨄︀ .

Since both Pairs and Cons assign scores to committees, we also

consider their approximate versions, i.e., 𝛼-Pairs and 𝛼-Cons.

Our interest in Cons is motivated by the following example.

Example 3.1. Consider a profile with six voters 𝑣1, . . . , 𝑣6, six

cycle candidates 𝑐1, . . . , 𝑐6, and two diagonal candidates 𝑑1 and 𝑑2,

whose hypergraph is depicted in Figure 2. Each cycle candidate is

approved by two consecutive voters: for 𝑖 = 1 . . . , 5 candidate 𝑐𝑖 is

approved by 𝑣𝑖 and 𝑣𝑖+1, while 𝑐6 is approved by 𝑣1 and 𝑣6. Also,

𝑑1 is approved by 𝑣2 and 𝑣6 and 𝑑2 by 𝑣3 and 𝑣5. Let 𝑘 = 6.

Consider two committees:𝑊 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6} contains all

cycle candidates, whereas in𝑊
′
= {𝑐1, 𝑐3, 𝑐4, 𝑐6, 𝑑1, 𝑑6} two cycle

candidates are exchanged for the diagonal candidates (𝑊
′
is shown

in red in Figure 2). Common voting rules, including the approval

voting rule and the Chamberlin–Courant rule, do not distinguish

between𝑊 and𝑊
′
, as each voter approves exactly two candidates

in either committee. Moreover, the rule that maximizes Pairs is also

unable to distinguish them, as both𝑊 and𝑊
′
cover exactly 6 pairs

of voters. However, intuitively,𝑊
′
seems more polarizing: under

𝑊
′
, there are two disconnected groups of voters, each supporting

(though not fully) their own set of candidates.

In contrast, a rule that maximizes Cons is sensitive to the differ-

ences between the two committees. Under𝑊 , all 15 pairs of voters

are connected, while𝑊
′
only achieves 6 connections. ⊲

4 COMPUTATION OF THE NEW OBJECTIVES

In this section, we show that maximizing Pairs and Cons is NP-

hard in general, but tractable on well-structured domains. All proofs

missing from this and subsequent sections can be found in the full

version of our paper.

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5𝑣6

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑑1 𝑑2

Figure 2: Illustration of Example 3.1.

4.1 General Preferences

Our hardness proofs are based on the NP-complete problem Exact

Cover by 3-Sets (X3C) [21]. The proof idea for the Pairs objective

is to represent every element in the ground set of an X3C instance

by a pair of voters.

Theorem 4.1. It is NP-complete to decide, given an election ℰ =

(𝑉 ,𝐴,𝑘) and a threshold 𝑞 ∈ N, whether there exists a committee𝑊

of size at most 𝑘 such that Pairs(𝑊,ℰ) ≥ 𝑞.

A similar hardness result holds for Cons. The proof idea is to

introduce an auxiliary voter that is the focal point in connecting

all voters.

Theorem 4.2. It is NP-complete to decide, given an election ℰ =

(𝑉 ,𝐴,𝑘) and a threshold 𝑞 ∈ N, whether there exists a committee𝑊

of size 𝑘 such that Cons(𝑊,ℰ) ≥ 𝑞. The hardness result holds even if

𝑞 = (
𝑛
2
), i.e., if the goal is to connect all 𝑛 voters.

4.2 One-dimensional Preferences

Wewill now complement our hardness results by arguing that these

problems can be solved in polynomial time on the VCI domain.

We start by observing that, for the objectives we consider, a VCI

instance can be transformed into a CI instance without changing

the value of these objectives. To this end, we define a notion of

dominance among candidates and prove that, in the absence of

dominated candidates, every VCI instance is a CI instance.

4.2.1 From VCI to CI. Given an election ℰ = (𝑉 ,𝐴,𝑘) over a candi-

date set𝐶 , we say that candidate 𝑐
′
∈ 𝐶 is dominated by a candidate

𝑐 ∈ 𝐶 if every voter approving 𝑐
′
also approves 𝑐 , and some voter

approves 𝑐 but not 𝑐
′
, i.e., 𝑉𝑐′ is a proper subset of 𝑉𝑐 .

It turns out that if an election in the VCI domain contains no

dominated candidates, it belongs to the much simpler to analyze CI

domain; this observation, which is implicit in the work of Elkind

et al. [13, Lemma 4.7], may be of independent interest. Indeed,

removal of dominated candidates from a winning committee does

not affect the Pairs and Cons objectives, so we can simply remove

all dominated candidates from the input instance.

Proposition 4.3. Let ℰ be an instance in the VCI domain. If ℰ

contains no dominated candidates, then it belongs to the CI domain.

In what follows, we state our results for the VCI domain, but

assume that the input election belongs to the CI domain, and we

are explicitly given the respective candidate order. It will also be

convenient to assume that this order is 𝑐1, . . . , 𝑐𝑚 . This requires two

preprocessing steps: first, we eliminate all dominated candidates
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(which, by Proposition 4.3, results in a CI election), and second,

we compute an ordering of the candidates witnessing that our

instance belongs to the CI domain. Both steps can be implemented

in polynomial time (for the second step, see, e.g., [16]).

4.2.2 Efficient Algorithms. We are ready to present polynomial-

time algorithms for Pairs and Cons. Since Pairs is identical to CC

on the associated pair instance, we can compute Pairs by leveraging

an existing algorithm for CC in the CI domain [4, 16].

Proposition 4.4. In the VCI domain, a committee that maximizes

Pairs can be computed in polynomial time.

In the VCI domain, we can also compute a committee that maxi-

mizes Cons in polynomial time; however, the argument is signifi-

cantly more complicated. Again, we assume that the input profile

belongs to the CI domain, as witnessed by the candidate ordering

𝑐1, . . . , 𝑐𝑚 . A natural idea, then, is to use dynamic programming to

compute, for each 𝑏 ∈ (︀𝑘⌋︀ and 𝑖 ∈ (︀𝑚⌋︀, an optimal subcommittee

of size 𝑏 with rightmost candidate 𝑐𝑖 . For 𝑏 = 1, the computation

is straightforward, and for 𝑏 = 𝑘 , one of the resulting𝑚 commit-

tees globally maximizes Cons. However, computing the value of

adding 𝑐𝑖 to a committee of size 𝑏 − 1 that has 𝑐 𝑗 as its rightmost

candidate is a challenging task: this is because the number of connec-

tions that 𝑐𝑖 adds depends on the size of the connected component

associated with 𝑐 𝑗 . To handle this, we add a third dimension to the

dynamic program: the number of voters 𝑥 ∈ (︀𝑛⌋︀ in the connected

component of the last selected candidate. The resulting dynamic

program has𝒪(𝑚𝑛𝑘) cells, and each cell can be filled in polynomial

time given the values of the already-filled-in cells.

Theorem 4.5. In the VCI domain, a committee that maximizes

Cons can be computed in polynomial time.

5 COMBINING OBJECTIVES

While interlacing objectives can be viewed in isolation, in many

cases, standard objectives of excellence, diversity, or proportionality

continue to be important for the selection of a committee. In this

section, we investigate to what extent we can select committees

that simultaneously perform well with respect to both interlacing

and standard objectives.

5.1 Pairs Objective

First, we consider combining the Pairs objective with individual

excellence of the committee members, as measured byAV. For every

𝛼 ∈ (︀0, 1⌋︀ and every election ℰ = (𝑉 ,𝐴,𝑘), there is a simple way to

obtain a simultaneous [︂𝛼𝑘⌉︂⇑𝑘-approximation of Pairs and ⟨︀(1 −

𝛼)𝑘⧹︀⇑𝑘-approximation of AV. Indeed, we can split the 𝑘 positions

on the committee into two parts of size 𝑘1 = [︂𝛼𝑘⌉︂ and 𝑘2 = ⟨︀(1 −

𝛼)𝑘⧹︀, respectively, and then select 𝑘1 candidates so as to maximize

Pairs and 𝑘2 candidates so as to maximize AV (if some candidate is

selected both times, we replace their second copy by an arbitrary

unselected candidate). Since the marginal gain for Pairs and AV

objectives from each additional candidate is non-increasing, this

procedure provides the desired guarantees. Note that Lackner and

Skowron [25] propose a similar method for combining AV and CC.

Proposition 5.1. For every 𝛼 ∈ (︀0, 1⌋︀ and election ℰ , there exists

a committee that satisfies [︂𝛼𝑘⌉︂⇑𝑘-Pairs and ⟨︀(1 − 𝛼)𝑘⧹︀⇑𝑘-AV.

𝑥
3

𝑥

... 𝑏1

... 𝑏2

⋮

... 𝑏𝑥3

𝑥
2

⋮
𝑐1 𝑐2 ⋯ 𝑐𝑥3+1

Figure 3: Illustration of the profile constructed in the proof

of Proposition 5.3. The block voters are on the left and the

central voters are on the right. Each block candidate is ap-

proved by 𝑥 block voters, whereas each central candidate is

approved by all central voters.

We can use the same technique to combine Pairs with the goal

of diverse representation, as measured by CC.

Proposition 5.2. For every 𝛼 ∈ (︀0, 1⌋︀ and election ℰ , there exists

a committee that satisfies [︂𝛼𝑘⌉︂⇑𝑘-Pairs and ⟨︀(1 − 𝛼)𝑘⧹︀⇑𝑘-CC.

Perhaps surprisingly, it turns out that, for both combinations,

this is the best we can hope for.

Proposition 5.3. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-AV, then 𝛼 + 𝛽 ≤ 1.

Proof. We will construct a family of instances that allows us

to bound the sum of approximation ratios. For a given constant

𝑥 ∈ N, consider the election ℰ = (𝑉 ,𝐴,𝑘) defined as follows (see

Figure 3 for an illustration). The set𝐶 consists of 𝑥
3
block candidates

𝑏1, . . . , 𝑏𝑥3 , and 𝑥
3
+ 1 central candidates 𝑐1, . . . , 𝑐𝑥3+1, so that ⋃︀𝐶 ⋃︀ =

2𝑥
3
+ 1. The set 𝑉 consist of 𝑥

3
groups of block voters (𝑉𝑖)𝑖∈(︀𝑥3⌋︀

of size 𝑥 each, and a single group of 𝑥
2
central voters. For 𝑖 ∈

(︀𝑥
3
⌋︀ each voter in block 𝑉𝑖 approves candidate 𝑏𝑖 only, whereas

each central voter approves all central candidates 𝑐1, . . . , 𝑐𝑥3+1. The
target committee size is set to 𝑘 = 𝑥

3
+ 1.

Since there are fewer than 𝑘 block candidates, every committee

𝑊 contains at least one central candidate, who is approved by all

𝑥
2
central voters, and covers all (𝑥

2
−1)𝑥

2
⇑2 pairs of central voters.

Then, every additional central candidate contributes 𝑥
2
to the AV

objective and 0 to the Pairs objective, whereas every additional

block candidate contributes 𝑥 to the AV objective and 𝑥(𝑥 − 1)⇑2

to the Pairs objective.

Assume that for some 𝛾 ∈ {0, 1⇑𝑥
3
, 2⇑𝑥

3
, . . . , 1} our rule selects a

committee𝑊𝛾 ⊆ 𝐶 with 𝛾𝑥
3
+ 1 central candidates and (1 − 𝛾)𝑥

3

block candidates. Then, we obtain the following AV and Pairs

scores:

AV(𝑊𝛾 ,ℰ) = (𝛾𝑥
3

+ 1)𝑥
2

+ (1 − 𝛾)𝑥
4

= 𝛾𝑥
5

+𝒪(𝑥
4

), and

Pairs(𝑊𝛾 ,ℰ) =
𝑥
4
− 𝑥

2

2

+ (1 − 𝛾)
𝑥
5
− 𝑥

4

2

=
1 − 𝛾

2

𝑥
5

+𝒪(𝑥
4

),

where the 𝒪(⋅) upper bound holds for all values of 𝛾 . Observe that

the maximum AV score is obtained when we take 𝛾 = 1, and the

maximum Pairs score is obtained when 𝛾 = 0. Also,

AV(𝑊𝛾 ,ℰ)

AV(𝑊1,ℰ)
+
Pairs(𝑊𝛾 ,ℰ)

Pairs(𝑊0,ℰ)
≤ 1 +𝒪(1⇑𝑥).
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Figure 4: An illustration of the profile constructed in the

proof of Proposition 5.4. Block voters are on the left, central

voters in the middle, and arm voters on the right. Each block

candidate is approved by 𝑥 block voters, whereas each central

candidate is approved by all central voters and one arm voter.

Hence, as 𝑥 tends to infinity, the sum of approximation ratios

for AV and Pairs becomes arbitrarily close to 1. □

One may expect the Pairs and CC objectives to be more aligned

than Pairs and AV. Indeed, CC and Pairs count the number of

voters (resp., pairs of voters) that (jointly) approve at least one

candidate in the selected committee. However, surprisingly, the

worst-case trade-off for these objectives is the same as for Pairs

and AV.

Proposition 5.4. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-CC, then 𝛼 + 𝛽 ≤ 1.

Proof sketch. The proof is similar to that of Proposition 5.3.

This time, block candidates are used to achieve a large CC-score,

while central candidates are used to achieve a large Pairs-score,

see Figure 4.

We increase the number of block candidates from 𝑥
3
to 𝑥

4
; as

before, each block candidate is approved by a distinct block of

𝑥 voters. Also, we increase the number of central candidates to

𝑥
4
+ 1 and the number of central voters from 𝑥

2
to 𝑥

3
; as before, all

central voters approve all central candidates. Further, we add 𝑥
4
+ 1

arm voters 𝑎1, . . . , 𝑎𝑥4+1; each 𝑎𝑖 approves the central candidate 𝑐𝑖 .

Finally, we set the target committee size to 𝑘 = 𝑥
4
+ 1.

Just as in the proof of Proposition 5.3, a winning committee

contains 𝛾𝑥
4
+ 1 central candidates and (1 − 𝛾)𝑥

4
block candidates

for some 𝛾 ∈ {0, 1⇑𝑥
4
, . . . , 1}. Then, by a similar analysis, we obtain

CC(𝑊𝛾 ,ℰ)

CC(𝑊1,ℰ)
+
Pairs(𝑊𝛾 ,ℰ)

Pairs(𝑊0,ℰ)
≤ 1 +𝒪(1⇑𝑥),

which concludes the proof. □

Finally, we investigate how to combine the Pairs objective with

proportional representation, as captured by the EJR axiom. Again,

we can use the committee-splitting technique to show that for every

election ℰ = (𝑉 ,𝐴,𝑘) there is a committee that satisfies [︂𝛼𝑘⌉︂⇑𝑘-

Pairs and (1 − 𝛼)-EJR. For this, we first need to show that we can

guarantee (1 − 𝛼)-EJR with a (1 − 𝛼)-fraction of the committee

seats. To this end, we employ a variant of themethod of equal shares

(MES) [31]. Briefly, this rule gives each voter 𝑘⇑𝑛 units of money;

it then sequentially selects candidates that are best for voters that

still have money, and subtracts money from the supporters of the

selected candidates (see the full version of our paper for the formal

definition). By adapting the proof that MES satisfies EJR (Peters

and Skowron [31]), we show that, by executing MES while scaling

the voters’ budgets by 𝛼 , we obtain 𝛼-EJR for the original instance;

we believe that this result is of independent interest.
4

Lemma 5.5. Let 𝛼 ≤ 1 be given. For every election ℰ = (𝑉 ,𝐴,𝑘), ex-

ecuting MES on (𝑉 ,𝐴, 𝛼𝑘) returns a committee of size ⟨︀𝛼𝑘⧹︀ satisfying

𝛼-EJR in polynomial time.

We remark that the committee obtained as described in Lemma 5.5

satisfies an even stronger notion of proportionality, namely, 𝛼-EJR+

[6]. Using Lemma 5.5, we now easily obtain the desired guarantees.

Proposition 5.6. For every 𝛼 ∈ (︀0, 1⌋︀ and election ℰ , there exists

a committee that satisfies 𝛼-Pairs and (1 − 𝛼)-EJR.

Proof. Consider an election ℰ . By Lemma 5.5, we can satisfy

(1−𝛼)-EJR using ⟨︀(1−𝛼)𝑘⧹︀ candidates.With the remaining𝑘−⟨︀(1−

𝛼)𝑘⧹︀ = [︂𝛼𝑘⌉︂ candidates, we can guarantee 𝛼-CC on the associated

pair instance ℰ
(2)

. This is equivalent to satisfying 𝛼-Pairs on ℰ ,

concluding the proof. □

As before, we provide a matching upper bound. We note that our

proof works even if, instead of EJR, we consider the much weaker

axiom of justified representation (JR) [2].

Proposition 5.7. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-EJR, then 𝛼 + 𝛽 ≤ 1.

To conclude this section, we note that the guarantees offered

by Propositions 5.1, 5.2, and 5.6 are established by combining algo-

rithms for the two objectives in question. Some of these objectives

(in particular, CC and Pairs) do not admit polynomial-time algo-

rithms unless P=NP. To achieve polynomial runtime, we can plug

in greedy approximation algorithms for CC and Pairs (for Pairs,

we use the sequential Chamberlin–Courant rule on the associated

pair instance); however, this comes at the expense of a factor of

(1 − 1⇑𝑒) in the approximation guarantees [25].

5.2 Cons Objective

An important reason why we obtained good approximations of

Pairs, AV, and CC was that these objectives are subadditive, i.e., for

every two committees𝑊 and𝑊
′
, the value for committee𝑊 ∪𝑊

′

is never larger than the sum of the values for 𝑊 and 𝑊
′
. As a

consequence, these objectives are sublinear with respect to the

committee size, in the sense that if we only use an 𝛼-fraction of

the 𝑘 committee seats, we can obtain at least an 𝛼-fraction of the

original value for a committee of size 𝑘 (up to rounding).

In contrast, the Cons objective is not subadditive, so we cannot

use the same technique. In fact, the following result shows that the

trade-off betweenCons and any of AV,CC, or Pairs is strictly worse

(on the side of the Cons) than the trade-offs we have established

in Section 5.1. Notably, our upper bound applies even to instances

that belong to the VI domain.

Proposition 5.8. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼
2
-Cons and 𝛽-AV, 𝛽-CC, or 𝛽-Pairs, then 𝛼 + 𝛽 ≤ 1. This already

holds in the VI domain.

4

A similar observation was made by Dong and Peters [12], but requires [︂(1 − 𝛼)𝑘⌉︂
seats, which in our case would allow only for a rounded-down Pairs guarantee.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

635



𝑥
2

⋮ 𝑏1 𝑏2 ⋯ 𝑏𝑦𝑥2+1 𝑥
3

𝑥
2
− 1

⋮

⋮

⋮

⋮

⋯

⋮

⋮

𝑦

Figure 5: An illustration of the profile constructed in the

proof of Proposition 5.10.

Proof sketch. For the proof of all three statements, consider

an instance with 𝑥
3
blocks, with each block consisting of 𝑥 voters

approving the corresponding block candidate. Further, we have

𝑥
3
+ 1 central voters ordered on a line, with each pair of adjacent

central voters approving a designated central candidate.

This instance belongs to the VI domain, as we can place the

voters within each block on the line, followed by the central voters.

The remainder of the proof consists of two parts. In the first part,

we show that, to satisfy 𝛽-Pairs, 𝛽-CC, or 𝛽-AV, we require at least

𝛽𝑥
3
−𝒪(𝑥

2
) block candidates. In the second part, we show that,

with the remaining candidates, we can obtain at most a (1 − 𝛽)
2
-

approximation of Cons. □

We derive a similar result for EJR by reducing the number of

blocks from 𝑥
3
to slightly fewer than 𝛽𝑥

3
.

Proposition 5.9. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼
2
-Cons and 𝛽-EJR, then 𝛼 + 𝛽 ≤ 1. This already holds in the VI

domain.

However, in some cases the trade-off is even worse than the one

in Propositions 5.8 and 5.9. Consider a stepwise function 𝑠 ∶ (︀0, 1⌋︀→

(︀0, 1⌋︀ given by 𝑠(𝛼) = 1⇑([︂2⇑𝛼⌉︂ − 1); see Figure 6. Intuitively, it

finds the smallest 𝑝 ∈ N such that 𝛼 ≥ 2⇑𝑝 and returns 1⇑(𝑝 − 1).

We then have the following trade-off between Cons and AV.

Proposition 5.10. For every 𝛽 ∈ (︀0, 1⌋︀, if a voting rule 𝑓 satisfies

𝛽-AVthen it satisfies at most 𝑠(1 − 𝛽)-Cons.

Proof. Let 𝑦 = 1

𝑠(1−𝛽) = [︂
2

1−𝛽 ⌉︂− 1; note that 𝑦 is an integer. For

an arbitrary constant 𝑥 ∈ N, consider the election ℰ = (𝑉 ,𝐴,𝑘) de-

fined as follows (see Figure 5 for an illustration). The set𝐶 contains

𝑦𝑥
2
+ 1 block candidates (𝑏𝑖)𝑖∈(︀𝑦𝑥2+1⌋︀, 𝑦 arm candidates (𝑎𝑖)𝑖∈(︀𝑦⌋︀,

and 𝑦𝑥
2
chain candidates (𝑐𝑖, 𝑗)𝑖∈(︀𝑥2⌋︀, 𝑗∈(︀𝑦⌋︀. The set 𝑉 consist of 𝑥

2

block voters, 𝑦𝑥
3
arm voters split into 𝑦 arms 𝐴1, . . . ,𝐴𝑦 of size 𝑥

3

each, 𝑦(𝑥
2
− 1) chain voters (ℎ𝑖, 𝑗)𝑖∈(︀𝑥2−1⌋︀, 𝑗∈(︀𝑦⌋︀ split into 𝑦 arms

𝐻1, . . . , 𝐻𝑦 of size 𝑥
2
− 1 each, and one central voter 𝑣 .

The voters have the following preferences. All block voters ap-

prove all block candidates. For each 𝑗 ∈ (︀𝑦⌋︀, each voter in arm 𝐴 𝑗

approves the arm candidate 𝑎 𝑗 , and additionally, exactly one voter

in 𝐴 𝑗 approves the chain candidate 𝑐𝑥2, 𝑗 . For each 𝑖 ∈ (︀𝑥
2
− 1⌋︀ and

𝑗 ∈ (︀𝑦⌋︀, the chain voter ℎ𝑖, 𝑗 approves the chain candidates 𝑐𝑖, 𝑗 and

𝑐𝑖+1, 𝑗 . Finally, the central voter approves the chain candidates 𝑐1, 𝑗
for each 𝑗 ∈ (︀𝑦⌋︀.

We set the target committee size to 𝑘 = 𝑦(𝑥
2
+ 1) + 1. The high-

level idea of the proof is that for Cons it is important to connect

the arm voters through the selection of chain candidates. However,

if we select a 𝛽-fraction of block candidates in order to guarantee

𝛽-AV, then we cannot connect arm voters from different arms.

Consider a size-𝑘 committee𝑊 . Note that𝑊 contains at least

one block candidate, as there are only 𝑦 + 𝑦𝑥
2
= 𝑘 − 1 arm and

chain candidates. Moreover, suppose there is an arm candidate 𝑎

not included in𝑊 . Then removing a block candidate from𝑊 and

adding 𝑎 instead increases both AV and Cons. Thus, we can assume

that𝑊 contains all 𝑦 arm candidates. For each 𝑧 ∈ (︀𝑦𝑥
2
⌋︀, let𝑊𝑧 be

a committee that selects 𝑦 arm candidates, 𝑧 + 1 block candidates,

and 𝑦𝑥
2
− 𝑧 chain candidates.

Each arm candidate in𝑊𝑧 contributes 𝑥
3
to the AV score, each

block candidate contributes 𝑥
2
, and each chain candidate con-

tributes 2. Thus, we obtain

AV(𝑊𝑧 ,ℰ) = 𝑦𝑥
3

+ 𝑧𝑥
2

+ 𝑥
2

+ 2(𝑦𝑥
2

− 𝑧).

Observe that AV is maximized when 𝑧 = 𝑦𝑥
2
; thus, for𝑊𝑧 to

provide 𝛽-AV, it has to be the case that 𝑧 ≥ 𝛽𝑦𝑥
2
−𝒪(𝑥).

Now, forCons, we claim that for large enough 𝑥 , with the remain-

ing𝑦𝑥
2
−𝑧 chain candidates, we cannot connect arm voters from two

different arms. Indeed, recall that 𝑦 = 1

𝑠(1−𝛽) = [︂
2

1−𝛽 ⌉︂ − 1 <
2

1−𝛽 .

Hence, (1 − 𝛽)𝑦 < 2. Consequently, there is an 𝜀 > 0 such that

(1 − 𝛽)𝑦 = 2 − 𝜀. Since 𝑧 ≥ 𝛽𝑦𝑥
2
− 𝒪(𝑥), we choose at most

𝑦𝑥
2
− 𝑧 ≤ (1 − 𝛽)𝑦𝑥

2
+ 𝒪(𝑥) < 2𝑥

2
− 𝜀𝑥

2
+ 𝒪(𝑥) chain candi-

dates. Thus, for large enough 𝑥 we have strictly fewer than 2𝑥
2
− 2

chain candidates. This proves the claim, as it takes 2(𝑥
2
− 1) chain

candidates to connect two arm voters from different arms.

Let us now calculate the value of the Cons objective. The con-

nections among block voters contribute at most (
𝑥
2

2
), and the con-

nections among chain voters contribute at most (
𝑦𝑥

2

2
). Connections

between chain voters and arm voters contribute at most 𝑦𝑥
5
, as

each chain voter can only be connected to arm voters in a single

arm. We connect all arm voters within the same arm, but, as ar-

gued above, we do not connect arm voter from different arms, so

connections among arm voters contribute 𝑦(
𝑥
3

2
). The central voter

can contribute 𝒪(𝑦𝑥
3
) connections. In total,

Cons(𝑊𝑧 ,ℰ) =
𝑦𝑥

6

2

+𝒪(𝑥
5

).

On the other hand, the maximum value of Cons is obtained

when we select all 𝑦𝑥
2
− 𝑦 chain voters: in this case, all 𝑦𝑥

3
arm

voters are connected, and Cons is at least

𝑦
2
𝑥
6

2

+𝒪(𝑥
5

).

Thus, the fraction of Cons we can obtain while satisfying 𝛽-AV

converges to
1

𝑦
= 𝑠(1 − 𝛽) for 𝑥 → ∞. As 𝑠(𝛼) is monotonically

non-decreasing in 𝛼 (and hence 𝛼 > 1 − 𝛽 implies 𝑠(𝛼) ≥ 𝑠(1 − 𝛽)),

this concludes the proof. □
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Consider the two upper bounds that we have obtained for 𝛼-

approximation of Cons given that a voting rule satisfies 𝛽-AV, given

by Propositions 5.8 and 5.10 (their plots are presented in Figure 6).

Since the upper bounds intersect several times and they are of differ-

ent nature (stepwise vs. continuous), it seems that establishing tight

trade-offs might be a challenging and interesting problem. Similarly,

because Cons is not subadditive, finding a general lower bound for

these trade-offs seems highly non-trivial as well. Nevertheless, we

conclude this section with a positive result on guarantees that we

can obtain for a combination of Pairs and Cons objectives in the

VI domain, which matches our upper bound.

Proposition 5.11. For every instance (𝑉 ,𝐴,𝑘) in the VI domain

with even 𝑘 , there exists a committee that satisfies
1

4
-Cons and any

one of the criteria
1

2
-AV,

1

2
-CC,

1

2
-EJR, or

1

2
-Pairs.

Proof sketch. It suffices to split the committee into two halves

and focus on satisfying
1

4
-Cons with

𝑘
2
committee members. With

the other
𝑘
2
slots, we can use the methods in Propositions 5.1 and 5.2

and Lemma 5.5 to obtain
1

2
-AV,

1

2
-CC,

1

2
-EJR, or

1

2
-Pairs.

Let ℰ be an election with even 𝑘 that belongs to the VI domain.

Take an optimal committee𝑊 of size 𝑘 with respect to Cons. We

will choose half of𝑊 in the following fashion. In the corresponding

hypergraph,𝑊 consists of one or more connected components. For

components in which we have an even number of candidates, we

can show that half of these candidates connect more than half of

the voters covered by the whole component. This gives us at least

1

4
of connections inside the component.

Now, since 𝑘 is even, there is an even number of components

with an odd number of candidates. We arbitrarily group them into

pairs. Then, for every pair, we show that it is possible to select

half of the candidates rounded up in one of them and half of the

candidates rounded down in the other so that in total we cover
1

4

of the connections from the two components. □

6 CONCLUSION

Our paper sheds new light on the interdependency of mass and

elite polarization. We observe that the selection of a representative

committee can significantly influence elite polarization indepen-

dently of mass polarization. With the aim of avoiding polarization

at the level of the representation, we have introduced Pairs and

Cons, two numerical objectives that measure how well a committee

interlaces the electorate.

We show that, while maximizing both objectives is NP-hard, a
committee maximizing either of them can be computed in polyno-

mial time on the voter-candidate interval domain. Also, we study

the compatibility of our objectives with measures of excellence,

diversity, and proportionality. We find approximation trade-offs

suggesting that there is nothing better than dividing the committee

seats among different objectives and trying to maximize each objec-

tive with its designated share of the committee: in the worst case,

the synergies are negligible. For almost all objectives we study, a

subcommittee yields a fraction of the optimal value proportional

to its size. Only for Cons, the dependency is quadratic (or even

worse), leading to inferior guarantees.

We believe that our work offers an important perspective that

has been missing from the social choice literature on multiwinner

0 1⇑6 1⇑3 1⇑2 2⇑3 5⇑6 1

0
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Figure 6: Two different upper bounds on the possible 𝛼-

approximation of Cons for rules that satisfy 𝛽-AV. The

(1 − 𝛽)
2
upper bound is the result of Proposition 5.8 and

𝑠(1 − 𝛽) is implied by Proposition 5.10.

voting. As such, it calls for further research; in what follows, we

suggest some promising directions.

An immediate open question is to determine the exact trade-off

between Cons and other objectives. While we have a bound for

𝛼
2
-Cons and (1 − 𝛼)-approximations of other objectives, Proposi-

tion 5.10 shows that the picture is more nuanced.

Going beyond our base model, another direction is to consider

our objectives in the broader context of participatory budgeting

(PB), where each candidate has a cost, and the committee needs to

stay within a given budget. In this setting, candidates are usually

projects, such as a playground, a community garden, or a cycling

path. Interlacing voters by projects in PB has an additional inter-

pretation: the funded projects may lead to interaction among the

agents who use them (e.g., working together in a community gar-

den). This seems quite desirable in the context of PB, where one of

the goals is community building.

Moreover, it would be interesting to explore the compatibility of

our objectives and the canonical desiderata in the context of real-

life instances: It is plausible that on realistic data one can achieve

much better trade-offs than in the worst case.

Finally, while Pairs and Cons offer some insight into the polar-

ization induced by a committee, there are settings where they fail

to provide useful information: For example, if some candidate is

approved by all voters, any committee containing this candidate

maximizes both objectives. Therefore, further insights could be

gained by studying refined versions of our objectives; e.g., one can

consider the strength of the connections or, in case of the Cons

objective, the length of the (shortest) path between a pair of voters.

ACKNOWLEDGMENTS

Most of this work was done when Edith Elkind was at the University

of Oxford. Chris Dong was supported by the Deutsche Forschungs-

gemeinschaft under grants BR 2312/11-2 and BR 2312/12-1. Martin

Bullinger was supported by the AI Programme of The Alan Turing

Institute. Tomasz Wąs and Edith Elkind were supported by the UK

Engineering and Physical Sciences Research Council (EPSRC) under

grant EP/X038548/1.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

637



REFERENCES

[1] Alan I. Abramowitz and Kyle L. Saunders. 2008. Is polarization a myth? The

Journal of Politics 70, 2 (2008), 542–555.

[2] Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and

Toby Walsh. 2017. Justified representation in approval-based committee voting.

Social Choice and Welfare 48, 2 (2017), 461–485.

[3] Salvador Barberà and Danilo Coelho. 2008. How to choose a non-controversial

list with k names. Social Choice and Welfare 31, 1 (2008), 79–96.

[4] Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann. 2013. On the computation

of fully proportional representation. Journal of Artificial Intelligence Research 47

(2013), 475–519.

[5] Damien Bol, Konstantinos Matakos, Orestis Troumpounis, and Dimitrios Xefteris.

2019. Electoral rules, strategic entry and polarization. Journal of Public Economics

178 (2019), 104065.

[6] Markus Brill and Jannik Peters. 2023. Robust and verifiable proportionality

axioms for multiwinner voting. In Proceedings of the 24th ACM Conference on

Economics and Computation (ACM-EC).

[7] Markus Brill and Jannik Peters. 2024. Completing priceable committees: Utili-

tarian and representation guarantees for proportional multiwinner voting. In

Proceedings of the 38th AAAI Conference on Artificial Intelligence. 9528–9536.

[8] John R. Chamberlin and Paul N. Courant. 1983. Representative deliberations

and representative decisions: Proportional representation and the Borda rule.

American Political Science Review 77, 3 (1983), 718–733.

[9] Rachael Colley, Umberto Grandi, César Hidalgo, Mariana Macedo, and Carlos

Navarrete. 2023. Measuring and controlling divisiveness in rank aggregation.

In Proceedings of the 32nd International Joint Conference on Artificial Intelligence

(IJCAI). 2616–2623.

[10] Gary W. Cox. 1985. Electoral equilibrium under approval voting. American

Journal of Political Science (1985), 112–118.

[11] Théo Delemazure, Lukasz Janeczko, Andrzej Kaczmarczyk, and Stanisław Szufa.

2024. Selecting the most conflicting pair of candidates. In Proceedings of the 33rd

International Joint Conference on Artificial Intelligence (IJCAI). 2766–2773.

[12] Chris Dong and Jannik Peters. 2024. Proportional multiwinner voting with

dynamic candidate sets. Technical Report. https://pub.dss.in.tum.de/brandt-

research/dynamic_multiwinner.pdf.

[13] Edith Elkind, Piotr Faliszewski, Ayumi Igarashi, Pasin Manurangsi, Ulrike

Schmidt-Kraepelin, and Warut Suksompong. 2024. The price of justified repre-

sentation. ACM Transactions on Economics and Computation 12, 3 (2024), 1–27.

[14] Edith Elkind, Piotr Faliszewski, Piotr Skowron, and Arkadii Slinko. 2017. Proper-

ties of multiwinner voting rules. Social Choice and Welfare 48 (2017), 599–632.

[15] Edith Elkind and Anisse Ismaili. 2015. OWA-based extensions of the Chamberlin–

Courant rule. In Proceedings of the 4th International Conference on Algorithmic

Decision Theory (ADT). 486–502.

[16] Edith Elkind and Martin Lackner. 2015. Structure in dichotomous preferences.

In Proceedings of the 24th International Joint Conference on Artificial Intelligence

(IJCAI). 2019–2025.

[17] Roy Fairstein, Dan Vilenchik, Reshef Meir, and Kobi Gal. 2022. Welfare vs.

representation in participatory budgeting. In Proceedings of the 21st International

Conference on Autonomous Agents and Multiagent Systems (AAMAS). 409–417.

[18] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. 2017.

Multiwinner voting: A new challenge for social choice theory. In Trends in

Computational Social Choice, Ulle Endriss (Ed.). Chapter 2.

[19] Morris P. Fiorina. 2017. Unstablemajorities: Polarization, party sorting, and political

stalemate. Hoover press.

[20] Morris P. Fiorina, Samuel J. Abrams, and Jeremy C. Pope. 2011. Culture war? The

myth of a polarized America (3rd ed.). Longman.

[21] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman.

[22] Michał T. Godziszewski, Paweł Batko, Piotr Skowron, and Piotr Faliszewski. 2021.

An analysis of approval-based committee rules for 2D-Euclidean elections. In

Proceedings of the 35th AAAI Conference on Artificial Intelligence. 5448–5455.

[23] Maciej Kocot, Anna Kolonko, Edith Elkind, Piotr Faliszewski, and Nimrod Talmon.

2019. Multigoal committee selection. In Proceedings of the 28th International Joint

Conferences on Artificial Intelligence (IJCAI). 385–391.

[24] Anna-Sophie Kurella and Salvatore Barbaro. 2024. On the polarization premium

for radical parties in PR electoral systems. Technical Report. Gutenberg School of

Management and Economics, Johannes Gutenberg-Universität Mainz.

[25] Martin Lackner and Piotr Skowron. 2020. Utilitarian welfare and representation

guarantees of approval-based multiwinner rules. Artificial Intelligence 288 (2020),

103366.

[26] Martin Lackner and Piotr Skowron. 2023. Multi-Winner Voting with Approval

Preferences. Springer Nature.

[27] Matthew Levendusky and Neil Malhotra. 2016. Does media coverage of partisan

polarization affect political attitudes? Political Communication 33, 2 (2016), 283–

301.

[28] Simon A Levin, Helen V Milner, and Charles Perrings. 2021. The dynamics of

political polarization. Proceedings of the National Academy of Sciences 118, 50

(2021), e2116950118.

[29] Burt L. Monroe. 1995. Fully proportional representation. American Political

Science Review 89, 4 (1995), 925–940.

[30] Roger B. Myerson and Robert J. Weber. 1993. A theory of voting equilibria.

American Political Science Review 87, 1 (1993), 102–114.

[31] Dominik Peters and Piotr Skowron. 2020. Proportionality and the limits of wel-

farism. In Proceedings of the 21nd ACM Conference on Economics and Computation

(ACM-EC). 793–794.

[32] Edvard Phragmén. 1899. Till frågan om en proportionell valmetod. Statsveten-

skaplig Tidskrift 2, 2 (1899), 297–305.

[33] Thorvald N. Thiele. 1895. Om Flerfoldsvalg. Oversigt over det Kongelige Danske

Videnskabernes Selskabs Forhandlinger (1895), 415–441.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

638

https://pub.dss.in.tum.de/brandt-research/dynamic_multiwinner.pdf
https://pub.dss.in.tum.de/brandt-research/dynamic_multiwinner.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Approval-Based Multiwinner Voting
	3.2 Classic Committee Selection
	3.3 Interlacing Committee Selection

	4 Computation of The New Objectives
	4.1 General Preferences
	4.2 One-dimensional Preferences

	5 Combining Objectives
	5.1 Pairs Objective
	5.2 Cons Objective

	6 Conclusion
	Acknowledgments
	References



