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ABSTRACT
Previous studies have shown that Instant-Runoff Voting (IRV) is

highly resistant to coalitional manipulation (CM), though the theo-

retical reasons for this remain unclear. To address this gap, we ana-

lyze the susceptibility to CM of three major voting rules—Plurality,

Two-Round System, and IRV—within the Perturbed Culture model.

Our findings reveal that each rule undergoes a phase transition at a

critical value 𝜃𝑐 of the concentration of preferences: the probability

of CM for large electorates converges exponentially fast to 1 below

𝜃𝑐 and to 0 above 𝜃𝑐 . We introduce the Super Condorcet Winner

(SCW), showing that its presence is a key factor of IRV’s resistance

to coalitional manipulation, both theoretically and empirically. No-

tably, we use this notion to prove that for IRV, 𝜃𝑐 = 0, making it

resistant to CM with even minimal preference concentration.
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1 INTRODUCTION
1.1 Motivation
The Gibbard-Satterthwaite Theorem [16, 32] shows that all non-

trivial voting rules are vulnerable to manipulation (strategic voting),

even by a single voter. This vulnerability can only worsen when any

number of voters with aligned interests can form a coalition to alter

the election outcome, a phenomenon called coalitional manipulation
(CM). Unlike individual manipulation [31, 33], CM remains signifi-

cant in large-scale elections and raises several concerns, notably

creating moral dilemmas [9, Introduction] and power imbalances

between strategic and naive voters, thus undermining the "one

person, one vote" principle [10, 13].

However, not all voting rules are equally vulnerable: the CM rate,
i.e., the probability that a voting profile is manipulable by a coalition

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

under a given probabilistic model, can vary significantly between

rules. In previous studies, Instant-Runoff Voting (IRV) and some

of its variants [10] consistently outperform other classical single-

winner voting rules in resisting coalitional manipulation, whether

the analysis is based on randomly generated profiles [18, 19] [9,

Chapters 7–8] or experimental datasets [4, 19] [9, Chapter 9]. This

has been confirmed by theoretical calculations in the case of three

candidates [26, 28]. This is especially intriguing, as IRV has several

theoretical features typically deemed undesirable and seemingly

prone to manipulation: most notably, IRV is neither Condorcet-
consistent nor monotonic [2, Definitions 2.8 and 2.10] [11].

In an effort to shed theoretical light on this phenomenon, we

will compare IRV to the two other most widely used voting rules

in large-scale single-winner political elections: Plurality and the

Two-Round System. We will adopt the Perturbed Culture model of

random voting profiles, first introduced by Williamson and Sargent

[35] and later named by Gehrlein [15, Section 4.3.2]. We will fo-

cus on the asymptotic behavior as the number of voters tends to

infinity, as it offers more mathematical tractability and is relevant

for large-scale elections. We will also examine convergence rates

to assess how well this limit approximates scenarios with finite

electorates. Our approach is similar to the use of the Ising model in

physics, which, despite being unrealistic in its microscopic details,

has been remarkably effective in explaining the complex macro-

scopic phenomenon of phase transitions in ferromagnetism [22].

1.2 Contributions
In this paper, we prove that each of the three voting rules undergoes

a phase transition, with an abrupt change in behavior based on

whether the concentration parameter 𝜃 in the Perturbed Culture

model exceeds a critical threshold 𝜃𝑐 . Below 𝜃𝑐 , the CM rate tends

to 1 for large electorates, while above 𝜃𝑐 , it tends to 0. We compute

the critical threshold 𝜃𝑐 for each voting rule as a function of the

number of candidates.

We show through simulations how the CM rate curve as a func-

tion of 𝜃 , which is continuous for a finite number of voters 𝑛,

converges to a discontinuous curve as 𝑛 tends to infinity, thereby

explaining the phase transition. Additionally, we investigate the

critical regime 𝜃 = 𝜃𝑐 , leading to the conjecture that in this case,

the CM rate tends to a limit strictly between 0 and 1.

We introduce the concept of a Super Condorcet Winner (SCW),

which largely explains IRV’s resilience to CM. This leads to one of

our most striking results: for IRV, the critical value 𝜃𝑐 is 0, regardless

of the number of candidates. This means that IRV is asymptotically

resistant to CM as soon as the Perturbed Culture model shows

even the slightest preference concentration. Furthermore, using
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experimental datasets, we show that SCWs are frequent in practice

and account for most of IRV’s resistance to CM.

Finally, we demonstrate that in non-critical regime, i.e., for𝜃 ≠ 𝜃𝑐 ,

the convergence of the CM rate toward 0 or 1 is exponentially fast.

This implies that our results for 𝑛 → ∞ quickly become relevant

even for finite 𝑛. We also study how this speed varies with 𝜃 .

1.3 Related Work
In addition to the literature already mentioned, the works most

closely related to ours are those that study the CM rate using the-

oretical tools. Most of them focus on three-candidate elections

within models like Impartial Culture [27], Impartial Anonymous
Culture [14, 26], or Pólya-Eggenberger Urns [28]. Although they

consistently show that IRV is more robust than other rules, they are

limited to a specific number of candidates and offer little intuition

for IRV’s superior performance. Kim and Roush [23] provide key

results for large electorates under Impartial Culture for Plurality
and some other rules (positional scoring rules in general, Maximin,
and Coombs) but do not address the Two-Round System or IRV.

Concerning phase transitions, research on this subject is abun-

dant in physics (see Kadanoff [22] for an overview) and in math-

ematics and computer science[1, 6, 8]. In voting theory, Mossel

et al. [29] and Xia [36] also examine phase transitions in coalitional

manipulability, focusing on varying numbers of manipulators. In

contrast, our study considers the impact of the concentration pa-

rameter in the probabilistic distribution of preferences.

1.4 Limitations
The limitations of this work stem from its main assumptions. First,

while the Perturbed Culture model is useful, it does not capture the

full complexity of real-world preferences. Second, our analysis is

limited to three voting rules, and extending this to other systems

would be valuable. Finally, the concept of coalitional manipula-

tion may face criticism due to coordination challenges or the lack

of binding agreements among coalition members (see Durand [9,

Introduction] for a response to these critiques).

1.5 Roadmap
The rest of the paper is organized as follows. Section 2 introduces

key definitions and notations. Sections 3, 4, and 5 respectively

analyze Plurality, Two-Round System, and IRV. Section 6 explores

convergence speed. Section 7 concludes with future work.

2 DEFINITIONS AND NOTATIONS
2.1 Discrete and Continuous Profiles
A discrete profile 𝑃 consists of three elements: a finite, non-empty set

of candidates C(𝑃) with cardinality𝑚(𝑃); a finite, non-empty set

of votersV(𝑃) with cardinality 𝑛(𝑃); and for each voter 𝑣 ∈ V(𝑃),
a preference ranking 𝑃𝑣 over the candidates in C(𝑃).

For any preference ranking 𝑝 , let 𝑤 (𝑝, 𝑃) denote the weight
of 𝑝 in 𝑃 , i.e., the number of voters in 𝑃 with ranking 𝑝 . The to-

tal weight of a discrete profile is simply the number of voters:

𝑤 (𝑃) = ∑
𝑝 𝑤 (𝑝, 𝑃) = 𝑛(𝑃).

A continuous profile is similarly defined by three components:

a finite, non-empty set of candidates C(𝑃) with cardinality𝑚(𝑃);

a total weight 𝑤 (𝑃) ∈ (0,∞); and for each ranking 𝑝 over the

candidates, a weight𝑤 (𝑝, 𝑃) ∈ R, such that

∑
𝑝 𝑤 (𝑝, 𝑃) = 𝑤 (𝑃).

For any profile 𝑃 , whether discrete or continuous, we define the

associated normalized profile 𝑃 as the continuous profile where

the weight of each ranking 𝑝 is given by𝑤 (𝑝, 𝑃) = 𝑤 (𝑝,𝑃 )
𝑤 (𝑃 ) . View-

ing a profile as a vector of weights, we can naturally define its

neighborhood in the usual topological sense.

For any subset 𝐾 ⊆ C(𝑃), let 𝑃𝐾 be the restriction of 𝑃 to the

candidates in 𝐾 . For two distinct candidates 𝑐 and 𝑑 , let 𝑃𝑐≻𝑑 be the

restriction to voters who prefer 𝑐 over 𝑑 . Similarly, for a candidate 𝑐

and a position 𝑘 ∈ {1, . . . ,𝑚(𝑃)}, let 𝑃𝑟 (𝑐 )=𝑘 be the restriction

to voters ranking 𝑐 in the 𝑘-th position. These notations can be

combined to restrict the profile both by candidates and voters.

2.2 Voting Rules
A voting rule 𝑓 maps any profile, discrete or continuous, to a can-

didate from that profile. In this paper, we focus on homogeneous
voting rules, meaning that 𝑓 (𝑃) = 𝑓 (𝑃) for any profile 𝑃 . In other

words, the outcome depends only on the relative proportions of

preference rankings, not the total weight. Each particular voting

rule is formally defined at the beginning of its respective section.

2.3 Coalitional Manipulability
When 𝑃 is a discrete profile, we say that a voting rule 𝑓 is coali-
tionally manipulable (also abbreviated as CM) in 𝑃 , or that profile

𝑃 is CM in rule 𝑓 , if there exists a target profile 𝑄 with the same

candidates and voters such that 𝑓 (𝑄) ≠ 𝑓 (𝑃), and for every voter

𝑣 ∈ V(𝑃), if 𝑄𝑣 ≠ 𝑃𝑣 , then 𝑣 prefers 𝑓 (𝑄) to 𝑓 (𝑃) based on 𝑃𝑣 . In

other words, only voters who benefit from the new outcome may

alter their ballots, though some may keep their original votes.

An immediate consequence is as follows. If for a ranking 𝑝 , we

have𝑤 (𝑝,𝑄) < 𝑤 (𝑝, 𝑃), then at least one voter with ranking 𝑝 in 𝑃

must have changed their ballot in𝑄 , i.e.,𝑄𝑣 ≠ 𝑃𝑣 . By the definition,

this implies that 𝑓 (𝑄) is preferred to 𝑓 (𝑃) according to 𝑃𝑣 = 𝑝 .

This observation will now serve as the basis for defining CM in the

continuous case.

For a continuous profile 𝑃 , we say that a voting rule 𝑓 is CM

in 𝑃 (or that 𝑃 is CM in 𝑓 ) if there exists a target profile 𝑄 with the

same candidates and total weight such that 𝑓 (𝑄) ≠ 𝑓 (𝑃) and, for
every ranking 𝑝 , if 𝑤 (𝑝,𝑄) < 𝑤 (𝑝, 𝑃), then 𝑓 (𝑄) is preferred to

𝑓 (𝑃) according to 𝑝 . In other words, only voters (in a continuous

sense) who prefer the new outcome can have changed their ballots.

The relationship between the two notions is clarified by:

Lemma 2.1. If a homogeneous rule 𝑓 is CM in a discrete profile 𝑃 ,
then 𝑓 is also CM in the corresponding normalized profile 𝑃 . However,
the converse is not true.

The direct implication follows from the definitions, so we will

focus on providing a counterexample to show that the converse

does not hold. Consider the positional scoring rule 𝑓 with weights

(7, 6, 0, . . . , 0), where each candidate’s score is given by 𝑠 (𝑐) =

7𝑤 (𝑃𝑟 (𝑐 )=1) + 6𝑤 (𝑃𝑟 (𝑐 )=2), and the candidate with the highest

score wins (using a tie-breaking rule if needed). Now, consider a

discrete profile 𝑃 with 8 voters and 3 candidates:

• 3 voters have the ranking 1 ≻ 3 ≻ 2,

• 5 voters have the ranking 2 ≻ 1 ≻ 3.
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It is straightforward to verify that candidate 1 wins under 𝑓 , and

that the rule is CM in the normalized profile 𝑃 , but not in the original

discrete profile 𝑃 . The issue is that the 5 manipulators supporting

candidate 2 must carefully distribute their points between candi-

dates 1 and 3, which is impossible in the discrete case because each

manipulator must assign their entire vote to one ranking rather

than splitting it fractionally.

2.4 Perturbed Culture
Given two positive integers𝑚 and 𝑛, and a concentration parameter
𝜃 ∈ (0, 1], the Perturbed Culture model is defined as follows. A

discrete profile 𝑃 is randomly generated with C(𝑃) = {1, . . . ,𝑚}
and V(𝑃) = {1, . . . , 𝑛}. Each voter is independently assigned the

ranking (1 ≻ . . . ≻ 𝑚) with probability 𝜃 , and a uniformly random

ranking with probability 1 − 𝜃 .
As 𝜃 → 0, this model converges to the classical Impartial Culture

model, while for 𝜃 = 1, it becomes a deterministic culture where all

voters share the ranking (1 ≻ . . . ≻𝑚).1
Since a profile can be represented as a vector giving the weight

of each ranking, we can define the expected normalized profile (or
simply the expected profile) under Perturbed Culture. To simplify

notation, we denote it by 𝑃 , leaving its dependency on 𝑚 and 𝜃

implicit. In this profile, the ranking (1 ≻ . . . ≻ 𝑚) has a weight of
𝜃 + 1−𝜃

𝑚!
, while each of the other rankings has a weight of

1−𝜃
𝑚!

.

2.5 CM Rate
We denote by 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) the CM rate, i.e., the probability that a

voting rule 𝑓 is CM in a profile drawn from the Perturbed Culture

model with𝑚 candidates, 𝑛 voters and concentration 𝜃 .

3 PLURALITY
Wewill begin our studywith the Plurality voting rule, which assigns
each candidate 𝑐 in a profile 𝑃 a score equal to the total weight

of voters ranking 𝑐 first: 𝑠
Plu

(𝑐, 𝑃) = 𝑤 (𝑃𝑟 (𝑐 )=1). The winner is

the candidate with the highest score (using a tie-breaking rule

if needed): Plu(𝑃) = arg max 𝑠
Plu

(𝑐, 𝑃). The specific tie-breaking
method will not affect our findings.

3.1 Theoretical Results for Plurality
The intuition behind our theoretical results is as follows. First, we

analyze Plurality’s behavior in the expected normalized profile 𝑃

as a function of 𝜃 . For small 𝜃 , Plurality is CM in this profile, but

for large enough 𝜃 , it is not. Using the weak law of large numbers,

we then show that as 𝑛 → ∞, the normalized random profile 𝑃 will,

with high probability (i.e., with a probability that tends to 1 when

𝑛 → ∞), be close enough to 𝑃 , ensuring that Plurality behaves

similarly. Throughout this subsection, we assume𝑚 ≥ 2.

We begin by analyzing the expected profile 𝑃 . In this profile, the

plurality score for candidate 1 is 𝑠
Plu

(1, 𝑃) = 𝜃 + 1−𝜃
𝑚 , while the

number of voters inclined to manipulate for any candidate 𝑐 ≠ 1

is 𝑤 (𝑃𝑐≻1) = 1−𝜃
2

. If all manipulators vote optimally for 𝑐 , they

succeed if 𝑤 (𝑃𝑐≻1) > 𝑠
Plu

(1, 𝑃), which simplifies to 𝜃 < 𝑚−2

3𝑚−2
.

1
We exclude the case 𝜃 = 0 from our theoretical analysis to simplify the proofs: as

𝑛 → ∞, assuming 𝜃 > 0 guarantees that candidate 1 wins under sincere voting for all

three voting rules considered. Nevertheless, our results hold even in the case 𝜃 = 0,

and we will also include it in our figures.

Defining the critical value 𝜃𝑐 (Plu,𝑚) = 𝑚−2

3𝑚−2
, we conclude that

Plurality is CM for 𝜃 < 𝜃𝑐 (Plu,𝑚) and not CM for 𝜃 > 𝜃𝑐 (Plu,𝑚)
(the equality case is not needed for our forthcoming analysis).

We now apply the weak law of large numbers to show that

as 𝑛 → ∞, these results hold with high probability. We start by

examining the supercritical regime 𝜃 > 𝜃𝑐 (Plu,𝑚), relying on the

following lemma.

Lemma 3.1. Assume there exists a neighborhood of the expected
normalized profile 𝑃 where the homogeneous rule 𝑓 is not CM. Then
lim𝑛→∞ 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) = 0.

Proof. Applying the weak law of large numbers, the following

statements hold with high probability: denoting 𝑃 the random pro-

file, its normalized version 𝑃 lies in the desired neighborhood of 𝑃 ,

hence (by assumption) 𝑓 is not CM in 𝑃 , hence (by Lemma 2.1) 𝑓 is

also not CM in the random discrete profile 𝑃 . □

This lemma applies easily to Plurality. For 𝜃 > 𝜃𝑐 (Plu,𝑚), we
have shown that for every candidate 𝑐 ≠ 1, 𝑤 (𝑃𝑐≻1) < 𝑠

Plu
(1, 𝑃).

As this is a strict inequality, it holds in a neighborhood of the profile,

allowing us to apply Lemma 3.1. Hence, lim𝑛→∞ 𝜌 (Plu,𝑚, 𝑛, 𝜃 ) = 0.

We now turn to the subcritical regime 𝜃 < 𝜃𝑐 (Plu,𝑚). Unfortu-
nately, we cannot directly apply the same reasoning: even if the

normalized profile 𝑃 is CM near 𝑃 , it does not necessarily follow

that the discrete profile 𝑃 is also CM, as Lemma 2.1 does not hold

in the reverse direction.

However, for Plurality, manipulators can always employ a com-

mon strategy. Formally, a voting rule 𝑓 is unison-manipulable (UM)

in profile 𝑃 (or 𝑃 , in 𝑓 ) if manipulation can succeed even when all

interested voters cast the same ballot [10, 34].
2
Clearly, UM implies

CM. Unlike CM, UM holds equivalently for both a discrete profile 𝑃

and its normalized profile 𝑃 , which leads to the following lemma.

Lemma 3.2. Assume there exists a neighborhood of the expected
normalized profile 𝑃 where the homogeneous rule 𝑓 is UM. Then
lim𝑛→∞ 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) = 1.

The proof is similar to Lemma 3.1: by the weak law of large num-

bers, with high probability, the normalized random profile 𝑃 is in

the desired neighborhood, making it UM, hence the random discrete

profile 𝑃 is also UM, and thus CM. Applied to Plurality, Lemma 3.2

directly leads to lim𝑛→∞ 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) = 1 for 𝜃 < 𝜃𝑐 (Plu,𝑚).
The following theorem summarizes our results so far.

Theorem 3.3. Let 𝜃𝑐 (Plu,𝑚) = 𝑚−2

3𝑚−2
with𝑚 ≥ 2.

• If 𝜃 < 𝜃𝑐 (Plu,𝑚), then lim𝑛→∞ 𝜌 (Plu,𝑚, 𝑛, 𝜃 ) = 1.
• If 𝜃 > 𝜃𝑐 (Plu,𝑚), then lim𝑛→∞ 𝜌 (Plu,𝑚, 𝑛, 𝜃 ) = 0.

For 𝑚 = 2, the theorem indicates 𝜃𝑐 (Plu, 2) = 0, which is ex-

pected, as Plurality cannot be manipulated with only two candi-

dates. Similarly, for𝑚 = 1, we would reach the same conclusion by

conventionally setting 𝜃𝑐 (Plu, 1) = 0. The theorem becomes more

interesting for𝑚 ≥ 3, where it describes a phase transition around

𝜃𝑐 (Plu,𝑚), meaning a sudden change in behavior as the parameter

crosses this threshold. This raises key questions: What causes this

discontinuity, and how do we approach it as 𝑛 increases? What

happens when 𝜃 is equal to or near the critical value?

2
The term unison was introduced by Walsh [34] but we follow the slightly different

definition proposed by Durand [10].
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Figure 1: CM rate of Plurality as a function of 𝜃 for different
values of 𝑛 with𝑚 = 4. Curves for finite 𝑛 are based on Monte
Carlo simulations with 1,000,000 profiles per point. The lim-
iting curve as 𝑛 → ∞ follows from Theorem 3.3.
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Figure 2: CM rate of Plurality as a function of 𝑛 for different
values of𝑚 with 𝜃 = 𝜃𝑐 (Plu,𝑚). Monte Carlo simulations with
1,000,000 profiles per point.

3.2 Simulations for Plurality
To understand the origin of the discontinuity, Figure 1 shows the CM

rate of Plurality as a function of 𝜃 for various 𝑛 with𝑚 = 4. Curves

for finite 𝑛 are based on Monte Carlo simulations,
3
with 1,000,000

profiles per point, leading to error margins of
1√

1000000

= 0.1%. The

limiting curve for 𝑛 → ∞ is derived from Theorem 3.3. For finite 𝑛,

the curve is continuous. As 𝑛 increases, it becomes sigmoid-shaped

and steepens, ultimately converging to a step function as 𝑛 → ∞.

The observed behavior mirrors what occurs in physics: since

a finite combination of continuous functions remains continuous,

non-analyticity can only arise in an infinite system [22, Section

11.6]. As in physics, a phase transition occurs beyond a certain level

of disorder: while a ferromagnetic metal loses its magnetization

above the Curie temperature [5], Plurality loses its resistance to

coalitional manipulation below the critical value of the concentra-

tion parameter 𝜃 .

3
The code is available at https://github.com/francois-durand/irv-cm-aamas-2025.

Theorem 3.3 describes the behavior in the subcritical and su-

percritical regimes, but what happens in the critical regime, i.e.,
when 𝜃 = 𝜃𝑐 (Plu,𝑚)? Figure 2 shows the CM rate in that case as a

function of the number of voters 𝑛, for different values of𝑚. This

leads to several conjectures:

• The critical CM rate 𝜌 (Plu,𝑚, 𝑛, 𝜃𝑐 (Plu,𝑚)) converges to a

limit as 𝑛 → ∞.

• This limit is strictly less than 1.

• This limit increases with𝑚.

It is beyond the scope of this paper to theoretically prove these

results. In the study of phase transitions, analyzing the critical

behavior is often challenging [7, 24, 25, 30]. With that, we conclude

our study of Plurality and proceed to the Two-Round System.

4 TWO ROUND SYSTEM
The Two-Round System (TR) is as follows. In the first round, each

candidate 𝑐 receives a score 𝑠1

TR
(𝑐, 𝑃) = 𝑠

Plu
(𝑐, 𝑃), and the set 𝐾

of the two candidates with the highest scores advances to the sec-

ond round. These two candidates then receive scores 𝑠2

TR
(𝑐, 𝑃) =

𝑠
Plu

(𝑐, 𝑃𝐾 ), and the candidate with the highest score wins. A tie-

breaking rule is applied if necessary.
4

4.1 Theoretical Results for the Two-Round
System

For 𝑛 = 2, the Two-Round System is equivalent to Plurality, so we

focus on the case 𝑚 ≥ 3. As with Plurality, we first analyze the

expected profile and then extend the results using the weak law of

large numbers. The key difference is of technical nature: unison

manipulation is generally insufficient in the Two-Round System.

We begin by examining the expected normalized profile 𝑃 . Can-

didate 1 clearly wins the election, with the second-round opponent

determined by the tie-breaking rule. For a manipulation to succeed

in favor of a candidate 𝑐 ≠ 1, candidate 𝑐 must reach the second

round. However, if candidate 1 also advances, the manipulation

will fail. Therefore, the second round must involve a candidate

𝑑 ∉ {1, 𝑐}, which is possible since we assumed𝑚 ≥ 3. Now, con-

sider the portion of the first-round scores for candidates 1, 𝑐 , and 𝑑

coming from sincere voters:
𝑠1

TR
(1, 𝑃1>𝑐 ) = 𝜃 + 1−𝜃

𝑚 ,

𝑠1

TR
(𝑐, 𝑃1>𝑐 ) = 0,

𝑠1

TR
(𝑑, 𝑃1>𝑐 ) = 1−𝜃

2𝑚 ,

where, for example, 𝑠1

TR
(𝑑, 𝑃1>𝑐 ) denotes the first-round score, in

the two-round system, of candidate 𝑑 in the restriction of the ex-

pected normalized profile 𝑃 to the voters who prefer candidate 1 to

candidate 𝑐 (i.e., “sincere” voters).

For both candidates 𝑐 and 𝑑 to surpass candidate 1’s score, at

least 𝜃 + 1−𝜃
𝑚 manipulators must vote for 𝑐 , while 𝜃 + 1−𝜃

𝑚 − 1−𝜃
2𝑚

must vote for 𝑑 . Therefore, the total number of manipulators, given

by𝑤 (𝑃𝑐≻1) = 1−𝜃
2

, must be at least the sum of these two quantities.

4
For simplicity, we consider an “instant” version of TR, where voters cast their ballots

once. In most actual implementations, voters participate in two rounds. While this is

equivalent for sincere voting, the instant version restricts some manipulation strategies

[9, Table 1.1]. However, our results apply to both variants.
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Simplifying, the necessary condition becomes 𝜃 ≤ 𝑚−3

5𝑚−3
. In other

words, coalitional manipulation is impossible for 𝜃 > 𝑚−3

5𝑚−3
.

Let us now show that for 𝜃 < 𝑚−3

5𝑚−3
, manipulation is possible.

Consider the specific case where 𝑐 = 2 and 𝑑 = 3. Suppose that:

• A fraction
2(1−2𝜃 )
3(1−𝜃 ) of manipulators vote (2 ≻ . . . ≻𝑚 ≻ 1),

• And a fraction
1+𝜃

3(1−𝜃 ) of them vote (3 ≻ . . . ≻𝑚 ≻ 1 ≻ 2).

The first fraction is positive since 𝜃 < 𝑚−3

5𝑚−3
< 1

2
, and the two

fractions clearly sum to 1. We chose these values to ensure can-

didate 2’s lead over candidate 1 in the first round is double that

of candidate 3’s, though the reasoning holds for slightly different

values. Standard calculations then show that candidates 2 and 3

lead the first round, with candidate 2 winning the second.

In summary, the behavior of the Two-Round System in the ex-

pected normalized profile shifts at 𝜃𝑐 (TR,𝑚) = 𝑚−3

5𝑚−3
. The next

step is to extend this result to discrete profiles as 𝑛 → ∞. For the

supercritical regime 𝜃 > 𝜃𝑐 (TR,𝑚), the reasoning mirrors that for

Plurality, relying on Lemma 3.1.

In the subcritical regime 𝜃 < 𝜃𝑐 , the situation is more subtle.

Unison manipulation is generally insufficient for the Two-Round

System [9, Table 1.1], so we cannot directly apply Lemma 3.2.

Let us take a step back for the intuition of the problem. Suppose

that a rule 𝑓 is CM in a neighborhood of the expected profile 𝑃 ,

and consider a discrete profile 𝑃 whose normalized form 𝑃 lies in

this neighborhood, similarly to Lemma 3.2 for unison manipula-

tion. This means that 𝑓 is CM from 𝑃 toward a target continuous

profile 𝑄 . The challenge arises from discretization: manipulators

in the discrete profile 𝑃 may only be able to target a profile whose

normalized form approximates 𝑄 .

However, as 𝑛 grows large, these finite-size effects diminish,

allowing manipulators to approach 𝑄 closely. For CM to succeed,

it suffices that 𝑓 produces the same outcome when a profile is

sufficiently close to𝑄 . Thus, wewill rely on two neighborhoods: one

for manipulability near 𝑃 , and another for stability of the outcome

around the target profile. Technically, to obtain the desired result,

we will require the second neighborhood to be uniformwith respect

to the first, meaning that for different choices of 𝑃 near 𝑃 , the

neighborhood of 𝑄 that guarantees outcome stability does not

shrink arbitrarily. Let us now formalize all this.

Definition 4.1. Let 𝛿 > 0. We say that a rule 𝑓 is 𝛿-stable-CM in

a continuous profile 𝑃 (or that 𝑃 is 𝛿-stable-CM in 𝑓 ) if there exists

a continuous profile 𝑄 such that:

• 𝑓 is CM from 𝑃 to 𝑄 ,

• For any profile𝑄 ′
with 𝑑 (𝑄,𝑄 ′) < 𝛿 , we have 𝑓 (𝑄 ′) = 𝑓 (𝑄).

Here, 𝑑 (𝑄,𝑄 ′) denotes the ℓ∞-distance between profiles, viewed as

vectors of weights. However, our results hold for any norm-derived

distance, as all norms are equivalent in finite-dimensional spaces.

Lemma 4.2. Assume there exists 𝛿 > 0 and a neighborhood of
the expected normalized profile 𝑃 where the homogeneous rule 𝑓 is
𝛿-stable-CM. Then lim𝑛→∞ 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) = 1.

The uniformity property mentioned earlier lies in that the same

value of 𝛿 applies consistently on the entire neighborhood of 𝑃 .

Proof. Consider 𝑛 large enough such that
1

𝑛 < 𝛿 . The weak law

of large numbers ensures that, with high probability:

(1) The normalized random profile 𝑃 lies in the desired neigh-

borhood and is therefore 𝛿-stable-CM to a target profile 𝑄 .

(2) The manipulators in the discrete profile 𝑃 can approach 𝑄

with a margin of one manipulator, causing deviations of at

most
1

𝑛 < 𝛿 in each normalized weight.

(3) By assumption, this implies that the voting outcome for the

approximated target profile matches that of 𝑄 .

(4) Therefore, 𝑓 is CM in 𝑃 . □

We can now address the Two-Round System for 𝜃 < 𝑚−3

5𝑚−3
.

Let 𝜁 > 0 (its value will be specified later). Consider a continuous

profile 𝑃 such that 𝑑 (𝑃, 𝑃) < 𝜁

𝑚!
. Then, all the scores and score gaps

calculated for 𝑃 still hold for 𝑃 , with an additive error of at most 𝜁 .

It follows that if 𝜁 < 𝜃 , candidate 1 wins in 𝑃 , just as in 𝑃 .

As we did in the case of the expected profile, consider the profile

𝑄 obtained from 𝑃 by modifying the ballots of voters who prefer

candidate 2 over candidate 1 as follows:

• A fraction
2(1−2𝜃 )
3(1−𝜃 ) vote (2 ≻ . . . ≻𝑚 ≻ 1),

• And a fraction
1+𝜃

3(1−𝜃 ) vote (3 ≻ . . . ≻𝑚 ≻ 1 ≻ 2).
To apply Lemma 4.2, it suffices to show that, sufficiently close to 𝑄

(including the profile 𝑄 itself), candidate 2 wins.

Let 𝜉 > 0 (specified later) and set 𝛿 =
𝜉
𝑚!

. For a profile 𝑄 ′
such

that 𝑑 (𝑄 ′, 𝑄) < 𝛿 , the first-round scores are bounded as follows:

𝑠1

TR
(1, 𝑄′) <

(
1−𝜃
𝑚 + 𝜃 + 𝜁

)
+ 0 + 𝜉,

𝑠1

TR
(2, 𝑄′) > 0 +

(
1−𝜃

2
− 𝜁

)
2(1−2𝜃 )
3(1−𝜃 ) − 𝜉,

𝑠1

TR
(3, 𝑄′) >

(
1−𝜃
2𝑚 − 𝜁

)
+
(

1−𝜃
2

− 𝜁
)

1+𝜃
3(1−𝜃 ) − 𝜉,

𝑠1

TR
(𝑐,𝑄 ′) <

(
1−𝜃
2𝑚 + 𝜁

)
+ 0 + 𝜉, for any 𝑐 > 3.

Each score above is presented as the sum of three terms: the

first comes from sincere voters in 𝑃1≻2
and stays within 𝜁 of the

corresponding value for 𝑃1≻2
(except for candidate 2, by definition

of 𝑃1≻2
); the second comes from manipulators in𝑄 ; and the third is

an error between𝑄 and𝑄 ′
, bounded by 𝜉 . If 𝜁 = 𝜉 <

𝑚−3−(5𝑚−3)𝜃
30𝑚 ,

standard calculations show that candidates 2 and 3 secure the high-

est scores and thus advance to the second round.

In the second round, we have:

𝑠2

TR
(2, 𝑄′)−𝑠2

TR
(3, 𝑄′) >

(
𝜃 − 1 − 𝜃

6

− 𝜁
)
+
(

1 − 𝜃
2

− 𝜁
)

1 − 5𝜃

3(1 − 𝜃 ) −𝜉 .

If 𝜁 = 𝜉 < 𝜃
12
, standard calculations show that this quantity is

positive, and therefore candidate 2 wins, as desired.

Overall, it thus suffices to take 𝜁 = 𝜉 < min

(
𝑚−3−(5𝑚−3)𝜃

30𝑚 , 𝜃
12

)
.

We summarize our findings in the following theorem.

Theorem 4.3. Let 𝜃𝑐 (TR,𝑚) = 𝑚−3

5𝑚−3
with𝑚 ≥ 3.

• If 𝜃 < 𝜃𝑐 (TR,𝑚), then lim𝑛→∞ 𝜌 (TR,𝑚, 𝑛, 𝜃 ) = 1.
• If 𝜃 > 𝜃𝑐 (TR,𝑚), then lim𝑛→∞ 𝜌 (TR,𝑚, 𝑛, 𝜃 ) = 0.

Recall that for 𝑚 = 2, the same conclusions hold by setting

𝜃𝑐 (TR, 2) = 0, since Two-Round is equivalent to Plurality in this

case. For 𝑚 = 3, the theorem also gives 𝜃𝑐 (TR, 3) = 0, which

is remarkable: according to the Gibbard-Satterthwaite theorem,

manipulability becomes an issue from𝑚 = 3, yet Two-Round avoids

this with high probability in Perturbed Culture as soon as 𝜃 > 0.
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Figure 3: CM rate of the Two-Round System as a function
of 𝑛 for different values of𝑚 with 𝜃 = 𝜃𝑐 (TR,𝑚). Monte Carlo
simulations with 1,000,000 profiles per point.

Since Theorems 3.3 and 4.3 share similar structures, a natural

question arises: does every voting rule 𝑓 have a critical parameter

𝜃𝑐 (𝑓 ,𝑚) with similar properties? The answer is no. Consider a

rule 𝑓 that uses Plurality when 𝑛 is even and Two-Round when 𝑛

is odd.
5
From Theorems 3.3 and 4.3, it follows that for 𝜃 < 𝑚−3

5𝑚−3
,

the CM rate converges to 1, while for 𝜃 > 𝑚−2

3𝑚−2
, it converges to 0.

However, for 𝜃 ∈
(
𝑚−3

5𝑚−3
, 𝑚−2

3𝑚−2

)
, the CM rate tends to 1 for even 𝑛

and to 0 for odd 𝑛: overall, it does not converge.

It is still possible to define a lower critical value 𝜃𝑙 (𝑓 ,𝑚) and
an upper critical value 𝜃𝑢 (𝑓 ,𝑚) as, respectively, the largest and

smallest values in [0, 1] such that:

• If 𝜃 < 𝜃𝑙 (𝑓 ,𝑚), then lim𝑛→∞ 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) = 1,

• If 𝜃 > 𝜃𝑢 (𝑓 ,𝑚), then lim𝑛→∞ 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) = 0.

We can then define 𝜃𝑐 (𝑓 ,𝑚) as their common value when it exists.

With this convention, Theorems 3.3 and 4.3 are summarized as:

𝜃𝑐 (Plu,𝑚) = 𝑚 − 2

3𝑚 − 2

, 𝜃𝑐 (TR,𝑚) = 𝑚 − 3

5𝑚 − 3

.

4.2 Simulations for the Two-Round System
The Two-Round equivalent of Figure 1 is similar, so we proceed

directly to the counterpart of Figure 2: Figure 3, showing the critical

CM rate as a function of 𝑛 for different𝑚. We use SVVAMP 0.12.0

[12], a Python package for studying the manipulability of voting

rules. As for Plurality, the critical CM rate appears to converge to a

limit in (0, 1) that increases with𝑚.

5 IRV (INSTANT-RUNOFF VOTING)
Let us now proceed to Instant-Runoff Voting (IRV), where the winner
is determined throughmultiple rounds. In each round, the candidate

with the lowest Plurality score is eliminated, until only one remains.

Formally, let 𝐾 (𝑟, 𝑃) be the set of remaining candidates at the start

of round 𝑟 and ℓ (𝑟, 𝑃) be the candidate losing at round 𝑟 . We have:
𝐾 (1, 𝑃) = C(𝑃),
ℓ (𝑟, 𝑃) = arg min 𝑠

Plu
(𝑐, 𝑃𝐾 (𝑟,𝑃 ) ),

𝐾 (𝑟 + 1, 𝑃) = 𝐾 (𝑟, 𝑃) \ {ℓ (𝑟, 𝑃)},
5
For simplicity, this counter-example involves a non-homogeneous rule.

using a tie-breaking rule for elimination when necessary. The win-

ner IRV(𝑃) is the last remaining candidate in 𝐾 (𝑚(𝑃), 𝑃).

5.1 Theoretical Results for IRV
As usual, we start by examining the expected normalized profile

𝑃 . Since 𝜃 > 0, candidate 1 clearly wins. Now suppose that IRV

is CM in 𝑃 to a target profile 𝑄 , where candidate 𝑐 ≠ 1 wins.

Candidate 1 must be eliminated in some round 𝑟 . For conciseness,

denote 𝐾 = 𝐾 (𝑟,𝑄) and 𝑘 = |𝐾 |. Obviously 𝑐 must belong to 𝐾 . The

sincere voters’ contribution to candidate 1’s score at this round is:

𝑠
Plu

(1, 𝑃1≻𝑐
𝐾 ) = 𝑠

Plu
(1, 𝑃𝐾 ) = 𝜃 +

1 − 𝜃
𝑘

.

Thus, 𝑠
Plu

(1, 𝑄𝐾 ) ≥ 𝜃 + 1−𝜃
𝑘

, and since 𝑘 ≥ 2, this is strictly greater

than
1

𝑘
. Therefore, the score of candidate 1 exceeds the average

score at this round, hence it cannot be minimal. This contradiction

proves that IRV is not CM in 𝑃 .

In this reasoning, IRV’s resistance to coalitional manipulation

stems from the fact that in any subset of candidates 𝐾 containing

candidate 1, this candidate has a Plurality score that exceeds the

average score. This motivates the following definition:

Definition 5.1. A candidate 𝑐 is a Super Condorcet Winner (SCW)

in a profile 𝑃 if, for every subset of candidates 𝐾 containing 𝑐 , the

following holds:

𝑠
Plu

(𝑐, 𝑃𝐾 ) >
𝑤 (𝑃)
|𝐾 | .

This concept strengthens the classical notion of a Condorcet
Winner, which only requires the condition to hold for subsets 𝐾 of

size 2. We summarize its relevance to IRV as follows:

Lemma 5.2. If 𝑐 is an SCW in profile 𝑃 , then IRV(𝑃) = 𝑐 and IRV
is not CM in 𝑃 .

The same result easily extends to several IRV variants, such

as Exhaustive Ballot [10], Condorcet-IRV [11, 19], Benham rule,

Tideman rule, Smith-IRV, and Woodall rule [17]. However, the

converse is not true: there exists profiles without an SCW where

IRV is still not CM (see Durand [9, Table 1.1] for an example).

Now, consider the neighborhood of the expected profile 𝑃 . Since

the SCW condition involves a finite number of strict inequalities

that depend continuously on the profile’s coefficients, candidate 1

is an SCW not only in 𝑃 but also in its neighborhood. From here,

we can follow two proof strategies that only differ in the order of

their steps.

One approach is to first apply Lemma 5.2 to deduce that IRV is

not CM in this neighborhood. Using Lemma 3.1 (based on the weak

law of large numbers), we then deduce lim𝑛→∞ 𝜌 (IRV,𝑚, 𝑛, 𝜃 ) = 0.

Alternatively, we could first use the weak law of large numbers to

show that candidate 1 is an SCW with high probability, then apply

Lemma 5.2 to show lim𝑛→∞ 𝜌 (IRV,𝑚, 𝑛, 𝜃 ) = 0.

Since this holds for any 𝜃 > 0, we obtain a remarkable result:

Theorem 5.3. For IRV, the critical value of the concentration pa-
rameter in Perturbed Culture is

𝜃𝑐 (IRV,𝑚) = 0.
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curve as 𝑛 → ∞ follows from Theorem 5.3.
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Figure 5: CM rate of IRV as a function of𝑛 for different values
of𝑚 with 𝜃 = 𝜃𝑐 (IRV,𝑚) = 0 (Impartial Culture). Monte Carlo
simulations with 1,000,000 profiles per point.

In summary, within the Perturbed Culture model, IRV has the

smallest possible critical value. Even a slight concentration of pref-

erences favoring candidate 1 is enough for IRV to become resistant

to coalitional manipulation with high probability. And for the same

reasons, this also holds for the IRV variants mentioned earlier.

5.2 Simulations for IRV
For IRV, as for Two-Round, our simulations for finite 𝑛 are carried

out using SVVAMP. Similar to Figure 1 for Plurality, Figure 4 shows

the CM rate as a function of 𝜃 for different 𝑛. For large 𝑛, the

curve takes on a sigmoidal shape that converges to the theoretical

curve from Theorem 5.3. The behavior near 𝜃 = 0 suggests that

in the Impartial Culture model, the CM rate converges to a limit

within (0, 1), as proven for𝑚 = 3 by Lepelley and Valognes [27],

conjectured in the general case by Durand [9, Conjecture 7.8], and

further supported by Figure 5. This second figure also indicates that,

as with Plurality and Two-Round, the limit CM rate in the critical

regime appears to increase with the number of candidates𝑚.

Table 1: Empirical study of Super Condorcet Winners (SCW)
and IRV in two datasets, with the presence of a Condorcet
Winner (CW) included as a reference.

Netflix dataset FairVote dataset

Profiles 11,215 10,044

— with a CW 99.30% 99.98%

— where IRV is not CM (a) 95.87% 96.30%

— with an SCW (b) 94.05% 96.20%

Ratio (b) / (a) 98% > 99%
∗

∗
We omit the next digit of the raw result (99.9%), not significant given the sample size.

5.3 Empirical Results for IRV
In the Perturbed Culture model, the presence of an SCW explains

IRV’s resistance to coalitional manipulation. However, as noted ear-

lier, this is not a necessary condition: IRV can be non-manipulable

in profiles without an SCW. This raises the question of whether the

presence of an SCW often accounts for IRV’s non-manipulability

in realistic scenarios.

To investigate this, Table 1 analyzes the Netflix and FairVote

datasets [10], which respectively contain 11,215 profiles derived

from slight perturbations of 2,243 empirical profiles and 10,044 pro-

files based on 162 empirical profiles. It provides two key insights.

First, an SCW is very common in real-world datasets, here appear-

ing in 94% or 96% of profiles. Second, in most cases where IRV resists

CM, this can be explained by the presence of an SCW—98% in the

Netflix dataset and over 99% in the FairVote dataset. This confirms

that SCWs are a crucial factor in IRV’s resilience to manipulation.

The frequent appearance of SCWs may seem surprising, but it

becomes intuitive when revisiting the definition. For a candidate 𝑐

and a subset 𝐾 of candidates that includes 𝑐 , if preferences were

perfectly balanced, we would expect 𝑠
Plu

(𝑐, 𝑃𝐾 ) = 𝑤 (𝑃 )
|𝐾 | . The condi-

tion for being an SCW is simply to exceed this average. Therefore,

even a slight bias in favor of 𝑐 makes it likely for 𝑐 to be an SCW.

6 CONVERGENCE SPEED
We will now study the convergence speed, to assess how fast the

results found for 𝑛 → ∞ become relevant for finite values of 𝑛.

6.1 Theoretical Bound
We will first show that in the non-critical regime, the CM rate

converges exponentially fast as 𝑛 → ∞. Next, we will bound this

speed of convergence depending on the parameter 𝜃 .

As an example, consider Lemma 3.1, where we assume the exis-

tence of a neighborhood where the rule 𝑓 is not CM. By definition,

there exists 𝜖 > 0 such that this neighborhood contains an open ball

of diameter 𝜖 for the infinity norm. Our approach is to apply Hoeffd-

ing’s inequality [21] to bound the probability that the normalized

random profile 𝑃 falls outside this ball. Since Hoeffding’s inequality

applies to scalar random variables, we use the union bound to ex-

tend it to the weight vector representing a voting profile. Formally,
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Figure 6: CM rate of Plurality as a function of 𝑛 for different
supercritical values of 𝜃 with𝑚 = 4. Monte Carlo simulations
with 1,000,000 profiles per point.

denoting by P the probability:

𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) ≤ P(𝑑 (𝑃, 𝑃) ≥ 𝜖),
≤ ∑

𝑝 P( |𝑤 (𝑝, 𝑃) −𝑤 (𝑝, 𝑃) | ≥ 𝜖) (union bound),

≤ 2𝑚!𝑒−2𝜖2𝑛
(Hoeffding’s inequality). (1)

Thus, the convergence is exponentially fast in 𝑛, and we can quan-

tify the rate if the size of the neighborhood is known. By the same

reasoning, similar results hold for Lemmas 3.2 and 4.2, and conse-

quently for Theorems 3.3, 4.3, and 5.3. In the literature on phase

transitions, this is known as sharp transitions, meaning that the

limiting curve quickly approximates the behavior even for finite 𝑛.

Let us now bound the speed of convergence more precisely. For

example, consider Plurality in the supercritical regime. If a profile 𝑃

lies within an open ball of radius 𝜖 centered at 𝑃 , the score of candi-

date 1 is bounded from below: 𝑠
Plu

(1, 𝑃) > 𝜃 + 1−𝜃
𝑚 −𝑚!𝜖 , and the

number of manipulators is bounded from above:𝑤 (𝑃2≻1) < 1−𝜃
2

+
𝑚!𝜖 . To ensure 𝑠

Plu
(1, 𝑃) > 𝑤 (𝑃2≻1), we set 𝜖 =

(3𝑚−2)𝜃−(𝑚−2)
2𝑚!

,

which can be rewritten as 𝜖 =
(
𝜃 − 𝜃𝑐 (Plu,𝑚)

)
3𝑚−2

2𝑚!
. Using our

bound (1), there exists a coefficient 𝐴+ (Plu,𝑚)—which we could

explicitly compute—such that:

𝜌 (Plu,𝑚, 𝑛, 𝜃 ) = 𝑂
(
𝑒−𝐴

+ (Plu,𝑚) (𝜃−𝜃𝑐 (Plu,𝑚) )2

)
.

This reasoning for Plurality in the supercritical regime gener-

alizes to the subcritical regime, with a coefficient 𝐴− (Plu,𝑚), and
to the other voting rules in this paper: since all relevant quantities

(scores, numbers of manipulators) are linear in the profile weights,

we can take a value of 𝜖 that depends linearly on 𝜃 − 𝜃𝑐 , leading to

a term in (𝜃 − 𝜃𝑐 )2
via Hoeffding’s inequality. Thus, we obtain:

• Supercritical regime: 𝜌 = 𝑂
(
𝑒−𝐴

+ (𝑓 ,𝑚) (𝜃−𝜃𝑐 )2𝑛
)
,

• Subcritical regime: 𝜌 = 1 −𝑂
(
𝑒−𝐴

− (𝑓 ,𝑚) (𝜃𝑐−𝜃 )2𝑛
)
,

where 𝜌 = 𝜌 (𝑓 ,𝑚, 𝑛, 𝜃 ) and 𝜃𝑐 = 𝜃𝑐 (𝑓 ,𝑚).

6.2 Simulation Study of the Convergence Speed
Figure 6 shows the CM rate of Plurality as a function of 𝑛 for

various values of 𝜃 (whereas Figure 1 does the reverse). Each curve
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Figure 7: Asymptotic negative slope 𝐶 (4, 𝜃 ) from Figure 6,
plotted as a function of 𝜃 − 𝜃𝑐 (Plu, 4). The vertical blue lines
represent error margins.6

has an oblique asymptote on a semi-log scale, indicating not only

that it is bounded by a decreasing exponential (as predicted by

theory), but that it follows the form 𝜌 ∼𝑛→∞ 𝐵(𝑚,𝜃 )𝑒−𝐶 (𝑚,𝜃 )𝑛
,

with𝑚 = 4 here. This figure also allows us to measure the slopes

of the asymptotes, providing the values of 𝐶 (4, 𝜃 ) for each 𝜃 .
To analyze how convergence speed varies with 𝜃 , Figure 7 plots

the measured asymptotic slopes against 𝜃 − 𝜃𝑐 in log-log scale (the

values of 𝜃 were specifically chosen to be evenly spaced in that

figure). When 𝜃 is far from 𝜃𝑐 , the dependency is in (𝜃 − 𝜃𝑐 )2
, in

line with the upper bound found previously. However, close to 𝜃𝑐 ,

the dependency seems to involve a smaller exponent (estimated

at 1.265). In the terminology of phase transition, this is called the

critical exponent of the convergence speed.
We repeated this for𝑚 ∈ {5, 6, 7}, the subcritical regime, and

the other voting rules, with similar results but various critical ex-

ponents. This suggests a long-range dependency in |𝜃 − 𝜃𝑐 |2 but

smaller critical exponents near the critical regime. This intriguing

behavior will deserve further theoretical investigation.

7 FUTUREWORK
A natural direction for future work is to compute the critical pa-

rameter 𝜃𝑐 for other voting systems. Another key area of research

would be a deeper analysis of the critical regime, including the

calculation of the limiting CM rate at 𝜃 = 𝜃𝑐 and the asymptotic

behavior of the slope of the sigmoid 𝜌 (𝜃 ) at 𝜃 = 𝜃𝑐 , which is linked

to a finer analysis of the convergence speed in the non-critical

regime. Expanding the study to other models, such as Mallows,

is also promising. Preliminary analysis shows that the qualitative

results observed in this paper, particularly the key finding that

IRV’s limit CM rate drops to zero with even slight concentration of

preferences, also hold true under the Mallows model.
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