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ABSTRACT
The goal of generalized planning (GP) is to find a generalized solu-

tion for a class of planning problems. One of effective means to solve

GP is to transform a GP problem into an abstract planning problem,

which can be easily solved. Recently, Lin et al. proposed a novel

abstract model for GP, namely generalized linear integer numeric

planning (GLINP), whose solution is an algorithmic-like structure

called a planning program. They also developed an inductive ap-

proach to generating planning programs for GLINP. However, it

has no theoretical guarantee that the generated planning program

holds for infinitely many problem instances. To address this defect,

we propose an automatic approach to verify whether the planning

program works for infinitely many problem instances in this paper.

We translate the planning program into a set of trace axioms finitely

represented by linear integer arithmetic with uninterpreted predi-

cate and function symbols (LIAUPF), and reduce the problem to the

entailment problem of LIAUPF. Due to the undecidability of entail-

ment problem in LIAUPF, we identify a class of planning programs

whose trace axioms can be simplified in linear integer arithmetic

(LIA), that is, a decidable fragment of LIAUPF, when reasoning about
only the input and output of planning programs. As a result, the

correctness verification of this class of programs becomes decidable.
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1 INTRODUCTION
Automated planning is an important area of Artificial Intelligence.

Two fundamental classes of automated planning are classical plan-

ning and numeric planning. A classical planning problem is defined

as (1) a collection of propositional variables that are used to describe

states; (2) a set of actions that indicate the transition relation be-

tween states; (3) an initial state; (4) a goal formula, which is a propo-

sitional formula that captures a set of goal states. Numeric planning

[12, 24] is a numeric extension to classical planning, which involves

not only propositional variables but also numeric variables. Both

classical and numeric planning aim to identify a finite sequence of

actions that ensures goal achievement from the initial state. The so-

lution, however, is strongly related to the specific planning problem

and is not generally applicable to other similar planning problems.

A crucial extension to numeric or classical planning is general-

ized planning (GP), which focuses on finding a generalized solution

for a (finite or infinite) set of numeric or classical planning prob-

lems that share the same set of actions but have different sets of

propositional or numeric variables, initial states, and goal formulas

[13, 27]. A number of GP problems enjoy the following character-

istics: (1) the planning problems have the same set of propositional

and numeric variables and the same goal formula; (2) the sole dif-

ference among planning problems is their initial states; and (3) the

set of planning problems is infinite. The majority of research efforts

[6, 14, 15, 17, 28, 30] investigate GP with the above characteristics,

which is the focus of this paper. This type of GP can be formalized

as numeric planning except that we use an initial formula that

captures a possibly infinite number of initial states.
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One of the effective means to tackle GP is to transform a GP prob-

lem into an abstract planning problem, which can be easily solved.

The solution to the original GP problem is then created based on the

solution to the abstract problem. Srivastava et al. [29] proposed an

abstract model for GP, namely qualitative numeric planning (QNP),
a class of numeric planning with the following restrictions: (1) each

numeric variable has a non-negative value; (2) actions have non-

deterministic effects and can change the values of variables by any

positive amount; and (3) initial states, goal states and preconditions

of actions are expressed by simple formulas. A simple formula is the

Boolean combination of propositional literals (𝑝 or ¬𝑝) and simple

numeric literals (𝑣 = 0 or 𝑣 > 0). It is proved that QNP is decidable,

more precisely, EXPTIME-Complete [5]. By using concept language

[2], many GP problems can be cast as a QNP problem [4].

However, QNP lacks rich expressiveness to formalize some GP

problems due to only allowing simple formulas and not supporting

conditional effects. To address this deficit, Lin et al. [20] proposed

another abstract model for GP problems, namely generalized linear
integer numeric planning (GLINP). The initial states, goal states and
preconditions of actions in GLINP are described in linear integer

arithmetic (LIA) and the conditional effects of actions are permitted.

Compared to QNP, GLINP is more expressive to formalize a greater

variety of GP problems. Additionaly, Lin et al. [20] developed an

inductive approach to creating a planning program for GLINP. It

first samples a finite set 𝑆 of initial states. Then, it utilizes a numeric

planner (e.g., Metric-FF [12]) to produce the sequential plan for each

sampled initial state 𝑠 ∈ 𝑆 . After that, it infers a skeleton of plan-

ning program expressed in a regular expression that incorporates

the above sequential plans. The final planning program 𝛿 results

from the skeleton by completing the missing conditions of loop

structures and branch structures. Although the planning program

𝛿 derived by Lin et al.’s approach works for the sampled set 𝑆 of

initial states, there is no theoretical guarantee on the correctness

of 𝛿 for the initial states not in 𝑆 .

In this paper, we propose an automatic method to verify the

correctness of planning programs for an infinite number of initial

states. We design a translation from every program to a finite set of

axioms formalized in linear integer arithmetic with uninterpreted

predicate and function symbols (LIAUPF) so that the correctness

verification of planning programs can be reduced to the entailment

problem of the result of forgetting redundant symbols in such set

of axioms. This entailment problem is in general undecidable and

hence this reduction is not a decidable method. Therefore, we iden-

tify a class of planning programs in which the result of forgetting

redundant symbols in the set of axioms is expressed in LIA, a decid-
able fragment of LIAUPF. As a result, the correctness verification
of this class of programs becomes decidable.

2 PRELIMINARIES
2.1 LIAUPF
LetZ be the set of integers and B the set of {T, F}. Throughout this
paper, we fix F a set of function symbols and Q a set of predicate

symbols. A nullary function symbol is called a numeric symbol

and a nullary predicate symbol is called a propositional symbol.

The sets of terms (TermUPF) and formulas (FormUPF) of LIAUPF are

defined by the following grammar:

𝑒 ∈ TermUPF :: 𝑐 | 𝑥 | 𝑒 + 𝑒 | 𝑓 (𝑒, · · · , 𝑒)
𝜙 ∈ FormUPF :: ⊤ | ⊥ | 𝑒 = 𝑒 | 𝑒 < 𝑒 | 𝑞(𝑒, · · · , 𝑒) | ¬𝜙 | 𝜙∧𝜙 | ∃𝑥𝜙
where 𝑐 ∈ Z, 𝑓 ∈ F , 𝑞 ∈ Q and 𝑥 is a variable.

We use ∃Ω𝜙 for ∃𝑥1 · · · ∃𝑥𝑛𝜙 where Ω = {𝑥1, · · · , 𝑥𝑛}. The for-
mula 𝜙1 ∨ 𝜙2 is the shorthand for ¬(¬𝜙1 ∧ ¬𝜙2), 𝜙1 → 𝜙2 for

¬𝜙1 ∨ 𝜙2, 𝜙1 ↔ 𝜙2 for (𝜙1 → 𝜙2) ∧ (𝜙2 → 𝜙1), ∀𝑥𝜙 for ¬∃𝑥 (¬𝜙),
and 𝑒1 ≤ 𝑒2 for 𝑒1 = 𝑒2 ∨ 𝑒1 < 𝑒2.

A formula 𝜙 or a term 𝑒 is closed if it contains no free occurrence

of a variable. A sentence is a closed formula. A theory is a set of

sentences. We use F (Φ) for the set of function symbols occurring

in the theory Φ and Q(Φ) for the set of predicate symbols.

The domain of each structure 𝑀 of LIAUPF is the set Z of in-

tegers. Every𝑚-ary function symbol 𝑓 is interpreted as an𝑚-ary

integer function 𝑓𝑀 : Z𝑚 →Z. Every𝑚-ary predicate symbol 𝑞

is interpreted as an𝑚-ary relation over integers 𝑞𝑀 ⊆ Z𝑚
. The

addition function, the ordering relation and the equality relation are

interpreted as usual. A structure𝑀 satisfies a sentence 𝜙 , if𝑀 |= 𝜙 .

A structure𝑀 satisfies a theory Φ, if𝑀 |= 𝜙 for every 𝜙 ∈ Φ. A set

Φ of sentences entails a sentence 𝜓 , denoted by Φ |= 𝜓 , if 𝑀 |= 𝜓

for every structure𝑀 s.t.𝑀 |= Φ.
As a corollary of Gödel first incompleteness theorem [11], the

entailment problem of LIAUPF is undecidable. However, the en-

tailment problems of the following two fragments of LIAUPF are

decidable: (1) LIA: every function and predicate symbol is nullary,

and (2) qf-LIA: a fragment of LIAwhere every formula is quantifier-

free. We use Term for the set of term of LIA, Form for the set of

LIA-formulas, and qf-Form for the set of qf-LIA-formulas.

2.2 Forgetting in LIAUPF
The concept of forgetting dates back to [7], who first considered

forgetting propositional symbols in a propositional formula. Lin

and Reiter [19] extended the above idea to forgetting predicate

symbols in first-order logic. We hereafter give a model-theoretic

definition of forgetting function and predicate symbols in LIAUPF.
Let Ω ⊆ F ∪ Q. Two structures𝑀 and𝑀′ are equivalent except

on Ω, denoted by 𝑀 ∼Ω 𝑀′, if they agree on everything except

possibly on the interpretation of Ω.

Definition 1. Let𝑀 be a structure, Φ a theory and Ω ⊆ F ∪ Q.
We say a theory, denoted by

˜∃Ω.Φ, is the result of forgetting Ω in Φ,
if𝑀′ is a model of

˜∃Ω.Φ iff there is a model𝑀 of Φ s.t.𝑀 ∼Ω 𝑀′.

For simplicity, we use
˜∃𝑓 .Φ for the result of forgetting a function

symbol 𝑓 in Φ and
˜∃𝑞.Φ for the result of forgetting a predicate

symbol 𝑞 in Φ.
For all queries that do not mention Ω, the original theory Φ and

the new one
˜∃Ω.Φ are equivalent.

Proposition 1 ([19]). For any sentence 𝜙 s.t. Ω ∉ F (𝜙) ∪ Q(𝜙),
Φ |= 𝜙 iff ˜∃Ω.Φ |= 𝜙 .

The result of forgetting a propositional symbol in a sentence 𝜙

is the disjunction of the positive restriction 𝜙 (𝑝 ← ⊤) of 𝜙 w.r.t. 𝑝

and the negative restriction 𝜙 (𝑝 ← ⊥) where 𝜙 (𝑝 ← 𝜑) denotes
the formula results from 𝜙 by replacing every occurrence of 𝑝 by 𝜑 .

Proposition 2 ([19]). Let 𝑝 be a propositional symbol and 𝜙 a
sentence. Then, ˜∃𝑝.𝜙 ≡ 𝜙 (𝑝 ← ⊤) ∨ 𝜙 (𝑝 ← ⊥).
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Forgetting a numeric symbol in a sentence𝜙 can be accomplished

by using an existential quantification over a new variable 𝑥 .

Proposition 3 ([19]). Let 𝑓 be a numeric symbol, 𝜙 a sentence
and 𝑥 a new variable not in 𝜙 . Then, ˜∃𝑓 .𝜙 ≡ ∃𝑥 .𝜙 (𝑓 ← 𝑥) where
𝜙 (𝑓 ← 𝑥) denotes the formula results from 𝜙 by replacing every
occurrence of 𝑓 by 𝑥 .

The above two propositions implies that forgetting propositional

and numeric symbols in LIA-formulas is still LIA-definable.

2.3 Generalized Linear Integer Numeric
Planning

Definition 2. A LINP domain D is a tuple ⟨P,V,A⟩ where
• P: a finite set of propositional symbols

1
;

• V: a finite set of numeric symbols;

• A: a finite set of actions defined by a pair ⟨pre, eff⟩ where
pre ∈ qf-Form2 denotes the precondition and eff is a finite

set of propositional and numeric effects.

A state 𝑠 is a simplified model that interprets every propositional

symbol 𝑝 as 𝑝𝑠 ∈ B and every numeric symbol 𝑣 as 𝑣𝑠 ∈ Z. Given a

state 𝑠 , we evaluate a term 𝑒 into an integer 𝑒𝑠 to which the expres-

sion simplifies when substituting every numeric variable 𝑣 with

their respective value 𝑣𝑠 . The Boolean value 𝜙𝑠 of a formula 𝜙 can

be determined in a similar way.

A propositional effect is a tuple ⟨𝜓, 𝑝, 𝜙⟩ where 𝜓, 𝜙 ∈ qf-Form
and 𝑝 ∈ P. Intuitively, it means that if 𝜓 holds in a state 𝑠 , the

Boolean value of 𝑝 becomes 𝜙𝑠 after performing the action; oth-

erwise, it remains unchanged. A numeric effect is a tuple ⟨𝜓, 𝑣, 𝑒⟩
where𝜓 ∈ qf-Form, 𝑣 ∈ V and 𝑒 ∈ Term. The meaning of numeric

effects is similar to that of propositional effects.

Given an action 𝑎, we use pre(𝑎) for its precondition and eff(𝑎)
for the set of its effects. We require that every action 𝑎 is not self-

contradictory, that is, for every state 𝑠 and every two propositional

effects (𝜓1, 𝑝, 𝜙1) and (𝜓2, 𝑝, 𝜙2) of 𝑎, it is impossible that𝜓1 and𝜓2
holds in 𝑠 but 𝜙𝑠

1
≠ 𝜙𝑠

2
, and similarly for numeric effects. An effect

is unconditional, if𝜓 = ⊤. An action 𝑎 is unconditional, if all of its
effect is unconditional; otherwise, it is conditional.

The successor state 𝜏 (𝑠, 𝑎) of applying an action 𝑎 over 𝑠 is defined
as follows:

𝑝𝜏 (𝑠,𝑎) =

{
𝜙𝑠 , if ⟨𝜓, 𝑝, 𝜙⟩ ∈ eff(𝑎) and𝜓𝑠 = T;
𝑝𝑠 , otherwise.

𝑣𝜏 (𝑠,𝑎) =

{
𝑒𝑠 , if ⟨𝜓, 𝑣, 𝑒⟩ ∈ eff(𝑎) and𝜓𝑠 = T;
𝑣𝑠 , otherwise.

An action 𝑎 is executable in a state 𝑠 , if 𝑠 |= pre(𝑎). We remark

that 𝜏 (𝑠, 𝑎) is well-defined even if 𝑎 is not executable in 𝑠 . The re-
sulting state of performing a finite sequence [𝑎1, · · · , 𝑎𝑛] of actions
on 𝑠 is recursively defined by 𝜏 (𝑠, [𝑎1, · · · , 𝑎𝑛]) = 𝜏 (𝜏 (𝑠, [𝑎1, · · · ,

1
To distinguish variable symbol in logic and variable in planning, we use the termi-

nology “variable symbol” for the variable symbol in logic, “propositional symbol” for

propositional variable in planning, “numeric symbol” for numeric variable in planning.

2
In the remaining of this paper, we assume every formula 𝜙 ∈ qf-Form is over

propositional symbols in P and numeric symbols in V , and every term 𝑒 ∈ Term is

over numeric symbols in V .

𝑎𝑛−1]), 𝑎𝑛) and 𝜏 (𝑠, 𝜀) = 𝑠 where 𝜀 is an empty sequence. A se-

quence [𝑎1, 𝑎2, · · · ] of actions is executable in a state 𝑠 , if 𝑠 |=
pre(𝑎1) and 𝜏 (𝑠, [𝑎1 · · ·𝑎𝑖 ]) |= pre(𝑎𝑖+1) for 𝑖 ≥ 1.

We hereafter provide the definition of GLINP problems.

Definition 3. A generalized LINP (GLINP) problem Σ is a tuple

⟨D,I,G⟩, where
• D: a LINP domain ⟨P,V,A⟩;
• I ∈ qf-Form: a formula denoting a set of possibly infinitely

many initial states;

• G ∈ qf-Form: a formula denoting a set of possibly infinitely

many goal states.

The solution to GLINP problems is a form of planning programs.

Definition 4. The set of planning programs (Prog) for a LINP
domain D = ⟨P,V,A⟩ is recursively defined by

𝛿 ∈Prog :: 𝜀 | 𝑎 | 𝛿 ;𝛿 | if 𝜙 then 𝛿 else 𝛿 fi | while 𝜙 do 𝛿 od

where 𝑎 ∈ A and 𝜙 ∈ qf-Form.

The construct𝛿1;𝛿2 is the sequential structure; if𝜙 then𝛿1 else𝛿2 fi
is the branch structure andwhile𝜙 do𝛿 od is the loop structure.We

say 𝜙 is the condition of the branch structure if 𝜙 then 𝛿1 else 𝛿2 fi.
Likewise, 𝜙 is the condition of the loop structure while 𝜙 do 𝛿 od.

We use #(𝛿) for the depth of 𝛿 , andΘ(𝑠, 𝛿) for the action sequence
of executing 𝛿 in 𝑠 . The above two notations was defined in [20].

A loop structure is simple if its depth is 1; otherwise, it is nested.
The solution to a GLINP problem is a program satisfying the

following three properties.

Definition 5. Let D = ⟨P,V,A⟩ be a LINP domain, 𝛿 a pro-

gram for D, and 𝑠 a state. The program 𝛿 is

• terminating in 𝑠 , iff Θ(𝑠, 𝛿) is finite;
• executable in 𝑠 , iff Θ(𝑠, 𝛿) is executable in 𝑠;

• 𝜙-reaching in 𝑠 , iff 𝛿 is terminating and executable in 𝑠 only

if 𝜏 (𝑠, 𝛿) |= 𝜙 .

Definition 6. Let Σ = ⟨D,I,G⟩ be a GLINP problem. A pro-

gram 𝛿 is a solution to Σ, if 𝛿 is terminating, executable and G-
reaching in every initial state.

Example 1. We illustrate the GLINP problem with the TestOn

problem. Initially, there are two towers of blocks. The first tower

contains a block 𝑥 while the second one contains another block 𝑦.

The goal is to put block 𝑥 on 𝑦. The numeric symbols 𝑛𝑥 and 𝑛𝑦 de-

note the number of blocks above 𝑥 and 𝑦, respectively. The proposi-

tional symbol 𝑜𝑛𝑥𝑦 indicates block 𝑥 is on 𝑦. The actions𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋

pick the top block of the first tower and put it aside on the table, and

𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 is similar for the second tower. The action 𝑆𝑡𝑎𝑐𝑘𝑋𝑂𝑛𝑌

means picking block 𝑥 on 𝑦 if no blocks are above 𝑥 and 𝑦.

• P : {𝑜𝑛𝑥𝑦} andV : {𝑛𝑥, 𝑛𝑦};
• A : {𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋,𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌, 𝑆𝑡𝑎𝑐𝑘𝑋𝑂𝑛𝑌 };
• pre(𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋 ) : 𝑛𝑥 > 0;

• eff(𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋 ) : {⟨⊤, 𝑛𝑥, 𝑛𝑥 − 1⟩};
• pre(𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 ) : 𝑛𝑦 > 0;

• eff(𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 ) : {⟨⊤, 𝑛𝑦, 𝑛𝑦 − 1⟩};
• pre(𝑆𝑡𝑎𝑐𝑘𝑋𝑂𝑛𝑌 ) : 𝑛𝑥 = 0 ∧ 𝑛𝑦 = 0 ∧ ¬𝑜𝑛𝑥𝑦;
• eff(𝑆𝑡𝑎𝑐𝑘𝑋𝑂𝑛𝑌 ) : {⟨⊤, 𝑜𝑛𝑥𝑦,⊤⟩, ⟨⊤, 𝑛𝑦, 𝑛𝑦 + 1⟩};
• I : 𝑛𝑥 > 0 ∧ 𝑛𝑦 > 0 ∧ ¬𝑜𝑛𝑥𝑦 and G : 𝑜𝑛𝑥𝑦.
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The solution 𝛿 to the TestOn problem is:

while 𝑛𝑦 ≠ 0 do𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 od;
while 𝑛𝑥 ≠ 0 do𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋 od;
𝑆𝑡𝑎𝑐𝑘𝑋𝑂𝑛𝑌 □

3 CORRECTNESS VERIFICATION
In this section, we develop a method to verify the correctness of

the planning program. The main insight behind our method is as

follows: We first transform a planning program into a trace axiom

that is finitely represented in LIAUPF, which records the value of

every propositional and numeric symbol during the execution of a

planning program (§ 3.1). With the help of trace axioms, we reduce

the verification of three properties of planning programs to the

entailment problem of LIAUPF (§ 3.2).

3.1 Trace Axioms
We first introduce some notations, followed by the construction of

trace axioms by adapting the translation method proposed in [18].

In order to indicate different positions of the same subprograms,

we mark different instances of the same subprograms with super-

scripts. For example, the program 𝛿 = 𝛾 ;𝛾 where 𝛾 = if 𝜙 then 𝑎

else 𝑏 fi becomes 𝛿 = 𝛾1;𝛾2 where 𝛾1 = if 𝜙 then 𝑎1 else 𝑏1 fi
and 𝛾2 = if 𝜙 then 𝑎2 else 𝑏2 fi. In the remaining of this paper, we

assume that every planning program is with superscripts.

For each 𝑝 ∈ P and each program 𝛿 , we consider two versions

𝑝𝛿 and 𝑝′
𝛿
. The two propositional symbols 𝑝𝛿 and 𝑝′

𝛿
are called an

input and an output, respectively, of 𝛿 that are used to represent

the value of 𝑝 before performing the program 𝛿 and the value of 𝑝

after. Similarly, for each 𝑣 ∈ V , we also use two versions 𝑣𝛿 and 𝑣 ′
𝛿
.

Given a term 𝑒 and a formula 𝜙 , 𝑒𝛿 , 𝑒
′
𝛿
, 𝜙𝛿 and 𝜙 ′

𝛿
can be defined

in a recursive way, e.g., (¬𝜙)𝛿 is ¬𝜙𝛿 , (𝜙 ∧𝜓 )′𝛿 is 𝜙 ′
𝛿
∧𝜓 ′

𝛿
.

To distinguish the value of a term 𝑒 and a formula 𝜙 at each

iteration of executing a loop structure 𝛿 , we use 𝑒 [𝑘] and 𝜙 [𝑘] to
record the value of 𝑒 and 𝜙 after the body of 𝛿 has been executed

𝑘 times, respectively. They are recursively defined as follows:

• 𝑐 [𝑘] is 𝑐 , 𝑥 [𝑘] is 𝑥 , (𝑒1 + 𝑒2) [𝑘] is 𝑒1 [𝑘] + 𝑒2 [𝑘]
• 𝑓 (𝑒1, · · · , 𝑒𝑚) [𝑘] is 𝑓 (𝑒1 [𝑘], · · · , 𝑒𝑚 [𝑘], 𝑘) where 𝑓 is a func-
tion symbol,

• 𝑞(𝑒1, · · · , 𝑒𝑚) [𝑘] is 𝑞(𝑒1 [𝑘], · · · , 𝑒𝑚 [𝑘], 𝑘) where 𝑞 is a pred-

icate symbol,

• (𝑒1 = 𝑒2) [𝑘] is 𝑒1 [𝑘] = 𝑒2 [𝑘], (𝑒1 < 𝑒2) [𝑘] is 𝑒1 [𝑘] < 𝑒2 [𝑘],
• (¬𝜙1) [𝑘] is ¬𝜙1 [𝑘], (𝜙1 ∧ 𝜙2) [𝑘] is 𝜙1 [𝑘] ∧ 𝜙2 [𝑘],
• (∃𝑥𝜙1) [𝑘] is ∃𝑥𝜙1 [𝑘].

Let 𝛿1 and 𝛿2 be two programs. We use E𝑖𝑜
𝛿1,𝛿2

for the set {𝑣𝛿1 =
𝑣 ′
𝛿2
| 𝑣 ∈ V} ∪ {𝑝𝛿1 ↔ 𝑝′

𝛿2
| 𝑝 ∈ P}. Intuitively, it says that each

input of 𝛿1 has the same value as the corresponding output of 𝛿2.

The sets E𝑖𝑖
𝛿1,𝛿2

, E𝑜𝑖
𝛿1,𝛿2

and E𝑜𝑜
𝛿1,𝛿2

can be similarly defined.

Definition 7. Let 𝛿 be a planning program. The trace axiom

T (𝛿) of 𝛿 is a set of LIAUPF-formulas defined as follows:

• T (𝜀) = E𝑖𝑜
𝛿,𝛿

;

• T (𝑎) = {(pre(𝑎))𝛿 }∪
{𝜓𝛿 → (𝑝′𝛿 ↔ 𝜙𝛿 ) | (𝜓, 𝑝, 𝜙) ∈ eff(𝑎)}∪
{𝜓𝛿 → (𝑣 ′𝛿 = 𝑒𝛿 ) | (𝜓, 𝑣, 𝑒) ∈ eff(𝑎)}∪
{¬(∨(𝜓,𝑝,𝜙 ) ∈eff(𝑎) 𝜓𝛿 ) → (𝑝′𝛿 ↔ 𝑝𝛿 ) | 𝑝 ∈ P}∪
{¬(∨(𝜓,𝑣,𝑒 ) ∈eff(𝑎) 𝜓𝛿 ) → (𝑣 ′𝛿 = 𝑣𝛿 ) | 𝑣 ∈ V};

• T (𝛿1;𝛿2) = T (𝛿1) ∪ T (𝛿2) ∪ E𝑖𝑖𝛿,𝛿1 ∪ E
𝑜𝑖
𝛿1,𝛿2
∪ E𝑜𝑜

𝛿,𝛿2
;

• T (if 𝜙 then 𝛿1 else 𝛿2 fi) =
{𝜙𝛿 → 𝜓 | 𝜓 ∈ T (𝛿1) ∪ E𝑖𝑖𝛿,𝛿1 ∪ E

𝑜𝑜
𝛿,𝛿1
}∪

{¬𝜙𝛿 → 𝜓 | 𝜓 ∈ T (𝛿2) ∪ E𝑖𝑖𝛿,𝛿2 ∪ E
𝑜𝑜
𝛿,𝛿2
};

• T (while 𝜙 do 𝛿1 od) =
{𝑛 ≥ 0 ∧ ¬(𝜙𝛿1 ) [𝑘] (𝑘 ← 𝑛) ∧ ∀0 ≤ 𝑘 < 𝑛.𝜙𝛿1 [𝑘]}∪
{∀0 ≤ 𝑘 < 𝑛.𝜓 [𝑘] | 𝜓 ∈ T (𝛿1)}∪
{𝑝𝛿 ↔ 𝑝𝛿1 (0) | 𝑝 ∈ P} ∪ {𝑝′𝛿 ↔ 𝑝𝛿1 (𝑛) | 𝑝 ∈ P}∪
{𝑣𝛿 = 𝑣𝛿1 (0) | 𝑣 ∈ V} ∪ {𝑣 ′𝛿 = 𝑣𝛿1 (𝑛) | 𝑣 ∈ V}∪
{∀0 ≤ 𝑘 < 𝑛.𝑝𝛿1 (𝑘 + 1) ↔ 𝑝′

𝛿1
(𝑘) | 𝑝 ∈ P}∪

{∀0 ≤ 𝑘 < 𝑛.𝑣𝛿1 (𝑘 + 1) = 𝑣 ′
𝛿1
(𝑘) | 𝑣 ∈ V}

where 𝑛 is a new numeric symbol not in T (𝛿1), 𝑘 is a new

variable not in T (𝛿1), and ∀0 ≤ 𝑘 < 𝑛.𝜑 is the shorthand for

∀𝑘 [(0 ≤ 𝑘 ∧ 𝑘 < 𝑛) → 𝜑].

When 𝛿 is an empty plan, T (𝜀) indicates that the value of each
symbol is left unchanged. The axiom T (𝑎) states that the value
of each symbol varies according to the effect of 𝑎. It consists of

the precondition, the effect axioms and the frame axioms of 𝑎. The

effect axioms indicate that the value of 𝑝 (resp. 𝑣) becomes 𝜙 (𝑠)
(resp. 𝑒 (𝑠)) if the condition 𝜓 holds in the state 𝑠 . The frame ax-

ioms stipulate that the value of 𝑝 (resp. 𝑣) remains unchanged if no

condition𝜓 s.t. (𝜓, 𝑝, 𝜙) ∈ eff(𝑎) (resp. (𝜓, 𝑣, 𝑒) ∈ eff(𝑎)) holds.
The formula T (𝛿1;𝛿2) is constructed from T (𝛿1) and T (𝛿2) by

directly linking the inputs of 𝛿 to the inputs of 𝛿1, linking the out-

puts of 𝛿1 to the inputs of 𝛿2, and linking the outputs of 𝛿2 to the

outputs of 𝛿 . The formula T (if 𝜙 then 𝛿1 else 𝛿2 fi) has the fol-
lowing meaning. If the condition 𝜙 holds, then it executes the first

branch 𝛿1, and hence each input (resp. output) of 𝛿 has the same

value as the corresponding input (resp. output) of 𝛿1. Otherwise, it

enters the other branch 𝛿2, and the trace axiom for the other branch

are constructed as the same as that for the first one.

When 𝛿 is a loop structurewhile𝜙 do 𝛿1 od, we introduce a new
numeric symbol 𝑛 that stands for the number of iterations of 𝛿1.

Each predicate symbol occurring in the subprogram 𝛿1 is extended

to a predicate symbol with an extra argument 𝑘 , which denotes the

Boolean value of the predicate symbol after 𝛿1 has been executed 𝑘

times. The treatment of each function symbol is similar. During the

iteration of 𝛿1, each input of the (𝑘 + 1)-th iteration of 𝛿1 has the

same value as the corresponding output of the 𝑘-th iteration. At

the end of the loop structure, the values of each output of 𝛿 and the

corresponding input of the 𝑛-th iteration of 𝛿1 are exactly the same.

In contrast to the trace axiom proposed in [18], ours is more

complicated. Lin [18] focuses on imperative programs, which are

slightly different from planning programs we consider in this paper.

The base construct of imperative programs is variable assignment

statement, which can be defined as an actionwith valid precondition

and an unconditional effect. (1) Imperative programs generally run

in computer systems while planning programs aim to control robots

in real-world scenarios. Since real-world scenarios is more compli-

cated than the runtime environment of computer systems, it is es-

sential to formulate conditions in which an action can be performed.

Moreover, it is essential to take into account the executability condi-

tion of programs. Neither the action precondition nor the program

executability condition is considered in [18]. (2) Conditional effects

[22] allows actions with context-dependent effects. Some efforts to
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compile away conditional effects have been made in classical plan-

ning [1, 10, 16]. It, however, was shown that the method to compile

away conditional effects introduces exponentially many auxiliary

actions in the worst case [21]. Conditional effects provide a more

convenient and succinct way to model complex AI scenarios. Our

trace axiom exactly describe the change due to an action as the com-

bination of the effect axiom and the frame axiom while Lin [18] sim-

ply uses an equation to represent a variable assignment statement.

Example 2. The program 𝛿 shown in Example 1 can be di-

vided into three slices: 𝛿1, 𝛿2 and 𝛿3 where 𝛿1 is the loop structure

while𝑛𝑦 ≠ 0 do𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 od, 𝛿2 iswhile𝑛𝑥 ≠ 0 do𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋 od
and 𝛿3 is action 𝑆𝑡𝑎𝑐𝑘𝑋𝑂𝑛𝑌 .

We first construct the trace axiom T (𝛿1) for 𝛿1. For simplicity,

we use 𝑎1 for the action𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 occurring in 𝛿1. The trace axiom

T (𝑎1) contains the following four sentences: (1) 𝑛𝑦𝑎1 > 0, (2)⊤ →
(𝑛𝑦′𝑎1 = 𝑛𝑦𝑎1 −1), (3) ⊤ → (𝑛𝑥 ′𝑎1 = 𝑛𝑥𝑎1 ), and (4) ⊤ → (𝑜𝑛𝑥𝑦′𝑎1 ↔
𝑜𝑛𝑥𝑦𝑎1 ). It can be simplified as the following equivalent axiom:

{𝑛𝑦𝑎1 > 0, 𝑛𝑦′𝑎1 = 𝑛𝑦𝑎1 − 1, 𝑛𝑥 ′𝑎1 = 𝑛𝑥𝑎1 , 𝑜𝑛𝑥𝑦
′
𝑎1
↔ 𝑜𝑛𝑥𝑦𝑎1 }.

We introduce a new numeric symbol 𝑛1 to denote the total num-

ber of iterations of executing the body 𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 . We extend the

symbols 𝑜𝑛𝑥𝑦𝑎1 , 𝑜𝑛𝑥𝑦
′
𝑎1
, 𝑛𝑥𝑎1 , 𝑛𝑥

′
𝑎1
, 𝑛𝑦𝑎1 and 𝑛𝑦′𝑎1 with an addi-

tional parameter 𝑘 to represent the value of the symbols after loop

body has been executed 𝑘 times.

So T (𝛿1) is equivalent to
{𝑛1 ≥ 0 ∧ 𝑛𝑦𝑎1 (𝑛1) = 0 ∧ ∀0 ≤ 𝑘 < 𝑛1 .[𝑛𝑦𝑎1 (𝑘) ≠ 0]}∪
{∀0 ≤ 𝑘 < 𝑛1 .[𝑛𝑦𝑎1 (𝑘) > 0 ∧ 𝑛𝑦′𝑎1 (𝑘) = 𝑛𝑦𝑎1 (𝑘) − 1∧

𝑛𝑥 ′𝑎1 (𝑘) = 𝑛𝑥𝑎1 (𝑘) ∧ 𝑜𝑛𝑥𝑦′𝑎1 (𝑘) ↔ 𝑜𝑛𝑥𝑦𝑎1 (𝑘)]}∪
{𝑜𝑛𝑥𝑦𝛿1 ↔ 𝑜𝑛𝑥𝑦𝑎1 (0), 𝑜𝑛𝑥𝑦′𝛿1 ↔ 𝑜𝑛𝑥𝑦𝑎1 (𝑛1), 𝑛𝑥𝛿1 = 𝑛𝑥𝑎1 (0),
𝑛𝑥 ′

𝛿1
= 𝑛𝑥𝑎1 (𝑛1), 𝑛𝑦𝛿1 = 𝑛𝑦𝑎1 (0), 𝑛𝑦′𝛿1 = 𝑛𝑦𝑎1 (𝑛1)}∪

{∀0 ≤ 𝑘 < 𝑛1 .[𝑜𝑛𝑥𝑦𝑎1 (𝑘 + 1) ↔ 𝑜𝑛𝑥𝑦′𝑎1 (𝑘)∧
𝑛𝑥𝑎1 (𝑘 + 1) = 𝑛𝑥 ′𝑎1 (𝑘) ∧ 𝑛𝑦𝑎1 (𝑘 + 1) = 𝑛𝑦′𝑎1 (𝑘)]}.

Similarly, we use 𝑎2 for the primitive action𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑋 occurring

in 𝛿2 and a new numeric symbol𝑛2 for the total number of iterations

of executing the body 𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 . Hence, T (𝛿2) is equivalent to
{𝑛2 ≥ 0 ∧ 𝑛𝑥𝑎2 (𝑛2) = 0 ∧ ∀0 ≤ 𝑘 < 𝑛2 .[𝑛𝑥𝑎2 (𝑘) ≠ 0]}∪
{∀0 ≤ 𝑘 < 𝑛2 .[𝑛𝑥𝑎2 (𝑘) > 0 ∧ 𝑛𝑥 ′𝑎2 (𝑘) = 𝑛𝑥𝑎2 (𝑘) − 1∧

𝑛𝑦′𝑎2 (𝑘) = 𝑛𝑦𝑎2 (𝑘) ∧ 𝑜𝑛𝑥𝑦′𝑎2 (𝑘) ↔ 𝑜𝑛𝑥𝑦𝑎2 (𝑘)]}∪
{𝑜𝑛𝑥𝑦𝛿2 ↔ 𝑜𝑛𝑥𝑦𝑎2 (0), 𝑜𝑛𝑥𝑦′𝛿2 ↔ 𝑜𝑛𝑥𝑦𝑎2 (𝑛2), 𝑛𝑥𝛿2 = 𝑛𝑥𝑎2 (0),
𝑛𝑥 ′

𝛿2
= 𝑛𝑥𝑎2 (𝑛2), 𝑛𝑦𝛿2 = 𝑛𝑦𝑎2 (0), 𝑛𝑦′𝛿2 = 𝑛𝑦𝑎2 (𝑛2)} ∪

{∀0 ≤ 𝑘 < 𝑛2 .[𝑜𝑛𝑥𝑦𝑎2 (𝑘 + 1) ↔ 𝑜𝑛𝑥𝑦′𝑎2 (𝑘)∧
𝑛𝑥𝑎2 (𝑘 + 1) = 𝑛𝑥 ′𝑎2 (𝑘) ∧ 𝑛𝑦𝑎2 (𝑘 + 1) = 𝑛𝑦′𝑎2 (𝑘)]}.

The trace axiom T (𝛿3) for 𝛿3 is equivalent to
{𝑛𝑥𝛿3 = 0∧𝑛𝑦𝛿3 = 0∧¬𝑜𝑛𝑥𝑦𝛿3 , 𝑜𝑛𝑥𝑦′𝛿3 , 𝑛𝑦

′
𝛿3
= 𝑛𝑦𝛿3 +1, 𝑛𝑥 ′𝛿3 = 𝑛𝑥𝛿3 }.

Finally, we get:

E𝑖𝑖
𝛿,𝛿1

: {𝑜𝑛𝑥𝑦𝛿 ↔ 𝑜𝑛𝑥𝑦𝛿1 , 𝑛𝑥𝛿 = 𝑛𝑥𝛿1 , 𝑛𝑦𝛿 = 𝑛𝑦𝛿1 }
E𝑜𝑖
𝛿1,𝛿2

: {𝑜𝑛𝑥𝑦′
𝛿1
↔ 𝑜𝑛𝑥𝑦𝛿2 , 𝑛𝑥

′
𝛿1

= 𝑛𝑥𝛿2 , 𝑛𝑦
′
𝛿1

= 𝑛𝑦𝛿2 }
E𝑜𝑖
𝛿2,𝛿3

: {𝑜𝑛𝑥𝑦′
𝛿2
↔ 𝑜𝑛𝑥𝑦𝛿3 , 𝑛𝑥

′
𝛿2

= 𝑛𝑥𝛿3 , 𝑛𝑦
′
𝛿2

= 𝑛𝑦𝛿3 }
E𝑜𝑜
𝛿,𝛿3

: {𝑜𝑛𝑥𝑦′
𝛿
↔ 𝑜𝑛𝑥𝑦′

𝛿3
, 𝑛𝑥 ′

𝛿
= 𝑛𝑥 ′

𝛿3
, 𝑛𝑦′

𝛿
= 𝑛𝑦′

𝛿3
}.

In summary, we have T (𝛿1;𝛿2;𝛿3) = T (𝛿1) ∪ T (𝛿2) ∪ T (𝛿3) ∪
E𝑖𝑖
𝛿,𝛿1
∪ E𝑜𝑖

𝛿1,𝛿2
∪ E𝑜𝑖

𝛿2,𝛿3
∪ E𝑜𝑜

𝛿,𝛿3
. □

We provide the correspondence between models of trace axioms

and action sequences of executing planning programs. Given a

model 𝑀 of T (𝛿), we say a state 𝑠 is an input-projection of 𝑀 , if

(𝑝𝛿 )𝑀 = 𝑝𝑠 for 𝑝 ∈ P and (𝑣𝛿 )𝑀 = 𝑣𝑠 for 𝑣 ∈ V , and 𝑠 is an output-

projection of𝑀 , if (𝑝′
𝛿
)𝑀 = 𝑝𝑠 for 𝑝 ∈ P and (𝑣 ′

𝛿
)𝑀 = 𝑣𝑠 for 𝑣 ∈ V .

Proposition 4. Let 𝛿 be a planning program and T (𝛿) the trace
axiom of 𝛿 . Then, the following hold

• if 𝑀 is a model of T (𝛿) and 𝑠0 is the input-projection of 𝑀 ,
then Θ(𝑠0, 𝛿) is finite and executable in 𝑠0, and 𝜏 (𝑠0, 𝛿) is the
output-projection of𝑀 ;
• if Θ(𝑠0, 𝛿) is finite and executable in 𝑠0, then there is a model
𝑀 of T (𝛿) s.t. 𝑠0 is the input-projection of 𝑀 and 𝜏 (𝑠0, 𝛿) is
the output-projection of𝑀 .

3.2 Verifying Goal-Reaching, Termination and
Executability Properties

Based on trace axioms, we are ready to verify goal-reaching, termi-

nation and executability properties of programs. The following the-

orem states that verifying goal-reaching property of a planning pro-

gram can be reduced to deciding if the initial formula entails the goal

formula under the background theory defined by the trace axiom.

Theorem 1. Let Σ = ⟨D,I,G⟩ be a GLINP problem and 𝛿 a
planning program. Then, T (𝛿) |= I𝛿 → G′𝛿 iff 𝛿 is G-reaching in
every initial state.

We can verify termination and executability properties of plan-

ning programs together via forgetting. By Proposition 4, each model

𝑀 of trace axiom T (𝛿) with the input-projection 𝑠0 corresponds

to a finite action sequence Θ(𝑠0, 𝛿) which is executable in 𝑠0. It is

observed that the set of input-projections of all models of T (𝛿) is
the set of states in which 𝛿 is terminating and executable. We can

obtain a sentence that exactly captures the set of input-projections

by resorting to forgetting every predicate and function symbol ex-

cept P𝛿 ∪ V𝛿 in T (𝛿). Thus, we get the sufficient and necessary

condition under which a program 𝛿 is terminating and executable

in every initial state.

Theorem 2. Let Σ = ⟨D,I,G⟩ be a GLINP problem and 𝛿 a
planning program. Let𝜓 be the formula equivalent to ˜∃P𝛿 ˜∃V𝛿 .T (𝛿)
where P𝛿 = Q(T (𝛿)) \ P𝛿 andV𝛿 = F (T (𝛿)) \V𝛿 . Then, I𝛿 |= 𝜓

iff 𝛿 is terminating and executable in every initial state.

4 A DECIDABLE FRAGMENT
The axiom T (𝛿) is represented in LIAUPF whose entailment prob-

lem is undecidable. Therefore, our approach is not a decidable

method to verify correctness of arbitrary programs. In this section,

we identify a decidable class of programs, namely unconditional
pseudo-primitive programs.

When verifying goal-reaching, termination and executability

properties, by Theorems 1 and 2, we reason about only the input

and output symbols of programs, and do not consider the following

redundant symbols: (1) the intermediate predicate and function

symbols of subprograms, and (2) the newly introduced numeric

symbol denoting the number of iterations in loop structures. In

this case, an unconditional pseudo-primitive program 𝛿 can be con-

sidered as a primitive action with only unconditional effects. An

unconditional pseudo-primitive program 𝛿 has similar notations

p-pre(𝛿) (Definition 10) and p-eff(𝛿) (Definition 9) to actions. The
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formula p-pre(𝛿) represents the termination and executability con-

dition of 𝛿 and p-eff(𝛿) denotes the effect that exactly captures

the change of values of each propositional and numeric symbol

by performing 𝛿 . In addition, forgetting redundant symbols in the

trace axiom of 𝛿 can be simplified as the union of its termina-

tion and executability condition and its effect, and is LIA-definable
(Theorem 3). Hence, the correctness verification of unconditional

pseudo-primitive programs becomes decidable (Corollary 1).

Let 𝛿 be a program. We say a propositional symbol 𝑝 is static in
𝛿 , iff for every state 𝑠 s.t. 𝛿 is terminating in 𝑠 , we have 𝑝𝜏 (𝑠,𝛿 ) = 𝑝𝑠 .

We say a numeric symbol 𝑣 is 𝑑-incremental in 𝛿 where 𝑑 ∈ Z, iff

for every state 𝑠 s.t. 𝛿 is terminating in 𝑠 , we have 𝑣𝜏 (𝑠,𝛿 ) = 𝑣𝑠 + 𝑑 .
Definition 8. We say a program 𝛿 is unconditional pseudo-

primitive, if one of the following conditions hold:

• 𝛿 = 𝜀;

• 𝛿 = 𝑎 where 𝑎 is an unconditional action;

• 𝛿 = 𝛿1;𝛿2 where𝛿1 and𝛿2 are unconditional pseudo-primitive;

• 𝛿 = while 𝜙 do 𝛿1 od and

– the body 𝛿1 is a sequence of unconditional actions; and

– every propositional symbol 𝑝 is static in 𝛿1; and

– 𝜙 is 𝑐0 +
∑
𝑢∈V′ 𝑐𝑢 ·𝑢 ≠ 0 whereV′ ⊆ V and 𝑐0, 𝑐𝑢 ∈ Z;

and

– there is exactly one𝑤 ∈ V′ s.t.𝑤 is 𝑑𝑤-incremental in 𝛿1,

and 𝑐𝑤 , 𝑑𝑤 ∈ {−1, 1}; and
– every numeric symbol 𝑢 ∈ V′ \ {𝑤} is 0-incremental in

𝛿1; and

– every numeric symbol 𝑣 ∈ V \V′ is 𝑑𝑣-incremental in 𝛿1
where 𝑑𝑣 ∈ Z.

Unconditional pseudo-primitive programs have the following

limitations: (1) every primitive action is unconditional; (2) no branch

structure is permitted; (3) every loop structure has depth 1 and is

subject to the restrictions illustrated in Definition 8. Every loop

structure𝛿 is associatedwith the condition of the form 𝑐0+
∑
𝑢∈V′ 𝑐𝑢 ·

𝑢 ≠ 0. In the condition, there is only one numeric symbol𝑤 such

that it is 1- or −1-incremental in the loop body 𝛿1 and its coeffi-

cient 𝑐𝑤 is either 1 or −1. Other numeric symbols 𝑢 ofV′ remains

unchanged by performing 𝛿1. Suppose that either 𝑐𝑤 = −1 and𝑤
is 1-incremental in 𝛿1, or 𝑐𝑤 = 1 and𝑤 is −1-incremental in 𝛿1. We

let 𝑒 denote the term 𝑐0 +
∑
𝑢∈V′ 𝑐𝑢 ·𝑢. It is easily verified that each

iteration decreases the value of the term 𝑒 by 1. If 𝑒 ≥ 0 is true ini-

tially, then the value of 𝑒 will eventually reach to 0 and 𝛿 will come

to an end. In this case, the number of iterations is 𝑒 . If 𝑒 < 0 holds

initially, then 𝑒 decreases forever and 𝛿1 executes indefinitely. In

a word, the termination condition of 𝛿 is therefore 𝑒 ≥ 0. Similarly,

in the two situations that 𝑐𝑤 = 1 and𝑤 is 1-incremental in 𝛿1, and

that 𝑐𝑤 = −1 and𝑤 is −1-incremental in 𝛿1, the termination condi-

tion of 𝛿 is 𝑒 ≥ 0 where 𝑒 = −𝑐0 −
∑
𝑢∈V′ 𝑐𝑢 · 𝑢. The membership

problem of unconditional pseudo-primitive programs is decidable.

We hereafter provide the effect of unconditional pseudo-primitive

programs. A symbol substitution Ψ is a function that maps from

P to qf-LIA-formulas and fromV to LIA-terms. In fact, a symbol

substitution Ψ represents a set of unconditional propositional and

numeric effects. For example, Ψ(𝑝) = 𝜙 corresponds to the effect

⟨⊤, 𝑝, 𝜙⟩. Given a formula 𝜙 and a symbol substitution Ψ, we use
𝜙 [Ψ] to represent the result of simultaneously replacing every oc-

currence of 𝑝 ∈ P and 𝑣 ∈ V in 𝜙 by Ψ(𝑣) and Ψ(𝑝), respectively.

Intuitively, 𝜙 [Ψ] is the weakest precondition of 𝜙 w.r.t. Ψ, that is, 𝜙
holds after applying the effect denoted by Ψ iff 𝜙 [Ψ] holds before.

The effect of an unconditional pseudo-primitive program 𝛿 is

represented by a symbol substitution as p-eff(𝛿).
Definition 9. Let 𝛿 be an unconditional pseudo-primitive pro-

gram. The effect of 𝛿 is recursively defined as follows:

• p-eff(𝜀) (𝑝) = 𝑝 and p-eff(𝜀) (𝑣) = 𝑣 ;

• p-eff(𝑎) (𝑝) =
{
𝜙, if ⟨⊤, 𝑝, 𝜙⟩ ∈ eff(𝑎);
𝑝, otherwise.

• p-eff(𝑎) (𝑣) =
{
𝑒, if ⟨⊤, 𝑣, 𝑒⟩ ∈ eff(𝑎);
𝑣, otherwise.

• p-eff(𝛿1;𝛿2) (𝑝) = p-eff(𝛿2) (𝑝) [p-eff(𝛿1)];
• p-eff(𝛿1;𝛿2) (𝑣) = p-eff(𝛿2) (𝑣) [p-eff(𝛿1)];
• p-eff(while 𝜙 do 𝛿1 od) (𝑝) = 𝑝;

• p-eff(while 𝜙 do 𝛿1 od) (𝑣) = 𝑣 + 𝑑𝑣 · 𝑒 where
– 𝜙 is 𝑐0 +

∑
𝑢∈V′ 𝑐𝑢 · 𝑢 ≠ 0;

– 𝑣 is 𝑑𝑣-incremental in 𝛿1;

– 𝑒 is 𝑐0 +
∑
𝑢∈V′ 𝑐𝑢 · 𝑢, if 𝑐𝑤 = −1 and𝑤 is 1-incremental

in 𝛿1, or 𝑐𝑤 = 1 and𝑤 is −1-incremental in 𝛿1;

– 𝑒 is −𝑐0 −
∑
𝑢∈V′ 𝑐𝑢 · 𝑢, if 𝑐𝑤 = 1 and𝑤 is 1-incremental

in 𝛿1, or 𝑐𝑤 = −1 and𝑤 is −1-incremental in 𝛿1.

The notation p-eff(𝛿) (𝑝) = 𝜙 means that when the program

𝛿 is terminating, the Boolean value of 𝑝 after the execution of 𝛿

equals that of 𝜙 before. The meaning of p-eff(𝛿) (𝑣) = 𝑒 is simi-

lar. The value of every propositional and numeric symbol remains

unchanged in the empty plan. The effect p-eff(𝑎) of an uncondi-

tional action 𝑎 corresponds to the original effect eff(𝑎) of 𝑎. As
for the sequence structure 𝛿1;𝛿2, the Boolean value of a proposi-

tional symbol 𝑝 following the execution of the two subprograms

𝛿1 and 𝛿2 in succession is equivalent to that of p-eff(𝛿2) (𝑝) after
executing 𝛿1. Again, 𝑝 holds after performing 𝛿1;𝛿2 iff the formula

p-eff(𝛿2) (𝑝) [p-eff(𝛿1)] holds initially. The effect of a sequence
structure for each numeric symbol is similar. If the loop structure

while 𝜙 do 𝛿1 od is terminating, the value of every propositional

symbol 𝑝 remains unchanged after performing while 𝜙 do 𝛿1 od
since 𝑝 is static in the body 𝛿1. Meanwhile, the loop structure in-

creases the value of every numeric symbol 𝑣 by 𝑑𝑣 · 𝑒 in that 𝑣 is

𝑑𝑣-incremental in 𝛿1 and 𝑒 is the number of iterations of 𝛿1.

We hereafter present the termination and executability condition

of unconditional pseudo-primitive programs.

Definition 10. Let 𝛿 be an unconditional pseudo-primitive pro-

gram. The termination and executability condition of 𝛿 is recur-

sively defined as follows:

• p-pre(𝜀) = ⊤ and p-pre(𝑎) = pre(𝑎);
• p-pre(𝛿1;𝛿2) = p-pre(𝛿1) ∧ p-pre(𝛿2) [p-eff(𝛿1)];
• p-pre(while 𝜙 do 𝛿1 od) =

𝑒 ≥ 0 ∧ ∀0 ≤ 𝑘 < 𝑒 (𝜙 ∧ p-pre(𝛿1)) [Ψ] where
– 𝜙 is defined as in Definition 8 and 𝑒 is defined as in Defi-

nition 9;

– Ψ(𝑝) = 𝑝;

– Ψ(𝑣) = 𝑣 + 𝑑𝑣 · 𝑘 where 𝑣 is 𝑑𝑣-incremental in 𝛿1.

The empty plan always terminates and is executable. The termi-

nation and executability condition of an action is its precondition.

The sequence structure 𝛿1;𝛿2 terminates and is executable in a state
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𝑠 iff 𝛿1 is terminating and executable in 𝑠 , and then 𝛿2 is terminat-

ing and executable in 𝜏 (𝑠, 𝛿1). It implies that the conjunction of

p-pre(𝛿1) and p-pre(𝛿2) [p-eff(𝛿1)] is the termination and exe-

cutability condition of the sequence structure 𝛿1;𝛿2. For the loop

structurewhile 𝜙 do 𝛿1 od, the term 𝑒 denotes the number of itera-

tions of loop body. The loop structure is terminating and exeuctable

iff both of the following are met: (1) the condition of the loop struc-

ture can be satisfied after a finite number of iterations, which is

captured by 𝑒 ≥ 0; and (2) every iteration of 𝛿1 is terminating and

executable, which is represented by (𝜙 ∧ p-pre(𝛿1)) [Ψ] where Ψ
specifies the effect of the first 𝑘-th iteration of 𝛿1.

The trace axiom of an unconditional pseudo-primitive program

𝛿 can be simplified as the union of its termination and executabil-

ity condition and its effect when reasoning about only inputs and

outputs of 𝛿 .

Theorem 3. Let 𝛿 be an unconditional pseudo-primitive program,
P𝛿∪𝛿 ′ = Q(T (𝛿)) \ (P𝛿 ∪P′𝛿 ) andV𝛿∪𝛿 ′ = F (T (𝛿)) \ (V𝛿 ∪V′𝛿 ).
Then, ˜∃P𝛿∪𝛿 ′ ˜∃V𝛿∪𝛿 ′ .T (𝛿) ≡ {(p-pre(𝛿))𝛿 }∪{𝑝′𝛿 ↔ (p-eff(𝛿) (𝑝))𝛿 |
𝑝 ∈ P} ∪ {𝑣 ′

𝛿
= (p-eff(𝛿) (𝑣))𝛿 | 𝑣 ∈ V}.

We remark that Definition 9 provides the effect of unconditional

pseudo-primitive programs for the case where 𝛿 is terminating.

When 𝛿 is non-terminating, its effect is undefined since the value

of some symbols may be changed forever. However, Theorem 3

still holds for the case where 𝛿 is non-terminating. In this case, the

termination and executability condition p-pre(𝛿) of 𝛿 is false and

so is the trace axiom T (𝛿). It is easily verified that the result of

forgetting redundant symbols in T (𝛿) is also false.

Definition 10 ensures that p-pre(𝛿) is LIA-formula. It is easily

verified from Definition 9 that each p-eff(𝛿) (𝑝) is an LIA-formula

and every p-eff(𝛿) (𝑣) is an LIA-term. These, together with Theo-

rem 3, imply that forgetting redundant symbols in the trace axiom

of an unconditional pseudo-primitive program is LIA-definable. We

concentrate on only the input and output of 𝛿 when analyzing the

goal-reaching property of 𝛿 according to Theorem 1. By Proposi-

tion 1, we know that T (𝛿) |= I𝛿 → G𝛿 iff T ′ (𝛿) |= I𝛿 → G𝛿
where T ′ (𝛿) = ˜∃P𝛿∪𝛿 ′ ˜∃V𝛿∪𝛿 ′ .T (𝛿). Hence, checking the goal-

reaching property of unconditional pseudo-primitive programs is

decidable. Every output symbol is a propositional or numeric sym-

bol. In addition, Propositions 2 and 3, along with the fact that T ′ (𝛿)
is LIA-definable, imply that forgetting all output symbols in T ′ (𝛿)
is also LIA-definable. Therefore, checking the termination and ex-

ecutability properties of unconditional pseudo-primitive programs

is also decidable. As a corollary, we obtain:

Corollary 1. Checking if an unconditional pseudo-primitive pro-
gram is a solution to a GLINP problem is decidable.

Example 3. We continue with Example 2 and consider forget-

ting immediate symbols in T (𝛿). We first present their effects and

termination and executability conditions of 𝛿1, 𝛿2 and 𝛿3, respec-

tively.

The body of 𝛿1 is unconditional action𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 . The condition

of 𝛿1 is 𝑛𝑦 ≠ 0. Clearly, the coefficient of 𝑛𝑦 is 1 and 𝑛𝑦 is −1-
incremental in𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌 . The number of iterations of 𝛿1 is 𝑛𝑦. At

the 𝑘-th iteration, 𝑛𝑦 will be decreased by 𝑘 . The action𝑈𝑛𝑠𝑡𝑎𝑐𝑘𝑌

does not affect the value of both symbols 𝑜𝑛𝑥𝑦 and 𝑛𝑥 . It is easily

verified that the subprogram 𝛿1 is unconditional pseudo-primitive.

Therefore, we get

• p-eff(𝛿1) (𝑜𝑛𝑥𝑦) : 𝑜𝑛𝑥𝑦;
• p-eff(𝛿1) (𝑛𝑥) : 𝑛𝑥 ;
• p-eff(𝛿1) (𝑛𝑦) : 𝑛𝑦 + (−1) · 𝑛𝑦 = 0;

• p-pre(𝛿1) : 𝑛𝑦 ≥ 0∧∀0 ≤ 𝑘 < 𝑛𝑦.(𝑛𝑦 −𝑘 ≠ 0∧𝑛𝑦 −𝑘 > 0)
≡ 𝑛𝑦 ≥ 0.

Similarly, the effect and termination and executability condition

of 𝛿2 are as follows:

• p-eff(𝛿2) (𝑜𝑛𝑥𝑦) : 𝑜𝑛𝑥𝑦;
• p-eff(𝛿2) (𝑛𝑥) : 𝑛𝑥 + (−1) · 𝑛𝑥 = 0;

• p-eff(𝛿2) (𝑛𝑦) : 𝑛𝑦;
• p-pre(𝛿2) : 𝑛𝑥 ≥ 0∧∀0 ≤ 𝑘 < 𝑛𝑥.(𝑛𝑥 −𝑘 ≠ 0∧𝑛𝑥 −𝑘 > 0)

≡ 𝑛𝑥 ≥ 0.

As 𝛿3 is a primitive action, it is easy to obtain its effect and

termination and executability condition.

• p-eff(𝛿3) (𝑜𝑛𝑥𝑦) : ⊤;
• p-eff(𝛿3) (𝑛𝑥) : 𝑛𝑥 ;
• p-eff(𝛿3) (𝑛𝑦) : 𝑛𝑦 + 1;
• p-pre(𝛿3) : 𝑛𝑥 = 0 ∧ 𝑛𝑦 = 0 ∧ ¬𝑜𝑛𝑥𝑦.

By combing the effects and termination and executability con-

ditions of 𝛿1 and 𝛿2, we obtain the following:

• p-eff(𝛿1;𝛿2) (𝑜𝑛𝑥𝑦) : 𝑜𝑛𝑥𝑦;
• p-eff(𝛿1;𝛿2) (𝑛𝑥) : 0;
• p-eff(𝛿1;𝛿2) (𝑛𝑦) : 0;
• p-pre(𝛿1;𝛿2) ≡ 𝑛𝑥 ≥ 0 ∧ 𝑛𝑦 ≥ 0.

Hence the effect and termination and executability condition of 𝛿 .

• p-eff(𝛿) (𝑜𝑛𝑥𝑦) : ⊤;
• p-eff(𝛿) (𝑛𝑥) : 0;
• p-eff(𝛿) (𝑛𝑦) : 1;
• p-pre(𝛿) ≡ 𝑛𝑥 ≥ 0 ∧ 𝑛𝑦 ≥ 0 ∧ ¬𝑜𝑛𝑥𝑦.

The above means that after performing 𝛿 , block 𝑥 is on 𝑦 and no

block is above 𝑥 . When the numbers of blocks above 𝑥 and 𝑦 are

non-negative and block 𝑥 is not on 𝑦, the program 𝛿 is terminating

and executable.

Immediate symbols in the trace axiom T (𝛿) contain Q(T (𝛿)) \
(P𝛿 ∪ P′𝛿 ) (written P𝛿∪𝛿 ′ ) and F (T (𝛿)) \ (V𝛿 ∪ V

′
𝛿
) (written

V𝛿∪𝛿 ′ ). By Theorem 3, we get that
˜∃P𝛿∪𝛿 ′ ˜∃V𝛿∪𝛿 ′ .T (𝛿) ≡ 𝑛𝑦𝛿 ≥

0∧𝑛𝑥𝛿 ≥ 0∧¬𝑜𝑛𝑥𝑦𝛿 ∧𝑜𝑛𝑥𝑦′𝛿 ∧𝑛𝑥
′
𝛿
= 0∧𝑛𝑦′

𝛿
= 1. The goal formula

G is 𝑜𝑛𝑥𝑦. Clearly, ˜∃P𝛿∪𝛿 ′ ˜∃V𝛿∪𝛿 ′ .T (𝛿) |= 𝑜𝑛𝑥𝑦′
𝛿
. By Proposition

1 and Theorem 1, the program 𝛿 satisfies the goal-reaching property.

In addition, immediate symbols together with output symbols

include Q(T (𝛿)) \ P𝛿 (written P𝛿 ) and F (T (𝛿)) \ V𝛿 (written

V𝛿 ). It is easily verified that
˜∃P𝛿 ˜∃V𝛿 .T (𝛿) ≡ 𝑛𝑦𝛿 ≥ 0 ∧ 𝑛𝑥𝛿 ≥

0 ∧ ¬𝑜𝑛𝑥𝑦𝛿 . The initial formula I is 𝑛𝑥 > 0 ∧ 𝑛𝑦 > 0 ∧ ¬𝑜𝑛𝑥𝑦.
Clearly, I𝛿 |= ˜∃P𝛿 ˜∃V𝛿 .T (𝛿). By Theorem 2, the program 𝛿 satis-

fies termination and executability properties. In summary, 𝛿 is the

solution to the TestOn problem. □

Scala et al. [25] proposed the computation of effects for action

repetitions, that is, a sequence with the same action 𝑎 of a fixed

length 𝑘 . The main idea is to apply the effect of 𝑎 by 𝑘 times. Macro

actions [23, 26] are an action sequence that occurs frequently in the

plan to numeric planning. Clearly, unconditional pseudo-primitive

program allows the loop structures and hence is more expressive
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than both action repetitions and macro actions. In program verifi-

cation, unconditional pseudo-primitive programs are a subclass of

the triangular program [9] when every action is always executable.

However, in AI, it is essential to define the precondition of actions.

Hence, unconditional pseudo-primitive programs are orthogonal

to triangular programs. In addition, the current theoretical results

about verification of triangular programs are limited to termina-

tion and do not consider the other two properties: goal-reaching

and executability. Our method based on trace axioms is a unified

approach to verifying the three properties of programs.

5 EXPERIMENTAL EVALUATION
We have implemented the verification method for planning pro-

grams in Python using RegexSkeleton [20], Metric-FF[12] and Z3

[8]
3
. RegexSkeleton is used to synthesize a planning program given

a set of initial states. Metric-FF planner is used to produce the

sequential plan for each initial state. Z3 is used to generate ini-

tial states and to decide the entailment problem in the verification

phase. The experiment runs on a machine with Intel Core i7-10700

2.90 GHz CPU and 16GB RAM. We test 47 GLINP problems that

originate from the work on GP and QNP widely recognized in gen-

eralized planning [3, 5, 6, 17, 28, 29]
4
. All programs illustrated in

[20] are considered in our paper.

We try to synthesize 4 programs for each problem using 2 to 5

initial states by RegexSkeleton. The set 𝑆 of initial states are gen-

erated according to the method proposed in [20]. RegexSkeleton

fails to synthesize programs for the two problems MNestVar7 with

4 and 5 states and MNestVar8 with 2 - 5 initial states since the

numeric planner Metric-FF[12] cannot generate the sequential plan.

Finally we obtain totally 182 candidate programs and all programs

are synthesized within 60 seconds.

We summarize the experimental results shown in Table 1, which

contains only problems for which at least one synthesized program

is unconditional pseudo-primitive. We can make several observa-

tions from Table 1. Firstly, 31 out of 47 problems have at least one

unconditional pseudo-primitive synthesized programs. The anal-

ysis about the other programs are the following. (1) Conditional

statements occurs in the generated program in the two problems

Delivery and Gripper. (2) The generated program contains nested

loops in the problems MNestVar with 2 - 7 variables, Miconic, Re-

wards and Visitall. (3) The problems Corner-R, D-Return-R, Hall-R,

and Visitall-R contain conditional effects. (4) There are more than

one numeric symbols𝑤 s.t.𝑤 is 𝑑𝑤-incremental in the loop body

and 𝑐𝑤 , 𝑑𝑤 ∈ {−1, 1} in the generated program of D-Return when

using 2 and 3 initial states. Secondly, Our approach is able to check

against the correctness of all unconditional pseudo-primitive pro-

grams within 1 second. In particular, the generated problem of the

problem NestVar8 has length 541. Hence, our approach is an effec-

tive one to correctness verification of diverse and complex planning

programs. In addition, except for D-Return, in 30 problems shown in

Table 1, RegexSkeleton is able to synthesize unconditional pseudo-

primitive programs given 2 - 5 initial states and to obtain correct

programs using only 5 initial states.

3
Source codes are provided in https://github.com/oldg00se/GLINP.

4
The files of test cases can be downloaded from https://github.com/oldg00se/Domain-

for-GLINP.

Problems

Number of Initial States

2 3 4 5

Arith ✓ ✓ ✓ ✓

Baking ✓ ✓ ✓ ✓

Barman2-8 ✓ ✓ ✓ ✓

Childsnack G G G G

Chop ✓ ✓ ✓ ✓

ClearBlock ✓ ✓ ✓ ✓

Corner-A ✓ ✓ ✓ ✓

Corridor ✓ ✓ ✓ ✓

D-Return - - ✕ ✕

Grid G ✓ ✓ ✓

Hall-A TE TE TE ✓

Hiking ✓ ✓ ✓ ✓

Intrusion ✓ ✓ ✓ ✓

Lock ✓ ✓ ✓ ✓

NestVar2-8 ✓ ✓ ✓ ✓

PlaceBlock ✓ ✓ ✓ ✓

Snow ✓ ✓ ✓ ✓

Spanner ✓ ✓ ✓ ✓

TestOn ✓ ✓ ✓ ✓

Table 1: Experimental results. "✓" denotes that the synthesized
program satisfies goal-reaching, terminating and executability prop-
erties; "G" means that the program satisfies goal-reaching property
but not terminating and executability properties; "TE" denotes that
the program satisfies both of terminating and executability proper-
ties but not goal-reaching property; "✕" indicates that the program
satisfies none of the three properties; "-" denotes that the program
is not unconditional pseudo-primitive.

6 CONCLUSIONS
In this paper, we have designed a theoretical and practical method

for automatic correctness verification of linear integer planning

programs. The fundamental idea is to translate a planning pro-

gram into a finite set of LIAUPF-formulas, namely trace axioms.

Then, we reduce the correctness verification of planning programs

to the entailment problem of the result of forgetting redundant

symbols in the trace axiom. Our approach is a symbolic way with-

out the aid of loop invariants and ranking functions. In general,

checking the correctness of programs is undecidable. To obtain

the decidability result, we identify a class of planning programs,

namely unconditional pseudo-primitive programs, such that the re-

sult of forgetting redundant symbols in the transformed formula is

LIA-definable. Hence, the correctness verification of unconditional

pseudo-primitive programs becomes decidable.
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