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ABSTRACT
In the domain of autonomous driving, employing reinforcement
learning (RL) for decision-making must effectively capture the
range of feasible actions and accurately predict their consequences.
The classical actor-critic framework in RL achieves this through
an actor that selects actions and a critic that evaluates their val-
ues. However, traditional Gaussian-distributed actors are limited to
learning unimodal distributions, which limits their ability to fully
represent the diversity of executable actions that can be learned
from past interactions. Moreover, the mean squared error (MSE)
loss often employed by the critic is prone to significant estimation
biases due to the non-stationary nature of RL training, leading to
inaccurate assessments of future outcomes. In this paper, we intro-
duce Consistency Policy with Categorical Critic (CPCC), a novel
approach that leverages recent advancements in diffusion models,
particularly consistency models, to serve as the actor, enabling
the representation of multimodal action distributions. Additionally,
we utilize classification loss (cross-entropy loss) for training the
categorical critic, which mitigates overfitting to noisy targets and
yields more precise approximations of Q-values. Experimental re-
sults obtained from the simulated driving environment MetaDrive
substantiate the effectiveness of our proposed method. Code is
available at https://github.com/weiaiF/cpcc.
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1 INTRODUCTION
Autonomous driving (AD) technology is gradually changing human
transportation, providing individuals with a more intelligent travel
experience. Decision-making is a vital component in ensuring the
reliability of an autonomous driving system [55]. Two primary
machine learning approaches utilizing machine learning are em-
ployed to enhance decision-making in autonomous driving: one
involves imitation learning [19, 24] to fit expert driving trajectories,
while the other utilizes reinforcement learning (RL) [46, 48, 50]
to learn safe behavioral decisions through trial-and-error interac-
tions with the environment. In the imitation learning paradigm,
actions are selected based on maximizing probability, which lacks
consideration of the consequences associated with those actions.
The reinforcement learning paradigm, which learns the Q-function
through interactions with the environment, has the potential to
address issues such as causal confusion that are prevalent in imita-
tion learning. This makes RL a more promising approach for the
decision-making task.

In the reinforcement learning framework, it is crucial to clearly
identify the set of feasible actions available at any given state and to
understand the consequences of executing those actions. However,
current RL-based driving policies do not account for the multimodal
nature of driving behavior [25], instead relying solely on a sim-
plistic Gaussian distribution to represent the policy distribution,
which fails to accurately capture the feasible set of candidate ac-
tions. Recently, consistency models [43], as an innovative enhance-
ment of diffusion models [17], have gained considerable attention
due to their powerful distribution representation capabilities and
efficient inference speed in the image generation tasks [31, 42].
Consequently, it is a natural progression to explore their appli-
cation in the domain of driving decision-making, which requires
real-time responsiveness and accurate multimodal driving action
representation. Inspired by the Consistency Policy with Q-Learning
(CPQL) [4], we utilize consistency models to serve as the actor in
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Figure 1: Illustration of our proposed planning approach. The
ego vehicle utilizes the consistency policy to obtain multi-
modal action candidates for the current state. The categorical
critic employs the histogram loss Gauss (HL-Gauss) to trans-
form scalars into categorical distributions.

the RL driving policy, which can derive the executed action from the
noise in a single step, enabling timely decision-making and captur-
ing the multimodal action candidates for the current state. Figure 1
illustrates the different action choices and corresponding outcomes
for the ego vehicle at a crossroad. A reasonable autonomous agent
should be able to clearly identify its feasible action options and
make safe decisions consistently. Meanwhile, when training a RL-
based driving policy, the accuracy and robustness of the critic play a
central role in mitigating risky driving behaviors, such as collisions,
and deviations from the road. Farebrother et al. [13] find that uti-
lizing categorical distributions rather than scalars to represent the
output of the critic effectively reduces overfitting to noisy targets,
resulting in an improved decision-making performance. Motivated
by [13], we employ Histogram Losses [23] to leverage the ordinal
structure of the regression task by distributing probability mass
across neighboring bins as categorical distributions. Additionally,
we utilize cross-entropy loss to minimize the distance between
these categorical distributions, thereby constructing a robust and
accurate categorical critic. In summary, the contributions of our
work are summarized as follows:
• To enhance the representational capability of the actor, we
utilize the consistency model with rapid sampling speed to
serve as the actor, capturing the multimodality present in
driving decision-making tasks.
• To address the common issue of non-stationarity in critic
learning, we transform the output of the critic from a scalar
to a categorical distribution and use the cross-entropy loss
as the corresponding loss function. This approach enables a
more accurate estimation of action outcomes.
• Experimental results on the MetaDrive simulator demon-
strate the effectiveness of the proposed method and achieve
comprehensive performance.

2 RELATEDWORK
2.1 Multi-modal Behaviors of Human Driving
Human driving behavior is characterized by uncertainty and multi-
ple modes [27]. To model human-like driving policy, two types of

action spaces are often used, including the continuous spatiotem-
poral planning space (an action means a trajectory in the next few
seconds) and continuous reactive control space (an action means
current steering&braking values). The continuous spatiotemporal
planning space is often used for imitation learning methods. To re-
duce the difficulty of exploration, the simplified continuous reactive
control space is mainly used for RL methods, such as AdapMen [30]
in MetaDrive and DMVE [49] in Carla. Recently, waymax [15] has
tried to explore the discretization of continuous reactive control
in the driving domain to obtain discrete action spaces [11, 47].
However, those RL methods tend to produce a unimodal policy dis-
tribution or output a deterministic action directly, which weakens
the expressiveness of complicated policy and decays the ability of
exploration [37, 53]. We also adapt the continuous reactive con-
trol space but utilize the consistency model to learn complicated
multimodal distributions, which is consistent with the multimodal
characteristics of human driving behaviors.

2.2 Diffusion Model for Autonomous Driving
The diffusion model [17] serves as a robust generative deep learning
framework that employs a denoising process for data generation. By
effectively capturing the multimodal characteristics inherent in the
data, it demonstrates significant potential for producing diverse and
high-quality outputs, which has achieved significant success across
image, audio, and video generation [3, 17, 34, 40]. Recently, they
have been introduced to the field of autonomous driving and have
made significant progress in applications such as trajectory predic-
tion and traffic simulation. Specifically, [25, 36] utilize the diffusion
model to predict future trajectories of environment vehicles and
pedestrians, which exhibit a highly multimodal distribution of di-
verse future intentions. Furthermore, the diffusionmodels [5, 22, 56]
have been extended to generate realistic and controllable traffic
simulation, achieving significant advancements in simulating com-
plex driving environments with greater fidelity. More recently, re-
searchers have started to explore the application of diffusion models
in the domain of driving decision-making [21, 52, 54]. They leverage
diffusion models to learn from large datasets and generate multiple
candidate trajectories, then employ either an existing evaluation
model [7] or a self-generated evaluation model to produce the final
executable trajectory. However, a key challenge with diffusion mod-
els lies in their reliance on a large number of diffusion steps, which
hinders their practicality in real-time applications. This limitation is
particularly problematic in autonomous driving tasks, where rapid
decision-making and immediate control are critical for ensuring
safety and responsiveness.

In our study, we leverage consistency models [43] to enhance
the efficiency of diffusion models in driving decision-making. We
position the consistency model as an actor within the reinforcement
learning framework for autonomous agents, aiming to augment
flexibility and diversity in ego decision-making strategies.

2.3 Consistency Model
To improve the sampling efficiency of existing diffusion models
(DMs) [33, 41], consistency models (CMs) [43] are initially intro-
duced in the field of image generation. The key principle of consis-
tency models is to train the model to map any point in time back
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to the origin of the Probability Flow Ordinary Differential Equa-
tion (PF-ODE) trajectory. This approach enables efficient image
generation, offering a balance between minimal inference steps
and the quality of the generated image. Recently, latent consis-
tency models (LCMs) [31] have achieved remarkable improvements
in text-conditioned image generation speed. Additionally, consis-
tency models have been extended to various domains, including
video [51], 3D human motion [6], and audio [1], unlocking new
possibilities for real-time applications in these fields. While initial
success has been achieved in incorporating robot tasks with the
consistency model, as explored in [4, 8, 28, 35], its application to
complex driving tasks involving interactions with surrounding ve-
hicles still remains largely unexplored. To fill this research gap, we
make the first attempt to achieve a real-time driving consistency
policy.

2.4 Classification Losses in RL
In the fields of computer vision and tabular regression, existing
work [26, 38, 39] has demonstrated that replacing regression with
classification can effectively enhance performance. Recently, [23]
proposes the HL-Gauss cross-entropy loss for regression and shows
its efficacy on small-scale supervised regression tasks, outside of RL.
Most notably, [13] illustrates for the first time that a classification
objective trained with cross-entropy, particularly HL-Gauss, can
effectively scale value-based reinforcement learning across various
domains and network architectures.

3 PRELIMINARIES
3.1 Reinforcement Learning
In reinforcement learning, the process that an agent interacts with
the environment is typically described as a Markov Decision Pro-
cess (MDP) < 𝑆,𝐴, 𝑃, 𝑅,𝛾 >, where 𝑆 represents the set of states, 𝐴
represents the set of actions, 𝑃 (·|𝑠, 𝑎) : 𝑆 × 𝐴 × 𝑆 → [0, 1] repre-
sents the dynamic transition model, 𝑅(𝑠, 𝑎) represents the reward
function, and 𝛾 ∈ [0, 1] is the discount factor. The goal of RL is to
learn a policy 𝜋 : 𝑆 → 𝐴 that maximizes the expectation of the
sum of discounted rewards, known as the return 𝐺𝑡 =

∑∞
𝑖=𝑡 𝛾

𝑖−𝑡𝑟𝑖 .
Each policy 𝜋 has a corresponding state-action value function (also
known as Q function), which denotes the expected return 𝑄 (𝑠, 𝑎)
when following the policy 𝜋 after taking an action 𝑎 in state 𝑠 .

𝑄 (𝑠, 𝑎) = E[𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (1)

For traditional Q-learning, a behavior policy such as 𝜖-greedy pol-
icy is used to interact with the environment. Based on off-policy
evaluation, the optimal Q function is usually approached with a
neural network approximator 𝑄𝜙 based on the following equation:

𝑄𝜙 (𝑠, 𝑎) ← E
(
𝑟 + 𝛾 max

𝑎′∈𝐴
𝑄𝜙 (𝑠′, 𝑎′)

)
(2)

We also call the right of Eq. 2 the Bellman operator T̂𝑄 (𝑠, 𝑎;𝜙).
Next, we can obtain the optimal policy:

𝜋∗ (𝑠) = argmax
𝑎∈𝐴

𝑄𝜙 (𝑠, 𝑎) (3)

For large or continuous state and action spaces, the experience
replay and target network techniques [32] proposed in DQN are
used to improve the stability of training.

𝑄𝜙 (𝑠, 𝑎) ← E
(
𝑟 + 𝛾 max

𝑎′∈𝐴
𝑄𝜙 ′ (𝑠′, 𝑎′)

)
(4)

where the tuple (𝑠, 𝑎, 𝑟, 𝑠′) is sampled from an experience replay
buffer, and 𝜙 ′ is the parameter of the target network, which is
updated to the current Q network parameter 𝜙 after a fixed number
of time steps.

3.2 RL for Autonomous Driving
When using reinforcement learning to address the driving decision-
making task, we commonly encounter state representations that
can be categorized into two types: image representations [10] and
vector representations [12, 20, 29, 45]. Image representations refer to
the perception results obtained by the ego vehicle through cameras
and radar, capturing visual and sensor data. Vector representations,
on the other hand, consist of processed environmental information,
such as vehicle data and road topology, providing a structured and
abstracted view of the environment.

The action space in these scenarios is typically represented as a
continuous reactive control space in two dimensions: lateral control
(steering) and longitudinal control (acceleration or braking). This
dual-dimensional action space enables the vehicle to execute precise
and coordinated movements.

The reward function generally includes both sparse and dense
rewards. Sparse rewards are often associated with specific events,
such as collisions, going out of roads, or reaching the destina-
tion. These rewards provide significant feedback for critical events.
Dense rewards, in contrast, are more frequent and may include fac-
tors like speed, distance to the center of the lane, and smoothness
of the driving trajectory. These continuous rewards help guide the
learning process and encourage the agent to adopt more desirable
behaviors.

3.3 Diffusion Model
In this section, we describe how to use the diffusion model to build
the expected policy and define this policy as diffusion policy. Before
formally introducing this process, we first declare that there are
two different types of timesteps in the following sections. Rather
than using subscripts denoting the trajectory timesteps, we use
superscripts 𝑘 ∈ [0, 𝐾], 𝐾 > 0 is a fixed constant to denote the
diffusion timesteps.

The diffusion model starts by diffusing 𝑝𝑑𝑎𝑡𝑎 (𝑎) (original clean
data) with a stochastic differential equation (SDE):

𝑑𝑎𝑘 = 𝜇 (𝑎𝑘 , 𝑘)𝑑𝑘 + 𝜎 (𝑘)𝑑𝑤𝑘 (5)
where 𝜇 (·, ·) and 𝜎 (·) are the drift and diffusion coefficients, respec-
tively, and {𝑤𝑘 }𝑘∈[0,𝐾 ] denotes the standard Brownian motion
(also known as the Wiener process) capturing stochastic, Gaussian
white noise excitations. Starting from 𝑎𝐾 (noise data obtained after
𝐾 iterations of adding noise to the original clean data), the diffusion
model aims to recover the original data 𝑎0 by solving a reverse
process from 𝐾 to 0 with the PF-ODE [44]:

𝑑𝑎𝑘 = [𝜇 (𝑎𝑘 , 𝑘) − 1
2
𝜎 (𝑘)2∇ log 𝑝𝑘 (𝑎𝑘 )]𝑑𝑘 (6)

where ∇ log𝑝𝑘 (𝑎𝑘 ) is the score function of 𝑝𝑘 (𝑎). Thus, the diffu-
sion model trains a neural network parameterized by 𝜃 to estimate
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Figure 2: The framework of the CPCC algorithm.

the score function: 𝑠𝜃 (𝑎𝑘 , 𝑘) ≈ ∇ log𝑝𝑘 (𝑎𝑘 ). By setting 𝜇 (𝑎𝑘 , 𝑘) = 0
and 𝜎 (𝑘) =

√
2, we can obtain an empirical estimate of the PF ODE:

𝑑𝑎𝑘

𝑑𝑘
= −𝑘𝑠𝜃 (𝑎𝑘 , 𝑘) (7)

We call Eq. 7 the empirical PF ODE. The reverse process along the
solution trajectory {𝑎𝑘 }𝑘∈[0,𝐾 ] of this ODE is the data generation
process from initial random samples 𝑎𝑘 ∼ N(0, 𝐾2I). The resulting
𝑎0 can then be viewed as an approximate sample from the data
distribution 𝑝𝑑𝑎𝑡𝑎 (𝑎). DMs are constrained by their slow sampling
speed. Despite the availability of more advanced ODE solvers [9],
they still require 10 sampling steps to achieve competitive results.

4 CONSISTENCY POLICY WITH
CATEGORICAL CRITIC

4.1 Framework Overview
In this study, we conceptualize the decision-making process of au-
tonomous vehicles through the lens of a Markov Decision Process.
As shown in Figure 2, our framework follows an Actor-Critic archi-
tecture while extending the capabilities of both the actor and critic.
The policy network 𝜋𝜃 , coupled with the Q-network 𝑄𝜙 and target
Q-network 𝑄𝜙 ′ are set in the framework. We propose the Consis-
tency Policy with Categorical Critic (CPCC) to achieve real-time
driving consistency policy for the first time.

4.2 Consistency-based policy
In this section, we will introduce how to use the consistency-based
policy for reinforcement learning. In the driving scenario, the ego
vehicle needs to recognize the state information of surrounding
vehicles and current road conditions to make appropriate decisions.
Here we take the state information as the input of the consistency
policy and then define it as:

𝜋𝜃 (𝑎 |𝑠) ≜ 𝑓𝜃 (𝑎𝑘 , 𝑘, 𝑠) = 𝑐𝑠𝑘𝑖𝑝 (𝑘)𝑎𝑘 + 𝑐𝑜𝑢𝑡 (𝑘)𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠) (8)

where 𝑘 represents the timestep corresponding to the ODE, 𝑎𝑘 ∼
N(0, 𝑘I) and 𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠) is the neural network that we need to
train, which outputs the action of the same dimension as 𝑎𝑘 , con-
ditioned on 𝑠 , the ego state information. 𝑐𝑠𝑘𝑖𝑝 (𝑘) and 𝑐𝑜𝑢𝑡 (𝑘) are
differentiable functions such that 𝑐𝑠𝑘𝑖𝑝 (𝜖) = 1, and 𝑐𝑜𝑢𝑡 (𝜖) = 0.
Thus, the consistency policy 𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠) is differentiable at 𝑡 = 𝜖 if
𝐹𝜃 (𝑎𝑘 , 𝑘 |𝑠), 𝑐𝑠𝑘𝑖𝑝 (𝑘), 𝑐𝑜𝑢𝑡 (𝑘) are all differentiable; they will play a
critical role in the later training process of the consistency model.
To avoid numerical instability, we typically stop the solver at 𝑡 = 𝜖 ,
where 𝜖 is a small constant close to 0 for handling the numerical
problem at the boundary. Finally, we use 𝑎𝜖 ∼ 𝜋𝜃 (𝑎 |𝑠) as the final
executed action.

4.3 Training loss for consistency-based actor
Consistency models can be trained in either a distilled approach or
an isolation approach. The former requires a pre-trained diffusion
model, while the latter involves training from scratch without any
prior models. Here, we adopt the independent training approach.

The core of training the consistency model is to obtain the
consistency function 𝑓 : (𝑥𝑡 , 𝑡) → 𝑥𝜖 with the property of self-
consistency: outputs are consistent for arbitrary pairs of (𝑥𝑡 , 𝑡) that
belong to the same PF ODE trajectory, i.e., 𝑓 (𝑥𝑡 , 𝑡) = 𝑓 (𝑥𝑡 ′ , 𝑡 ′) for
all 𝑡, 𝑡 ′ ∈ [𝜖,𝑇 ].

Consider discretizing the time horizon [𝜖, 𝐾] into 𝑁 − 1 sub-
intervals, with boundaries 𝑘1 = 𝜖 < ... < 𝑘𝑁 = 𝐾 . In practice, we
follow Karra et al. [2] to determine the boundaries with the formula
𝑘𝑖 = [𝜖

1
𝜌 + 𝑖−1

𝑁−1 (𝐾
1
𝜌 −𝜖

1
𝜌 )]𝜌 , where 𝜌 = 7. To learn the consistency

policy, we minimize the objective with stochastic gradient descent
on the parameter 𝜃 , while updating 𝜃− with with an exponential
moving average (EMA). Common consistency model loss is the
below equation:

𝐿𝐶𝑇 (𝜃 ) = E[𝑑 (𝑓𝜃 (𝑎 + 𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠), 𝑓𝜃− (𝑎𝑘𝑚𝜏∗ , 𝑘𝑚 |𝑠)] (9)
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where 𝑑 represents the loss function and 𝑎𝑘𝑚𝜏∗ is calculated with
the Euler solver and the optimal score function 𝑠𝜏∗ (𝑎𝑘 , 𝑘). Based
on our observations, we have identified that the aforementioned
loss function may produce exceedingly small backward gradients,
leading to instability during the training process and ultimately
resulting in a degradation of policy performance. To achieve a more
stable training outcome, we follow the approach outlined in [4] by
utilizing reconstruction loss as an improvement:

𝐿𝑅𝐶 (𝜃, 𝜃−) = E(𝑠,𝑎)∼D,𝑧∼N(0,I) [𝑑 (𝑓𝜃 (𝑎+𝑘𝑚+1𝑧, 𝑘𝑚+1 |𝑠), 𝑎)] (10)

Furthermore, as we are operating within an online reinforcement
learning research paradigm, the corresponding Q-value guidance
becomes a necessary component. We anticipate that the consistency
actor will generate actions with higher Q-values that are more
reasonable. Therefore, we use the following equation as the final
optimization objective:

𝐿(𝜃, 𝜃−) = 𝛼𝐿𝑅𝐶 (𝜃, 𝜃−) −
𝜂

E(𝑠,𝑎)∼D[𝑄 (𝑠,𝑎) ]
E𝑠∼D,𝑎𝜖∼𝜋𝜃 [𝑄 (𝑠, 𝑎)]

(11)
where 𝛼 and 𝜂 are hyperparameters that control whether to imitate
actions from the dataset or to select actions with higher Q-values.
The Q-function plays a crucial role in guiding the training of the
consistency actor, which will be discussed in the next section.

4.4 Categorical critic
Wenow introduce the categorical critic and utilize the cross-entropy
loss to train it. We adopt the framework proposed by [13] for
replacing MSE with cross-entropy loss. The approach involves
parameterizing the Q-function to the set of categorical distribu-
tions supported on [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ] segmented into𝑚 bins with widths
(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)/𝑚, where 𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛 denote the maximum and
minimum rewards encountered during the interaction process, re-
spectively. The scalar value of the Q-function is then computed
as:

𝑄 (𝑠, 𝑎, 𝜙) = E[𝑍 (𝑠, 𝑎, 𝜙)], 𝑍 (𝑠, 𝑎, 𝜙) =
𝑚∑︁
𝑖=1

𝑝𝑖 (𝑠, 𝑎, 𝜙)𝛿𝑖 (12)

where 𝛿𝑖 denotes the corresponding bin value, and 𝑝𝑖 represents the
probability of the 𝑖-th bin. Specifically, 𝑝𝑖 is derived from 𝑙𝑖 (𝑠, 𝑎;𝜙),
the output of the categorical critic through the softmax function:

𝑝𝑖 (𝑠, 𝑎, 𝜙) =
exp(𝑙𝑖 (𝑠, 𝑎;𝜙))∑𝑚
𝑗=1 exp(𝑙 𝑗 (𝑠, 𝑎;𝜙))

(13)

We then need to consider how to convert the reward scalars
generated during the interaction process into categorical distribu-
tions. HL-Gauss method [23] is particularly effective for mapping
continuous values into bins within this framework. In detail, we
define the random variable 𝑌 |𝑆,𝐴 with probability density 𝑓𝑌 |𝑆,𝐴
and cumulative distribution function 𝐹𝑌 |𝑆,𝐴 whose expectation is
T̂𝑄 (𝑆,𝐴;𝜙 ′). Note that we need to transform the value of the target
Q-function from a scalar to a categorical form in order to generate
the cross-entropy supervision signal. We project the distribution
𝑌 |𝑆,𝐴 onto the histogram with bins of width 𝜁 = (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)/𝑚

centered at 𝑧𝑖 by integrating over the interval [𝑧𝑖 − 𝜁 /2, 𝑧𝑖 + 𝜁 /2]
to obtain the probabilities:

𝑝𝑖 (𝑆,𝐴;𝜙 ′) =
∫ 𝑧𝑖+𝜁 /2

𝑧𝑖−𝜁 /2
𝑓𝑌 |𝑆,𝐴 (𝑦 |𝑆,𝐴)𝑑𝑦

= 𝐹𝑌 |𝑆,𝐴 (𝑧𝑖 + 𝜁 /2|𝑆,𝐴) − 𝐹𝑌 |𝑆,𝐴 (𝑧𝑖 − 𝜁 /2|𝑆,𝐴) . (14)

Then, we follow [23] and choose the Gaussian distribution𝑌 |𝑆,𝐴 ∼
N(𝜇 = T̂𝑄 (𝑆,𝐴;𝜙 ′), 𝜎2). Thus this formulation allows us to ex-
press the TD error using cross-entropy and utilize it for updating
the value function parameters:

𝑇𝐷𝐶𝐸 (𝜙) = ED
𝑚∑︁
𝑖=1

𝑝𝑖 (𝑠, 𝑎, 𝜙 ′) log𝑝𝑖 (𝑠, 𝑎, 𝜙) (15)

5 EXPERIMENTS
5.1 Experiment Settings
In the paper, we use the MetaDrive simulator [29] as the online RL
training and evaluation environment since it has realistic vehicle dy-
namics and offers a diverse range of road maps, which are randomly
composed from basic elements like straight roads, curves, inter-
sections, roundabouts, ramps, and forks. Each road map features a
starting point and a destination, linked by a route consisting of a
sequence of navigation points. In our experiments, the ego vehicle
needs to interact with the environment to acquire environmental
information, enabling it to avoid collisions and boundaries while
successfully navigating from the starting point to the destination.
Next, we will provide a detailed description of the states, actions,
and reward information required for training the ego vehicle in the
reinforcement learning framework.

For environmental observation, we employ a 49-dimensional
vector representation that incorporates the positional information
of surrounding vehicles, the ego vehicle’s location and motion data,
as well as information related to the navigation points:
• A 30-dimensional vector representing the distances mea-
sured by a 2D-lidar to surrounding objects, with a 50-meter
detection range centered on the ego vehicle.
• A 9-dimensional vector describing the ego vehicle’s state,
including steering, heading, speed, and its distance to the
left and right boundaries.
• A 10-dimensional vector indicating the distances from the
ego vehicle to evenly spaced checkpoints along the road, set
50 meters apart

The action output of the ego in the Metadrive is a normal-
ized action 𝑎 = [𝑎1, 𝑎2] ∈ [−1, 1]2. Then the above action is
converted into the steering 𝑢𝑠 , acceleration 𝑢𝑎 and brake signal
𝑢𝑏 . In detail, the conversion formula is as follows: 𝑢𝑠 = 𝑆𝑚𝑎𝑥𝑎1,
𝑢𝑎 = 𝐹𝑚𝑎𝑥 max(0, 𝑎2) and 𝑢𝑏 = −𝐵𝑚𝑎𝑥 min(0, 𝑎2), where 𝑆𝑚𝑎𝑥 ,
𝐹𝑚𝑎𝑥 and 𝐵𝑚𝑎𝑥 are the hyperparameters of the Metadrive.

The reward function, as shown by Eq. 16, includes the dense
rewards based on driving distance and speed, as well as the sparse
rewards associated with departing from the lane, colliding with
surrounding vehicles or objects, and reaching the destination:

𝑅 = 𝑐1𝑅𝑑𝑖𝑠 + 𝑐2 ∗ 𝑅𝑠𝑝𝑒𝑒𝑑 + 𝑅𝑠𝑝𝑎𝑟𝑠𝑒 (16)
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Figure 3: Evaluation safety metric curves during the training. We evaluate CPCC and several baselines on the MetaDrive
simulator every 25k training iterations. The shaded area represents half a standard deviation. The bold black line measures the
average return of episodes.

where 𝑅𝑑𝑖𝑠 represents the longitudinal distance that the vehicle
moves between two consecutive time steps, encouraging the ego
vehicle to move forward. 𝑅𝑠𝑝𝑒𝑒𝑑 = 𝑣𝑡/𝑣𝑚𝑎𝑥 where 𝑣𝑡 and 𝑣𝑚𝑎𝑥
denote the current velocity and the maximum velocity (80 km/h),
respectively, encouraging the ego vehicle to drive fast. 𝑐1 and 𝑐2 are
the coefficients of dense rewards 𝑅𝑑𝑖𝑠 , 𝑅𝑠𝑝𝑒𝑒𝑑 , and they are set to
1.0, 0.1, respectively, following the default setting of the Metadrive.
𝑅𝑠𝑝𝑎𝑟𝑠𝑒 is the sparse reward, which is nonzero only when the task
terminates. The ego vehicle receives a +10 reward when reaching
the destination and a -5 reward when straying from the road or
when crashing with an object or vehicle.

The training process is carried out on 20 road maps, each ran-
domly generated from basic components. These maps also include
randomly generated traffic vehicles, exhibiting diverse types and
typical driving behaviors like lane-changing and following. Ad-
ditionally, traffic accidents are randomly introduced at various
locations on these maps. For evaluation, we use an independent set
of 20 newly generated road maps that are unseen by the methods
being assessed.

Our hardware platform is Tesla V100 paired with Intel(R) Xeon(R)
CPU E5-2698 , while the software platform is Ubuntu 20.04, with
PyTorch as the deep learning framework. The hyperparameters of
our method are presented in the Table 1.

Table 1: Hyperparameters of CPCC

KEY VALUE

Number of hidden layers of actor-net and critic-net. 2
Hidden layer size of actor-net and critic-net. 256

Hidden Layers Activation of actor-net and critic-net ReLU
Discount factor 𝛾 0.99

Consistency model 𝜖 0.002
Consistency model 𝑇 80
Discount factor 𝜌 7

Learning rate of actor-net and critic-net 3e-4

5.2 Metrics and Baselines
Here, we followMetaDrive[29] and [18] commonly used autonomous
driving safety evaluation metrics, including the arrive destination
rate, crash rate, and out of road rate. The arrival rate (success rate)
represents the proportion of episodes that successfully reach the
destination, while the crash rate and off-road rate indicate the ra-
tios of total crash events and instances of vehicles leaving the road,
respectively, relative to the total number of evaluation episodes.

Additionally, we employ the evaluation episode reward, defined
as the average reward per episode, calculated by dividing the total
reward across all episodes by the number of evaluation episodes.
This metric is useful for reflecting the learning performance of RL
algorithms.

Next, we present the baseline algorithms used in our study. We
employed two established off-policy reinforcement learning (RL)
algorithms: TD3 [14] and SAC [16]. Additionally, we included the
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Figure 4: Evaluation reward curves during the training. We
evaluate CPCC and several baselines on the MetaDrive sim-
ulator every 25k training iterations. The shaded area repre-
sents half a standard deviation. The bold black line measures
the average return of episodes.
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Figure 5: The Visualization results of CPCC in the roundabout scenario and intersection scenario.

CPQL algorithm [4], which innovatively incorporates consistency
models within the robotics domain, as part of our baseline compar-
isons.

5.3 Analysis of Driving Performance
We first consider the driving safety evaluation metrics, which are
presented in Table 2. Specifically, CPCC demonstrates superior
driving decision-making performance, achieving an impressive
success rate of 0.8125. As illustrated in Figure 3, it is clear that the
CPCC algorithm quickly acquires the capability to avoid driving off
the road during the early stages of training. However, it is also noted
that the CPCC algorithm subsequently encounters collisions with
other vehicles in the environment. Through visualization analysis,
we discover that most collisions occur in scenarios characterized by
strong interactions. This finding indicates that there is still room
for improvement in the CPCC algorithm.

In contrast, the classical TD3 algorithm exhibits poor perfor-
mance, achieving a success rate of only 0.083. The visualization
results indicate that TD3 frequently fails during the initial phases
of scenarios involving rapid movements. Furthermore, both the
SAC and CPQL algorithms demonstrate similar performance, with
success rates of 0.325 and 0.3, respectively. However, these rates
remain relatively low, highlighting the effectiveness of using the
categorical critic.

We then consider the results corresponding to the evaluation re-
wardmetric, which are presented in Figure 4.We find that the CPCC
algorithm also achieves superior performance on the evaluation
reward metric, with a score around 300, significantly surpassing
the performance of the other methods.

5.4 Ablation study
We performe ablation studies on various modules, with the results
summarized in Table 3. Our findings indicate that employing a

Table 2: The results of safety evaluation metrics on the
Metadrive evaluation scenarios. The bold values are the high-
est among each row.

Method Success rate ↑ Crash rate ↓ Out of raod rate ↓
TD3 [14] 0.083 ± 0.062 0.2833 ± 0.024 0.6333 ± 0.047
SAC [16] 0.325 ± 0.024 0.325 ± 0.026 0.35 ± 0.007
CPQL [4] 0.3 ± 0.040 0.325 ± 0.155 0.375 ± 0.125

CPCC(ours) 0.8125 ± 0.074 0.175 ± 0.083 0.0125 ± 0.022

standard critic (scalar critic) leads to a modest performance im-
provement. In contrast, using a standard actor (naive MLP) yields
more substantial performance gains, albeit with increased variance.
By integrating both approaches, we achieve optimal performance.

Table 3: Ablation study results of safety evaluation metrics
across different modules on the MetaDrive scenarios. Bold
values indicate the highest scores among each row.

Method Success rate ↑
CPCC w normal actor and critic 0.083 ± 0.062

CPCC w normal critic 0.325 ± 0.024
CPCC w normal actor 0.533 ± 0.386

CPCC 0.8125 ± 0.074

6 CONCLUSION
In this paper, we propose an effective driving decision-making
method CPCC, which captures the multimodal action distribution

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

737



during the reinforcement learning interaction process and effec-
tively utilizes a categorical critic to learn the consequences of differ-
ent actions, thereby facilitating rational driving decision-making.
We demonstrate the benefits of CPCC within the Metadrive Simu-
lator, where our results indicate that CPCC outperforms classical
off-policy reinforcement learning algorithms as well as recent con-
sistency model planning approaches. For the future work, we aim to
leverage the latest advancements in consistency models to further
enhance the representational capability of the actor. Additionally,
we plan to conduct corresponding experiments in real-world sce-
narios characterized by higher vehicle density and more complex
road topologies.
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