
On the Hardness of Fair Allocation under Ternary Valuations
Zack Fitzsimmons

College of the Holy Cross

Worcester, MA, United States

zfitzsim@holycross.edu

Vignesh Viswanathan

University of Massachusetts

Amherst, MA, United States

vviswanathan@umass.edu

Yair Zick

University of Massachusetts

Amherst, MA, United States

yzick@umass.edu

ABSTRACT
We study the problem of fair allocation of indivisible items when

agents have ternary additive valuations — each agent values each

item at some fixed integer values 𝑎, 𝑏, or 𝑐 that are common to all

agents. The notions of fairness we consider are max Nash welfare

(MNW), when 𝑎, 𝑏, and 𝑐 are non-negative, and max egalitarian

welfare (MEW).We show that for any distinct non-negative 𝑎,𝑏, and
𝑐 , maximizing Nash welfare is APX-hard — i.e., the problem does

not admit a PTAS unless P = NP. We also show that for any distinct

𝑎, 𝑏, and 𝑐 , maximizing egalitarian welfare is APX-hard except

for a few cases when 𝑏 = 0 that admit efficient algorithms. These

results make significant progress towards completely characterizing

the complexity of computing exact MNW allocations and MEW

allocations. En route, we resolve open questions left by prior work

regarding the complexity of computing MNW allocations under

bivalued valuations, and MEW allocations under ternary mixed

manna.

KEYWORDS
Fair Allocation; Nash Welfare; APX Hardness

ACM Reference Format:
Zack Fitzsimmons, Vignesh Viswanathan, and Yair Zick. 2025. On the Hard-

ness of Fair Allocation under Ternary Valuations. In Proc. of the 24th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Fair allocation of indivisible items is a fundamental problem in com-

putational social choice. We are given a set of indivisible items that
need to be distributed among agents that have subjective valuations
for the items they receive. Many problems can be naturally cast as

instances of the fair allocation problem. For example, one might

wish to distribute a set of course seats to students, or schedule

shifts to hospital workers. Our objective is to find an allocation
of items to agents satisfying certain natural justice criteria. Un-
fortunately, when agents have arbitrary combinatorial valuations,

several allocation desiderata are either computationally intractable

to compute, or simply not guaranteed to exist (see e.g., Caragiannis

et al. [15], Plaut and Roughgarden [38] as well as Amanatidis et al.

[3] for an overview).

Thus, recent works study simpler classes of valuations where ex-

act fair allocations can be computed. There is an efficient algorithm

to compute Max Nash welfare allocations when agents have binary

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

valuations [7, 9, 31], i.e., where each item is valued at either 0 or

1. This result was later extended to bivalued additive valuations

where each item is valued at 1 or 𝑐 with 𝑐 being either an integer or

a half-integer [1, 2]. Similarly, for the problem of allocating chores,

there exists an efficient algorithm that computes leximin allocations

when agents have binary costs [11] or bivalued costs when the ratio

of the costs is 2 [34].

Other works restrict their attention to bivalued instances in the

realm of goods [4, 28] as well as chores [6, 17, 23, 29]. Generalizing

beyond bivalued instances, much less is known about the complex-

ity of fair allocation under ternary or trivalued instances: when

each item is valued at 𝑎, 𝑏, or 𝑐 for some integers 𝑎, 𝑏, and 𝑐 . For

example, we do not know if an exact max Nash welfare allocation

is efficiently computable when each item is valued at 0, 1, or 2. Our

goal in this paper is to bridge this gap by answering the following

question:

What is the computational complexity of computing
fair allocations under ternary valuations?

1.1 Our Results
The question has been partially answered in the literature. Garg et al.

[25] (and Amanatidis et al. [4]) show that when each item is valued

at 0, 1, or 𝑐 , computing a max Nash welfare allocation is APX-hard

with a large enough 𝑐 . The hardness results for computingmaxNash

welfare allocations under bivalued valuations [1, 2] also extends to

some classes of trivalued valuations. Building upon these results,

we offer a comprehensive analysis of the complexity of computing

fair allocations when agents have ternary or trivalued valuations,

i.e., items are valued at arbitrary integers 𝑎, 𝑏, or 𝑐 (𝑎 < 𝑏 < 𝑐). A

summary of our results is presented in Table 1.

We study the objectives of maximizing Nash welfare and maxi-

mizing egalitarian welfare (also known as the Santa Claus objec-

tive [8]). These are two of the most popular notions of fairness in

the literature, and are extremely well studied. The Nash welfare of

an allocation is defined as the product of agent utilities, and the

egalitarian welfare of an allocation is defined as the utility of the

worst-off agent.

We first study the all goods setting; here, items have a non-

negative marginal value for agents. We show that the problems

of computing a max Nash welfare and a max egalitarian welfare

allocation are APX-hard for any 𝑎,𝑏, 𝑐 such that 0 ≤ 𝑎 < 𝑏 < 𝑐 (The-

orems 3.1 and 3.5). This result completely characterizes the complex-

ity of computing max Nash welfare allocations when agents have

ternary valuations. Importantly, this result shows that even when

agents have {0, 1, 2} valuations, computing a max Nash welfare allo-

cation is hard. A similar result almost completely characterizes the

complexity of maximizing Nash welfare under bivalued valuations

[1, 2]; these results, however, do not resolve the APX-hardness of

the problem for the specific case when one of the values an item

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

758

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Valuation Class Additive

{𝑎, 𝑏}
𝑎 = 0, 1 or 2

Poly [1, 2, 9]

{𝑎, 𝑏}
𝑏 > 𝑎 > 3

APX-hard [1]

{𝑎, 𝑏}
𝑏 > 𝑎 = 3

NP-hard [1]

APX-hard (Proposition 3.8)

{0, 1, 𝑐}
some large 𝑐

APX-hard [25]

{𝑎, 𝑏, 𝑐}
𝑐 > 𝑏 > 𝑎 ≥ 0

APX-hard
(Theorems 3.1 and 3.5)

(a) Complexity of computing max Nash welfare

Valuation Class Additive Submodular

{−1, 0} trivial Poly [11]

{−1, 0, 1} Poly [21] NP-hard (Theorem 4.7)

{−1, 0, 𝑐}
𝑐 > 1

Poly [21] Poly (Proposition 4.8)

{−2, 0, 𝑐}
𝑐 ≥ 3

open open

{𝑎, 𝑏, 𝑐}
all other cases

NP-hard
(Theorems 4.1, 4.3 and [21])

NP-hard
(Theorems 4.1, 4.3 and [21])

(b) Complexity of computing max egalitarian welfare

Table 1: Summary of our results. Here, 𝑎, 𝑏, and 𝑐 denote arbitrary distinct co-prime integers. Our contributions are highlighted
in bold. By valuation class {𝑎, 𝑏, 𝑐}, we mean instances where every item is valued at either 𝑎, 𝑏, or 𝑐 by all the agents.

can have is 3.
1
We resolve this case as well, showing APX-hardness

and completing their characterization under bivalued valuations

(Proposition 3.8).

Next, we study the mixed manna setting, where items can have

both positive and negative marginal values. For the special case

when 𝑎 = −1, 𝑏 = 0, and 𝑐 is an arbitrary integer, an efficient

algorithm is known to compute max egalitarian welfare allocations

[21]. We show that generalizing beyond this case is unlikely by

showing that computing a max egalitarian welfare allocation is

NP-hard for almost every other 𝑎, 𝑏, and 𝑐 .

In line with the questions posed by [7] and [20], we also ask

the question of whether the results of Cousins et al. [21] can be

generalized to submodular valuations. We find that apart from

the case where 𝑐 = 1, their results can in fact be generalized to

submodular valuations (Proposition 4.8). Somewhat surprisingly,

for the special case where 𝑎 = −1, 𝑏 = 0, and 𝑐 = 1, the problem of

computing a max egalitarian welfare allocation is NP-hard when

agents have submodular valuations (Theorem 4.7).

Due to space constraints, several proofs have been omitted. The

complete set of proofs can be found in the full version of the paper

[24].

1.2 Additional Related Work
Current known results on trivalued valuations consider special

cases, e.g., algorithms when 𝑏 = 0 [21] or hardness when 𝑐 is much

larger than 𝑎 and 𝑏 [4, 25].

When all the items are chores, the complexity of computing

egalitarian allocations is resolved by prior work [17, 34]. It is known

that unless each item is valued at one of two values 𝑎, 𝑏 (𝑎 < 𝑏)

such that 𝑎 = 2𝑏, the problem is APX-hard. The case where 𝑎 = 2𝑏

admits a polynomial time algorithm. This implies that for all ternary

values, unless 𝑎 = −2, 𝑏 = −1 and 𝑐 = 0, the problem is APX-hard.

Note that this special case can be solved similar to the case where

𝑎 = 2𝑏, since any items valued at 0 by one of the agents can be

allocated to them without affecting the egalitarian welfare.

1
For every other case, Akrami et al. [1] show that the problem is either APX-hard or

admits an efficient algorithm.

Aside from exact algorithms, a long line of fascinating work

studies approximation algorithms for maximizing Nash welfare

[10, 19, 22, 26, 27, 35] and egalitarian welfare [5, 8, 16, 34]. The

current best known approximation ratios for maximizing Nash

welfare are 1.45 for additive valuations [10] and 4+𝜖 for submodular

valuations [26]. There is also a constant factor algorithm under

subadditive valuations which uses a polynomial number of demand

queries [22].

There is a 0.5-approximation algorithm for maximizing egalitar-

ian welfare when all items are chores [34], but there is no constant

approximation for the all goods case. However, the special case of

the Santa Claus problem admits a 13-approximation algorithm [5].

Lee [33] show APX-hardness of the Max Nash welfare problem

under general additive valuations, Akrami et al. [1] show APX-

hardness for some cases when agents have bivalued additive valua-

tions, and Garg et al. [25] show APX-hardness when agents have

{0, 1, 𝑐} valuations for some large constant 𝑐 .

2 PRELIMINARIES
For any 𝑘 ∈ N, we use [𝑘] to denote the set {1, 2, . . . , 𝑘}. We have a

set of 𝑛 agents 𝑁 = [𝑛] and𝑚 items 𝑂 = {𝑜1, . . . , 𝑜𝑚}. Each agent

𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 : 2
𝑂 → R; 𝑣𝑖 (𝑆) specifies agent

𝑖’s utility for the bundle of items 𝑆 . We primarily assume additive
valuations: a valuation function is additive if for all 𝑆 ⊆ 𝑂 , 𝑣𝑖 (𝑆) =∑
𝑜∈𝑂 𝑣𝑖 ({𝑜}). For readability, we sometimes abuse notation and

use 𝑣𝑖 (𝑜) to denote 𝑣𝑖 ({𝑜}).
We often assume that agents have restricted values for items.

More formally, given a set 𝐴 ⊆ Z, agent 𝑖 has 𝐴-valuations if 𝑣𝑖 is
additive and 𝑣𝑖 (𝑜) ∈ 𝐴 for all 𝑜 ∈ 𝑂 . Specifically, we often consider

{𝑎, 𝑏, 𝑐}-valuations for some integers 𝑎, 𝑏, and 𝑐 . Throughout the

paper, 𝑎, 𝑏, and 𝑐 will only be used to denote integers. An allocation
𝑋 = (𝑋1, . . . , 𝑋𝑛) is an𝑛-partition of the set of items𝑂 , where agent

𝑖 receives the bundle 𝑋𝑖 . We require that every item is allocated to

some agent. This constraint is required when items can be nega-

tively valued by agents. The utility of agent 𝑖 under the allocation

𝑋 is 𝑣𝑖 (𝑋𝑖).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

759

2.1 Fairness Notions (or Objectives)
We consider two fairness objectives in this paper.

Max Nash Welfare (MNW): the Nash welfare of an allocation 𝑋

is defined as the geometric mean of agent utilities NSW(𝑣, 𝑋) =(∏
𝑖∈𝑁 𝑣𝑖 (𝑋𝑖)

)
1/𝑛

.

Max Egalitarian Welfare (MEW): The egalitarian welfare of an

allocation 𝑋 is defined as the minimum utility obtained by any

agent in the allocation i.e.min𝑖∈𝑁 𝑣𝑖 (𝑋𝑖). An allocation which max-

imizes this objective value is referred to as a max egalitarian welfare

allocation.

Since the max Nash welfare objective makes little sense when

some agents have negative utilities, we only study it when all agents

have non-negative utilities. Some of our proofs will also use the

utilitarian social welfare of an allocation to establish some bounds

on the Nash (or egalitarian) welfare. The utilitarian social welfare of
an allocation 𝑋 is defined as the sum of agent utilities

∑
𝑖∈𝑁 𝑣𝑖 (𝑋𝑖).

2.2 Approximation Algorithms and
APX-hardness

For some 𝛼 > 1, an algorithm is an 𝛼-approximation algorithm for

the max Nash welfare objective if it always outputs an allocation

which has Nash welfare at least
1

𝛼 of the optimal value. We simi-

larly define an 𝛼-approximation algorithm for the max egalitarian

welfare.

Approximation algorithms are usually only defined when the

objective value is either always positive or always negative. This

is true of our fairness objectives in the all goods case. However,

in the mixed goods and chores case, where items can have both

positive and negative values, the optimal egalitarian welfare could

be positive while many allocations could have a negative egalitarian

welfare. Thus, in that case, we do not discuss approximability and

only discuss NP-hardness and exact algorithms.

For most valuation classes, we show the hardness of computing

fair allocations by proving APX-hardness [36]. APX-hard problems

do not admit a Polynomial Time Approximation Scheme (PTAS)

unless P = NP. This is equivalent to saying that there exists an

𝛼 > 1 such that the problem does not admit an 𝛼-approximation

algorithm unless P = NP.

The class APX consists of all the problems which admit efficient

constant factor approximation schemes. Asmentioned in the related

work section, existing results put the problem of maximizing Nash

welfare in APX for general additive valuations [10, 19]. These results

show that our constant factor lower bounds, are in some sense tight.

That is, it would be impossible to improve these lower bounds

to Ω(log𝑛) or Ω(poly(𝑛)); the tightest possible lower bounds are
constant.

3 THE ALL GOODS CASE: 0 ≤ 𝑎 < 𝑏 < 𝑐

We first consider the case where 0 ≤ 𝑎 < 𝑏 < 𝑐 and all agents

have {𝑎, 𝑏, 𝑐}-valuations. It is known that MNW allocations can

be computed efficiently when agents have {0, 1}-valuations [9],
{1, 𝑐}-valuations with 𝑐 > 1 [1], and {2, 𝑐}-valuations with 𝑐 odd

and at least 3 [2]. MEW allocations can be computed efficiently

when agents have {0, 1}-valuations [7, 31], and {1, 𝑐}-valuations
with 𝑐 > 1 [1, 20].

However, the complexity of the {0, 1, 2} case is unknown. Our
first result resolves this.

Theorem 3.1. When agents have {𝑎, 𝑏, 𝑐}-valuations with 0 ≤
𝑎 < 𝑏 < 𝑐 and 𝑐 ≤ 2𝑏, computing an MNW allocation is APX-hard.

The proof of this result is highly involved and uses a careful

reduction from a variant of 3SAT. To provide a high level idea of

the proof, we instead present a simpler result, and discuss how it

can be generalized.

Theorem 3.2. When agents have {0, 1, 2}-valuations, computing
an MNW allocation is APX-hard.

Proof. We show APX-hardness by using the Max-2P2N-3SAT

problem
2
:

Name: Max-2P2N-3SAT

Given: A boolean formula 𝜙 (𝑥1, . . . , 𝑥𝑛) where 𝜙 is in 3CNF and

each variable 𝑥𝑖 occurs in 𝜙 exactly twice as positive literal

and twice as a negated literal.

Question: Find the assignment 𝜎 that maximizes the total number

of clauses satisfied in 𝜙 .

We specifically use the following lemma which proves APX-

hardness of the Max-2P2N-3SAT problem.

Lemma 3.3 ([14]). Given an instance of Max-2P2N-3SAT and any
𝜖 > 0, it is NP-hard to decide if (1 − 𝜖) fraction of the clauses can be
satisfied or if all solutions satisfy at most a 1015

1016
+ 𝜖 fraction of the

clauses.

Given an instance 𝜙 (𝑥1, . . . , 𝑥𝑛) of Max-2P2N-3SAT with𝑚 =

4𝑛/3 clauses3 𝐶1, . . . ,𝐶𝑚 , we construct an instance of an allocation

problem with 7𝑛 items and 4𝑛 agents.

For each variable 𝑥𝑖 , we create 5 items: 𝑥𝑖 , 𝑥
′
𝑖
corresponding to

the positive literal, 𝑥𝑖 , 𝑥
′
𝑖 corresponding to the negative literal, and

a clog item clog𝑖 . We also add 2𝑛 special items 𝑑1, . . . , 𝑑2𝑛 .

Our instance will have a set of 4𝑛 agents with the following

valuations. For each variable 𝑥𝑖 , we create an agent pos𝑖 who values
𝑥𝑖 , 𝑥

′
𝑖
at 1 and clog𝑖 at 2. Similarly, for each variable 𝑥𝑖 , we create

an agent neg𝑖 who values 𝑥𝑖 , 𝑥
′
𝑖 at 1 and clog𝑖 at 2. For each clause

𝐶𝑖 , we create an agent 𝐶𝑖 who values the items corresponding to

the literals in 𝐶𝑖 at 1 and the special item 𝑑𝑖 at 1. We have a set

of 2𝑛 −𝑚 dummy agents: 𝑠1, . . . , 𝑠2𝑛−𝑚 where for each 𝑖, 1 ≤ 𝑖 ≤
2𝑛 −𝑚, 𝑠𝑖 values all literal items and the special item 𝑑𝑚+𝑖 at 1. All
unmentioned valuations are at 0. See Figure 1 for an example of

this construction.

By our construction, each special item is valued positively by

exactly one agent. We now prove correctness of our reduction.

(=⇒) Suppose there is an assignment 𝜎 : {𝑥1, . . . , 𝑥𝑛} → {0, 1}
to the variables 𝑥1, . . . , 𝑥𝑛 that satisfies at least (1−𝜖) of the clauses
in 𝜙 . We construct an allocation 𝑋 using this assignment.

We first allocate the items to the variable agents. For each 𝑖, 1 ≤
𝑖 ≤ 𝑛, if 𝜎 (𝑥𝑖) = 1 we allocate clog𝑖 to pos𝑖 and 𝑥𝑖 , 𝑥

′
𝑖 to neg𝑖 ;

2
We mention here that our APX-hardness reduction shares some of the general

structure with the NP-hardness proof for computing a MNW allocation for {0, 1, 𝑐 }-
valuations when 𝑐 is unboundedly large [4]. However, to handle the case of fixed 𝑐

and to generalize to APX-hardness, our construction requires a different structure to

the valuations and additional padding agents/items.

3
This value of𝑚 comes from the fact that each clause has 3 literals, and each variable

appears exactly twice as a positive literal and twice as a negative literal.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

760

(𝑥
1
∨ ¬𝑥

2
∨ ¬𝑥

3
) ∧ (𝑥

1
∨ 𝑥

2
∨ ¬𝑥

3
) ∧ (¬𝑥

1
∨ ¬𝑥

2
∨ 𝑥

3
) ∧ (¬𝑥

1
∨ 𝑥

2
∨ 𝑥

3
)

𝑐1 𝑐2 𝑐3 𝑐4

𝑠1 𝑠2 𝑠3 𝑠4

𝑠5 𝑠6𝑑1 𝑑2

𝑥1

𝑥 ′
1

clog
1

𝑥1

𝑥 ′
1

𝑥1

pos
1

neg
1

Figure 1: An illustration of the reduction from an instance
of 2P2N-3SAT to the MNW problem. Blue circles represent
agents, and red squares represent items. The 𝑗-th clause in the
formula induces a corresponding clause agent 𝑐 𝑗 who likes
all items generated by its literals, plus the special item 𝑠 𝑗 .
Each variable (here, we just present the elements generated
by 𝑥1) produces five items and two agents. Agent pos

1
values

𝑥1 and 𝑥 ′
1
at 1, and clog

1
at 2. Agent neg

1
values 𝑥1 and 𝑥 ′

1
at 1,

and clog
1
at 2. The dummy agent 𝑑1 likes 𝑠5 and the dummy

agent 𝑑2 likes 𝑠6, and the items generated by literals at 1.

if 𝜎 (𝑥𝑖) = 0 we allocate clog𝑖 to neg𝑖 and 𝑥𝑖 , 𝑥
′
𝑖
to pos𝑖 . Thus, if

𝜎 (𝑥𝑖) = 1, the agent pos𝑖 gets the clog item for a utility of 2, and

the agent neg𝑖 gets a utility of 2 from the two literal items assigned

to it.

For each clause 𝐶𝑖 that is satisfied by the assignment 𝜎 , we

allocate exactly one copy of one of the literal items that satisfies

that clause to the corresponding clause agent. For example, if 𝐶𝑖 =

(𝑥1 ∨𝑥2 ∨𝑥3) and 𝜎 (𝑥1) = 0, 𝜎 (𝑥2) = 0, and 𝜎 (𝑥3) = 1 then we can

allocate 𝑥1, 𝑥
′
1
, 𝑥3 or 𝑥

′
3
to the clause agent𝐶𝑖 ; the exact choice can

be made arbitrarily. Thus, if 𝐶𝑖 is a satisfied clause, we allocate one

literal item to its corresponding agent for a utility of 1. Each clause

agent also uniquely values a special item at 1, and we allocate this

item to them. Overall, each clause agent corresponding to a satisfied

clause receives a utility of 2 and each clause agent corresponding

to an unsatisfied clause receives only their special item for a utility

of 1.

For each of the dummy agents, we allocate one of the remaining

literal items along with the unique special item they value at 1.

There are at least 2𝑛 −𝑚 such literal items remaining so this is

possible.

At the end of this process, there are at most 𝜖𝑚 unallocated

literal items. With small enough 𝜖 , this is less than 2𝑛 −𝑚 = 0.5𝑚.

So we allocate the remaining items among the dummy agents such

that no agent gets more than one such item.

Let us take stock of the utility of our agents at this stage. There

are:

• 2𝑛 literal agents who received either two literal items or one

clog item. So they get a utility of 2.

• 𝑚 −𝑚′
satisfied clause agents who receive one literal item

and their corresponding special item for a utility of 2.

• 𝑚′(≤ 𝜖𝑚) unsatisfied clause agents who receive their cor-

responding special item (and no literal item) for a utility of

1.

• 2𝑛 −𝑚 −𝑚′
dummy agents who receive a literal item which

they value at 1, and their corresponding special item which

they value at 1, for a total utility of 2.

• 𝑚′
dummy agents who receive their corresponding special

item which they value at 1 and two literal items for a total

utility of 3.

In the above accounting, we use𝑚′
to denote the number of unsat-

isfied clauses. We have the following NSW for our allocation.

NSW(𝑣, 𝑋) = ©­«
∏
𝑖∈𝑁

𝑣𝑖 (𝑋𝑖)
ª®¬

1

4𝑛

=

(
2
4𝑛−2𝑚′

3
𝑚′) 1

4𝑛

≥ 2

(
3

4

)𝜖/3
(1)

The final inequality holds since𝑚 = 4𝑛/3 and𝑚′ ≤ 𝜖𝑚.

(⇐=) For the other direction, we assume that assignments to

𝜙 satisfy at most (1015
1016

+ 𝜖)𝑚 clauses, and upper bound the max

Nash welfare. Consider an arbitrary max Nash welfare allocation 𝑋 .

To upper bound the Nash welfare of 𝑋 , we prove some important

properties about 𝑋 . These properties can be assumed without loss

of generality; that is, these properties are satisfied by at least one

max Nash welfare allocation 𝑋 . At a high level, these properties

show that 𝑋 must be as egalitarian as possible subject to giving

each item to an agent who values it positively.

Property 1. In any MNW allocation 𝑋 , all agents receive at least
one item that gives them a positive utility.

Proof. If the allocation does not do this the Nash welfare is 0.

However, it is easy to find an allocation with positive Nash welfare.

The non-literal agents can get their special item and the literal

agents can share their corresponding clog and literal items so that

they get a positive utility. □

Property 2. In any MNW allocation 𝑋 , all items are allocated to an
agent who values the item positively.

Proof. If an item is allocated to an agent who values it at 0, mov-

ing it to an agent who values it positively strictly Pareto dominates

the allocation 𝑋 , and therefore, improves the Nash welfare. □

At this point, we have fixed the allocation of all the 2𝑛 special

items and the 𝑛 clog items in 𝑋 : special items go to the agents who

value them at 1, and clog items go to the literal agents. This leaves

us only with the 4𝑛 literal items.

For the rest of this proof, we assume 𝑋 is a max Nash welfare

allocation.

Property 3. For each 𝑖 ∈ [𝑛],
(a) if clog𝑖 ∈ 𝑋pos𝑖 , then |𝑋neg𝑖 | = 2.
(b) if clog𝑖 ∈ 𝑋neg𝑖 , then |𝑋pos𝑖 | = 2.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

761

Proof. We only show (a); an analogous argument holds for (b).

We assume that the literal agent pos𝑖 has the clog item clog𝑖 . Of the
remaining items, neg𝑖 has exactly two items they value at 1: the

items 𝑥𝑖 and 𝑥
′
𝑖 . neg𝑖 must get at least one of these items (say 𝑥 ′𝑖);

otherwise they will receive a utility of 0, violating Property 1. If

they do not receive 𝑥𝑖 as well, it must be allocated to either a clause

agent or a dummy agent (Property 2). Let this agent be 𝑧. Since 𝑧 is

a clause or dummy agent, they receive their corresponding special

item as well (Property 2); this means they have a utility of at least

2. Since the agent neg𝑖 has a utility of exactly 1, moving the item 𝑥𝑖
from 𝑎 to neg𝑖 results in a weak improvement in Nash welfare. □

For the next property, we derive a truth assignment 𝜎 for the

2P2N-3SAT instance 𝜙 from the allocation 𝑋 . If clog𝑖 is allocated to

pos𝑖 then 𝜎 (𝑥𝑖) = 1 otherwise 𝜎 (𝑥𝑖) = 0. Recall that all assignments

to 𝜙 satisfy at most

(
1015

1016
+ 𝜖

)
fraction of the clauses, and so 𝜎

satisfies some, but not all, of the clauses.

Property 4. In 𝑋 , any clause agent 𝐶𝑖 that is not satisfied by the
assignment 𝜎 receives a utility of 1.

Proof. From Property 3, all the items that correspond to literals

with sign opposite to the assignment get allocated to the literal

agents. That is, if 𝜎 (𝑥𝑖) = 1, then items 𝑥𝑖 and 𝑥
′
𝑖 are allocated to

neg𝑖 .
Any clause agent 𝐶𝑖 receives their corresponding special item

(Property 2). This gives the clause agent a utility of at least one. We

show that any clause agent𝐶𝑖 that is not satisfied by the assignment

𝜎 does not receive any other item.

This follows from the fact that all the items which are positively

valued by 𝐶𝑖 correspond to literal items with sign opposite to the

assignment. All such literal items are allocated to literal agents.

Therefore, any unsatisfied clause agent 𝐶𝑖 receives exactly one

item. □

Assume there are𝑚′
unsatisfied clauses in the instance. From

Property 4, at least𝑚′
clause agents receive a utility of exactly 1.

The maximum utilitarian social welfare possible in our constructed

instance is 8𝑛. Conditioned on at least𝑚′
agents receiving a utility

of 1, the max Nash welfare possible occurs when the remaining

possible utility is divided equally among the other agents. That is,

the remaining 4𝑛 −𝑚′
agents receive a utility of

8𝑛−𝑚′
4𝑛−𝑚′ . This may

not be possible to achieve but serves as an upper bound on the

Nash welfare of any allocation in this instance. We can now bound

the Nash welfare of any allocation 𝑋 in this instance as:

NSW(𝑣, 𝑋) = ©­«
∏
𝑖∈𝑁

𝑣𝑖 (𝑋𝑖)
ª®¬

1

4𝑛

≤
(
8𝑛 −𝑚′

4𝑛 −𝑚′

) 4𝑛−𝑚′
4𝑛

≤

2 −

(
1

1016
− 𝜖

)
1

3

1 −
(

1

1016
− 𝜖

)
1

3


1−

(
1

1016
−𝜖

)
1

3

.

(2)

The last inequality follows from using

𝑚′ ≥
(

1

1016

− 𝜖

)
𝑚 =

(
1

1016

− 𝜖

)
4𝑛

3

.

What we have shown is that it is NP-hard to decide if an instance

has max Nash welfare at least (1), or if all allocations have Nash

welfare atmost (2). Dividing these two values gives us a lower bound

on how well we can approximate Nash welfare. Setting 𝜖 = 10
−6
,

the approximation lower bound this gives us is 1.00006. □

To generalize to {𝑎, 𝑏, 𝑐} valuations we retain the same high

level reduction but the construction is more complex to account for

the different ways agents can receive utility. Specifically, we must

account for the fact that agents could receive items at value 𝑎 when

𝑎 > 0. We take care of this case by utilizing different kinds of local

transfers (similar to the argument in Property 3) to give allocations

more structure.

Recently, Jain and Vaish [32] studied the problem of maximizing

Nash welfare under two sided preferences and show that the prob-

lem is NP-hard under {0, 1, 2} valuations and capacity constraints.

Since fair allocation is a special case of their problem, Theorem 3.1

presents an improved hardness result for their problem since we

showAPX-hardness and eliminate the need for capacity constraints.

Our next result resolves the case when 2𝑏 < 𝑐 . It may be possible

to use a similar 2P2N-3SAT construction in this case as well but our

proof uses a much simpler vertex cover based reduction. Specifically,

we reduce from the following problem.

Lemma 3.4. There exists a constant 𝛾 ∈ (0, 1) such that, given a
3-regular graph𝐺 and an integer 𝑘 , it is NP-hard to decide if𝐺 has a
vertex cover of size 𝑘 that covers all edges or all subsets of nodes of
size 𝑘 cover at most a (1 − 𝛾) fraction of the edges of 𝐺 .

This follows from applying the arguments of Petrank [37] to the

min vertex cover hardness result of Chlebík and Chlebíková [18].

Theorem 3.5. When agents have {𝑎, 𝑏, 𝑐}-valuations with 0 ≤
𝑎 < 𝑏 < 𝑐 and 2𝑏 < 𝑐 , computing an MNW allocation is APX-hard.

Proof. We reduce from Lemma 3.4. We are given a 3-regular

graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑘 . Note that since the graph is

3-regular, |𝐸 | = 3 |𝑉 |
2

, and 𝑘 must be at least
|𝑉 |
2

for this problem to

be non-trivial. This is because we need at least
|𝑉 |
2

nodes to cover

3 |𝑉 |
2

edges in a 3-regular graph.

We construct a fair allocation instance with 3𝑘 − 0.5|𝑉 | agents
and 7𝑘 − 1.5|𝑉 | items.

The 7𝑘 − 1.5|𝑉 | items are defined as follows:

(a) For each each edge 𝑒𝑖 𝑗 ∈ 𝐸 we have an item 𝑒𝑖 𝑗 ,

(b) We have 𝑘 vertex cover items 𝑐1, . . . , 𝑐𝑘 , and

(c) We have 6𝑘 − 3|𝑉 | special items.

The 3𝑘 − 0.5|𝑉 | agents have valuations defined as follows:

Node Agents: For each node 𝑖 ∈ 𝑉 , we have an agent who values

the edges incident on it at 𝑏 and

Dummies: We have 3𝑘 − 1.5|𝑉 | dummy agents, who value edge

items at 𝑏, and exactly two special items each at 𝑏. Since there are

6𝑘 − 3|𝑉 | special items, we can ensure that no two dummy agents

value the same special item at 𝑏.

The vertex cover items are valued at 𝑐 by both the node and dummy

agents. All unmentioned values are at 𝑎.

We now prove correctness of our reduction.

Assume the graph admits a vertex cover (say 𝑆) of size 𝑘 . We

allocate the 𝑘 vertex cover items to the agents in 𝑆 . All other node

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

762

agents receive the edge items corresponding to the three edges they

are incident on. This is feasible since at least one endpoint of each

edge belongs to the vertex cover 𝑆 .

At this point, we only have to allocate the special items, and

perhaps some edge items (if both endpoints of some edge belong to

the vertex cover 𝑆). We allocate the remaining items to the dummy

agents. Each dummy agent receives their two special items and a

single unassigned edge item; this ensures all 7𝑘 − 1.5|𝑉 | items are

assigned.

The 𝑘 agents in the vertex cover 𝑆 have a utility of 𝑐 , and the

remaining |𝑉 | − 𝑘 node agents have a utility of 3𝑏. The 3𝑘 − 1.5|𝑉 |
dummy agents have a utility of 3𝑏 as well. Thus, the Nash welfare

of this allocation is

NSW(𝑣, 𝑋) =
(
𝑐𝑘 (3𝑏) (2𝑘−0.5 |𝑉 |)

) 1

3𝑘−0.5|𝑉 | (NSW+)

For the other direction, assume that no subset of nodes of size 𝑘

covers more than (1 − 𝛾) |𝐸 | edges. For this case, we slightly tweak

the valuation function to make our analysis easier. Specifically, we

change the valuation functions such that all valuations at 𝑎 are

replaced with 𝑎′ such that 𝑎′ = max{𝑎, 2𝑏2𝑐 , 2𝑏
3
}. 𝑎′ may no longer

be an integer but it is guaranteed to be less than 𝑏 since 2𝑏 < 𝑐 .

We refer to this new valuation profile using 𝑣 ′. Crucially, since we
only increased agent valuations, we must have, for any allocation

𝑋 , NSW(𝑣, 𝑋) ≤ NSW(𝑣 ′, 𝑋). Thus, any upper bound on the max

Nash welfare under the valuations 𝑣 ′ also bounds the max Nash

welfare under the valuations 𝑣 . To upper bound the Nash welfare,

we examine the MNW allocation 𝑋 .

Lemma 3.6. There exists an MNW allocation 𝑋 with the following
properties.

(1) No agent receives more than one vertex cover item.
(2) An agent who receives a vertex cover item does not receive any

other item in 𝑋 .
(3) No agent receives four or more items.

Proof. We separately consider each property of 𝑋 stated in the

lemma.

(1) If an agent has two vertex cover items, there must be some

agent 𝑗 who does not receive a vertex cover item and receives

at most two items. Moving one of the vertex cover items to

agent 𝑗 ’s bundle strictly improves Nash welfare. This follows

from the fact that 𝑐 > 2𝑏 ≥ 𝑣 ′
𝑗
(𝑋 𝑗).

(2) If an agent 𝑖 with a vertex cover item 𝑐𝑟 has another item

(say 𝑜), then there must be an agent 𝑗 without a vertex cover

item that has at most two items. Transferring 𝑜 to agent 𝑗

weakly improves the Nash welfare. This is because

𝑣 ′
𝑖
(𝑋𝑖) − 𝑣 ′

𝑖
(𝑜)

𝑣 ′
𝑖
(𝑋𝑖)

≥ 𝑐

𝑏 + 𝑐 ≥ 2𝑏

𝑎′ + 2𝑏
≥

𝑣 ′
𝑗
(𝑋 𝑗)

𝑣 ′
𝑗
(𝑋 𝑗) + 𝑣 ′

𝑗
(𝑜)

The second inequality follows by plugging in 𝑐 ≥ 2𝑏2

𝑎′ .

(3) If an agent has four or more items, we can transfer the least

valued item (out of the four ormore) to an agent who receives

at most two items and no vertex cover items. Crucially, this

uses the fact that 𝑎′ ≥ 2𝑏
3
.

Note that the transfers to show properties 2 and 3 only weakly

improve Nash welfare, but these transfers are made without vio-

lating the other properties; additionally, these transfers need to be

made only a finite number of times to ensure the property holds.

So there must exist an MNW allocation where all three properties

are satisfied. □

The three properties stated in Lemma 3.6 offer us some structure.

Each agent in the max Nash welfare allocation𝑋 either has a vertex

cover item or exactly three other items.

Next, we lower bound the number of agents who receive three

items but do not receive a utility of 3𝑏. Consider the subset of nodes

consisting of the agents who receive a vertex cover item. This subset

of nodes, by assumption, must not cover at least 𝛾 |𝐸 | edges. Each of

the uncovered edges represents an edge item that both endpoints

value at 𝑏, but can only be given to one of them. Thus, one of the

uncovered edge’s endpoints must receive a utility of less than 3𝑏.

If we do this for all uncovered edges, we get that there are at least

𝛾 |𝐸 |
3

agents whose utility is less than 3𝑏. We divide by three since

𝐺 is 3-regular, so each node is counted at most thrice.

These
𝛾 |𝐸 |
3

agents receive a utility of at most 2𝑏 + 𝑎′. All other
agents receive a utility of either 3𝑏 or 𝑐 . Note that receiving a utility

of more than 3𝑏 is impossible with only three items, as the only

items valued at 𝑐 are the vertex cover items. This upper bounds

the Nash welfare of the allocation 𝑋 under 𝑣 ′. Assuming𝑚′
agents

do not receive a vertex cover item or a utility of 3𝑏, NSW(𝑣 ′, 𝑋) is
upper bounded by(

𝑐𝑘 (3𝑏)2𝑘−0.5 |𝑉 |−𝑚′
(2𝑏 + 𝑎′)𝑚

′) 1

3𝑘−0.5|𝑉 |

≤
©­­«𝑐𝑘 (3𝑏)2𝑘−0.5 |𝑉 |

(
2𝑏 + 𝑎′

3𝑏

) 𝛾 |𝐸 |
3 ª®®¬

1

3𝑘−0.5|𝑉 |

(NSW−)

The inequality holds since 𝑚′ ≥ 𝛾 |𝐸 |
3

. We have shown that it is

NP-hard to decide whether an allocation has Nash welfare at least

NSW
+
or whether all allocations have a Nash welfare of at most

NSW
−
. Taking the ratio of the two gives us the following approxi-

mation lower bound

NSW
+

NSW
− =

©­­«
(

3𝑏

2𝑏 + 𝑎′

) 𝛾 |𝐸 |
3 ª®®¬

1

3𝑘−0.5|𝑉 |

≥
(

3𝑏

2𝑏 + 𝑎′

) 𝛾

5

The final inequality follows since 𝑘 ≤ |𝑉 | and |𝐸 | = 3 |𝑉 |/2. Since
𝑎′ < 𝑏, this is a positive constant, and we are done. □

Lee [33] shows APX-hardness of the MNW problem for general

additive valuations using the same min vertex cover problem [18],

but their reduced instance is more general and not restricted to

three fixed values 𝑎, 𝑏, and 𝑐 . It is also worth noting that our proof

leads to a constant factor lower bound of 1.00013 which improves

on their constant factor lower bound of 1.00008.

Corollary 3.7. Assume agents have {0, 1, 3}-valuations. It is impos-
sible to approximate MNW by a factor smaller than 1.00013 unless
P = NP.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

763

The vertex cover based proof technique also shows that comput-

ing max Nash welfare allocations is APX-hard even when agents

have {3, 𝑐} valuations where 𝑐 > 3 and is not divisible by 3; this

resolves an open question posed by Akrami et al. [1].

Proposition 3.8. When agents have {3, 𝑐}-valuations with 𝑐 > 3

and 𝑐 not divisible by 3, computing an MNW allocation is APX-hard.

We also show that the techniques used in this section can also

be used to show APX-hardness for computing MEW allocations,

when all items have non-negative value.

Theorem 3.9. When agents have {𝑎, 𝑏, 𝑐}-valuations with 0 ≤
𝑎 < 𝑏 < 𝑐 , computing an MEW allocation is APX-hard.

Note that MEW allocations can be defined even when agents

have negative values for the items; the above proof can be used to

show NP-hardness for computing an MEW allocation even when 𝑎

is negative.

4 MIXED MANNA
Next, we consider mixed manna, i.e. the case where agents have

{𝑎, 𝑏, 𝑐}-valuations with 𝑎 < 𝑏 ≤ 0 < 𝑐 . Note that when two of 𝑎, 𝑏

and 𝑐 are positive, the problem of computing MEW allocations is

NP-hard (Theorem 3.9). For the cases when 𝑎 and 𝑏 are negative,

we have the following hardness results.

Theorem 4.1. When agents have {𝑎, 𝑐}-valuations with 𝑎 < 0 < 𝑐

and |𝑎 | > |𝑐 |, computing an MEW allocation is NP-hard.

The above result follows from reductions using the decision

version of the 2P2N-3SAT problem. We also have the following

hardness result from Cousins et al. [21].

Theorem 4.2 ([21]). When agents have {𝑎, 𝑐}-valuations with
(i) 𝑎 < 0 < 𝑐 , (ii) |𝑎 | ≥ 3, and (iii) |𝑎 | and |𝑐 | are coprime, computing
an MEW allocation is NP-hard.

We can use these results to show the following, again using the

2P2N-3SAT problem:

Theorem 4.3. When agents have {𝑎, 𝑏, 𝑐}-valuations with 𝑎 <

𝑏 < 0 < 𝑐 , computing an MEW allocation is NP-hard.

Combining Theorems 4.1 to 4.3 shows that the only case where

one could hope to compute an MEW allocation is when agents have

{−2, 0, 𝑐}-valuations. We could not show a hardness result for this

case and conjecture that it may admit efficient algorithms.

Conjecture 4.4. There exists an efficient algorithm for computing
MEW allocations when agents have {−2, 0, 𝑐}-valuations.

For this case of {−1, 0, 𝑐}-valuations (with 𝑐 > 1), an efficient

algorithm to compute MEW allocations is known [21]. The algo-

rithmic results of Cousins et al. [21] apply to a broader class of

valuations they define as order-neutral submodular valuations. This
is a more general class than additive valuations but a strict sub-

set of submodular valuations. This restriction raises the natural

question of whether the restriction from submodular valuations to

order-neutral submodular valuations is necessary. The answer to

this question turns out to be quite surprising. However, before we

present it, we must first formally define 𝐴-submodular valuations

and order neutrality.

Definition 4.5 (𝐴-submodular). Given a set of integers 𝐴, A valua-

tion function 𝑣𝑖 is 𝐴-submodular if: (a) 𝑣𝑖 (∅) = 0, (b) for any 𝑜 ∈ 𝑂

and 𝑆 ⊆ 𝑂 \ {𝑜}, 𝑣𝑖 (𝑆 ∪ {𝑜}) − 𝑣𝑖 (𝑆) ∈ 𝐴, and (c) for any 𝑜 ∈ 𝑂

and 𝑆 ⊆ 𝑇 ⊆ 𝑂 \ {𝑜}, 𝑣𝑖 (𝑆 ∪ {𝑜}) − 𝑣𝑖 (𝑆) ≥ 𝑣𝑖 (𝑇 ∪ {𝑜}) − 𝑣𝑖 (𝑇).
In simple words, the valuation function is submodular, and the

marginal gains are restricted to values in 𝐴.

Definition 4.6 (Order Neutrality). A submodular function 𝑣𝑖 is

order neutral if for all subsets 𝑆 ⊆ 𝑂 and two permutations of

the items in 𝑆 , 𝜋, 𝜋 ′
: [|𝑆 |] → 𝑆 , the multi-set {𝑣𝑖 (

⋃
𝑗 ∈[𝑘] 𝜋 (𝑗)) −

𝑣𝑖 (
⋃

𝑗 ∈[𝑘−1] 𝜋 (𝑗))}𝑘∈[|𝑆 |] is identical to themulti-set {𝑣𝑖 (
⋃

𝑗 ∈[𝑘] 𝜋
′(𝑗))−

𝑣𝑖 (
⋃

𝑗 ∈[𝑘−1] 𝜋
′(𝑗))}𝑘∈[|𝑆 |] .

In simple words, the order in which the items are added to the

set does not affect the marginal gains of the set of items.

We now present our results. We first show that when agents have

{−1, 0, 1}-submodular valuations, computing an MEW allocation is

intractable.

Theorem 4.7. When agents have {−1, 0, 1}-submodular valua-
tions, computing an MEW allocation is NP-hard.

Proof. We reduce from the NP-complete restricted exact 3 cover

problem [30].

Name: Restricted Exact 3 Cover (RX3C)

Given: A finite set of elements𝑈 = {1, 2, . . . , 3𝑘}, and a collection

of 3-element subsets of 𝑈 (denoted by F) such that each

element in𝑈 appears in exactly 3 subsets in F .

Question: Does there exist a set of triples F ′ ⊂ F such that every

element in𝑈 occurs in exactly one subset in F ′
?

Note that |F | = 3𝑘 since each of the 3𝑘 elements in 𝑈 appear in

exactly 3 sets in F . Given an instance of RX3C, we construct a fair

allocation instance with 3𝑘 agents and 9𝑘 items.

The 9𝑘 items are defined as follows: For each element 𝑖 ∈ 𝑈 , we

have two items 𝑖 and 𝑖 ′ corresponding to the element. We also have

𝑘 cover items and 2𝑘 padding items.

The 3𝑘 agents are defined as follows: For each subset 𝐹 = {𝑖, 𝑗, 𝑘}
in F , we have an agent who has the valuation function 𝑣𝐹 . We

describe this valuation function in terms of its marginal gains to

make it clear that it is submodular. If the bundle does not contain a

cover item, the first item corresponding to the elements 𝑖 , 𝑗 , and 𝑘

added to the bundle have a marginal value of 0. The second item

adds amarginal value of−1. So 𝑣𝐹 ({𝑖, 𝑗, 𝑘}) = 0 but 𝑣𝐹 ({𝑖, 𝑖 ′, 𝑗, 𝑘}) =
−1. This marginal gain of 0 occurs only if the bundle does not

contain a cover item; otherwise the marginal value is −1.
The cover items add a marginal value of 1 when added to an

empty bundle. Otherwise they add amarginal value of 0. All padding

items add a marginal value of 1, irrespective of the bundle they are

added to. All other marginal values are −1.
If the original RX3C instance admits an exact cover, we can con-

struct an allocation with egalitarian welfare 1. If the cover consists

of the set of triples F ′ ⊆ F , we give all the agents in F ′
cover

items, and all the agents outside F ′
a padding item along with a

copy of each element the subset contains.

If the original RX3C instance does not admit an exact cover,

then assume for contradiction that an allocation 𝑋 achieves an

egalitarian welfare of at least 1. Since there are only 3𝑘 items that

provide a marginal value of 1, each agent must receive exactly one

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

764

of these items at the marginal value of 1 such that no other item in

their bundle provides a marginal value of −1.
This implies the set of agents who receive a cover item must not

receive any other item. Let this set of agents be F ′
, and since there

are 𝑘 cover items we know |F ′ | = 𝑘 . Since F ′
is not an exact cover,

there must be at least one element 𝑖 present in two subsets in F ′
.

This implies at least one of the items corresponding to the element 𝑖

must be allocated at a marginal value of −1. This is a contradiction,
giving us our required separation. □

The proof of Theorem 4.7 (or at the very least, this proof tech-

nique) does not extend beyond {−1, 0, 1}-submodular valuations to

{−1, 0, 𝑐}-submodular valuations. It turns out, rather surprisingly,

that MEW allocations can be computed efficiently when agents

have {−1, 0, 𝑐}-submodular valuations with 𝑐 ≥ 2. We show this by

proving that all {−1, 0, 𝑐}-submodular valuations are order neutral,

thereby showing they fall under the class of valuations for which

Cousins et al. [21] present an efficient algorithm.

Proposition 4.8. When 𝑐 ≥ 2, all {−1, 0, 𝑐}-submodular valuations
are order neutral.

Proof. Let 𝑣𝑖 be a {−1, 0, 𝑐} submodular valuation for 𝑐 ≥ 2.

Consider some bundle, some order 𝜋 over the items in the bundle,

and some items 𝑜, 𝑜 ′ which appear consecutively in the order 𝜋 .

That is, 𝜋 consists of the set of items 𝑆 (in some order) followed

by the items 𝑜 and 𝑜 ′ followed by another set of items 𝑆 ′ (in some

order).

If we swap 𝑜 and 𝑜 ′, exactly two marginal values change. More

specifically, 𝑣𝑖 (𝑆 + 𝑜) − 𝑣𝑖 (𝑆) and 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜) become

𝑣𝑖 (𝑆 + 𝑜 ′) − 𝑣𝑖 (𝑆) and 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜 ′). The value of the
bundle remains the same no matter which order we use, so we must

have (
𝑣𝑖 (𝑆 + 𝑜 ′) − 𝑣𝑖 (𝑆)

)
+
(
𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜 ′)

)
=
(
𝑣𝑖 (𝑆 + 𝑜) − 𝑣𝑖 (𝑆)

)
+
(
𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜)

)
The statement follows from noting that when 𝑐 ≥ 2, every value

of 𝑣𝑖 (𝑆 +𝑜 +𝑜 ′) − 𝑣𝑖 (𝑆) has a unique decomposition into two values.

More specifically, the value of 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆) can only be

−2,−1, 0, 𝑐 − 1, 𝑐 or 2𝑐 . In each case the marginal gains of the two

items are encoded by exactly the same two values. For example,

the only possible way 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆) = 𝑐 − 1 is if one of the

items provides a value of 𝑐 and the other provides a value of −1;
if it is −2 then both items offer a marginal gain of −1. Therefore,
the set {𝑣𝑖 (𝑆 + 𝑜) − 𝑣𝑖 (𝑆), 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜)} must be exactly

equivalent to the set {𝑣𝑖 (𝑆 + 𝑜 ′) − 𝑣𝑖 (𝑆), 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜 ′)}
if they sum up to the same value. This implies that swapping two

consecutive elements in an order retains order neutrality.

Since we can move from any order 𝜋 to any order 𝜋 ′
using

consecutive element swaps (as is done in bubble sort), 𝑣𝑖 must be

order neutral.

This proves the statement. We note interestingly that this ar-

gument does not hold for {−1, 0, 1} submodular valuations, since

{−1, 1} and the set {0, 0} have the same sum. So if {𝑣𝑖 (𝑆 + 𝑜) −
𝑣𝑖 (𝑆), 𝑣𝑖 (𝑆 + 𝑜 + 𝑜 ′) − 𝑣𝑖 (𝑆 + 𝑜)} = {−1, 1}, swapping the two items

could lead to the set of marginal gains {0, 0}. We use this specific

property to show NP-hardness for {−1, 0, 1} valuations in Theo-

rem 4.7. □

5 CONCLUSIONS AND FUTUREWORK
In this work, we almost completely characterize the complexity of

computing max Nash welfare and max egalitarian welfare alloca-

tions under ternary valuations. Rather unfortunately, we show that

existing algorithms that work under binary and bivalued valuations

cannot be generalized beyond bivalued valuations. Specifically, our

results highlight a fundamental limitation of the path augmenta-

tion technique used heavily to design algorithms for binary and

bivalued valuations [1, 9, 12, 13, 39, 40].

There are two natural questions left for future work. The first

is the complexity of computing MEW allocations under {−2, 0, 𝑐}
valuations. Resolving this question would complete our character-

ization. The second question is to gain a further understanding

of the increase in hardness as we generalize beyond additive and

into submodular valuations. We know from Theorem 4.7 that some

problems become significantly harder as we move from additive to

submodular valuations but the results of Babaioff et al. [7] suggests

that some problems still remain easy. There are two specific cases

whose complexity still remain open questions. The first is comput-

ing MEW allocations under {−2, 0, 𝑐} submodular valuations and

the second is computing MNW allocations under {2, 𝑐} submodular

valuations. Resolving these two cases would result in a complete

characterization of max Nash welfare and max egalitarian welfare

allocations under submodular valuations as well.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for use-

ful feedback. Research done while Fitzsimmons was on sabbatical

visiting the University of Massachusetts, Amherst. Viswanathan

and Zick are supported by an NSF grant RI-2327057. Fitzsimmons

is supported in part by NSF grant CCF-2421978.

REFERENCES
[1] Hannaneh Akrami, Bhaskar Ray Chaudhury, Martin Hoefer, Kurt Mehlhorn,

Marco Schmalhofer, Golnoosh Shahkarami, Giovanna Varricchio, Quentin Ver-

mande, and Ernest vanWijland. 2022. Maximizing Nash Social Welfare in 2-Value

Instances. In Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI). 4760–4767.

[2] Hannaneh Akrami, Bhaskar Ray Chaudhury, Martin Hoefer, Kurt Mehlhorn,

Marco Schmalhofer, Golnoosh Shahkarami, Giovanna Varricchio, Quentin Ver-

mande, and Ernest van Wijland. 2022. Maximizing Nash Social Welfare in 2-Value
Instances: The Half-Integer Case. Tech. Rep. arXiv:2207.10949 [cs.GT]. arXiv.org.
https://doi.org/10.48550/ARXIV.2207.10949

[3] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li,

Hervé Moulin, Alexandros A. Voudouris, and Xiaowei Wu. 2023. Fair division of

indivisible goods: Recent progress and open questions. Artificial Intelligence 322
(2023), 103965.

[4] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hol-

lender, and Alexandros A. Voudouris. 2021. Maximum Nash welfare and other

stories about EFX. Theoretical Computer Science 863 (April 2021), 69–85.
[5] Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. 2017. Combina-

torial Algorithm for Restricted Max-Min Fair Allocation. ACM Transactions on
Algorithms 13, 3, Article 37 (May 2017), 28 pages.

[6] Haris Aziz, Jeremy Lindsay, Angus Ritossa, and Mashbat Suzuki. 2023. Fair

Allocation of Two Types of Chores. In Proceedings of the 22nd International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). 143–151.

[7] Moshe Babaioff, Tomer Ezra, and Uriel Feige. 2021. Fair and Truthful Mechanisms

for Dichotomous Valuations. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI). 5119–5126.

[8] Nikhil Bansal and Maxim Sviridenko. 2006. The Santa Claus Problem. In Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing
(STOC) (Seattle, WA, USA). 31–40.

[9] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Greedy

Algorithms for Maximizing Nash Social Welfare. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

765

https://doi.org/10.48550/ARXIV.2207.10949

7–13.

[10] Siddharth Barman, Sanath Kumar Krishna Murthy, and Rohit Vaish. 2018. Find-

ing Fair and Efficient Allocations. Proceedings of the 19th ACM Conference on
Economics and Computation (EC) (2018), 557–574.

[11] Siddharth Barman, Vishnu Narayan, and Paritosh Verma. 2023. Fair Chore Divi-

sion under Binary Supermodular Costs. In Proceedings of the 22nd International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). 2863–2865.

[12] Siddharth Barman and Paritosh Verma. 2021. Existence and Computation of

Maximin Fair Allocations Under Matroid-Rank Valuations. In Proceedings of the
20th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). 169–177.

[13] Siddharth Barman and Paritosh Verma. 2022. Truthful and Fair Mechanisms for

Matroid-Rank Valuations. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI). 4801–4808.

[14] Piotr Berman, Marek Karpinski, and Alexander Scott. 2003. Approximation

Hardness of Short Symmetric Instances of MAX-3SAT. Electronic Colloquium on
Computational Complexity TR03 (2003).

[15] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg

Shah, and Junxing Wang. 2016. The Unreasonable Fairness of Maximum Nash

Welfare. In Proceedings of the 17th ACM Conference on Economics and Computation
(EC). 305–322.

[16] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. 2009. On Allocating

Goods to Maximize Fairness. In Proceedings of the 50th Symposium on Foundations
of Computer Science (FOCS). 107–116.

[17] Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. 2015. On (1, 𝜖)-Restricted
Assignment Makespan Minimization. In Proceedings of the 26th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 1087–1101.

[18] Miroslav Chlebík and Janka Chlebíková. 2006. Complexity of approximating

bounded variants of optimization problems. Theoretical Computer Science 354, 3
(2006), 320–338.

[19] Richard Cole and Vasilis Gkatzelis. 2015. Approximating the Nash Social Welfare

with Indivisible Items. In Proceedings of the 47th Annual ACM Symposium on
Theory of Computing (STOC). 371–380.

[20] Cyrus Cousins, Vignesh Viswanathan, and Yair Zick. 2023. Dividing Good and

Great Items Among Agents with Bivalued Submodular Valuations. In Proceedings
of the 19th Conference on Web and Internet Economics (WINE). 225–241.

[21] Cyrus Cousins, Vignesh Viswanathan, and Yair Zick. 2023. The Good, the Bad

and the Submodular: Fairly Allocating Mixed Manna Under Order-Neutral Sub-

modular Preferences. In Proceedings of the 19th Conference on Web and Internet
Economics (WINE). 207–224.

[22] Shahar Dobzinski, Wenzheng Li, Aviad Rubinstein, and Jan Vondrák. 2024. A

Constant-Factor Approximation for Nash Social Welfare with Subadditive Valua-

tions. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC). 467–478.

[23] Soroush Ebadian, Dominik Peters, and Nisarg Shah. 2022. How to Fairly Allocate

Easy and Difficult Chores. In Proceedings of the 21st International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 372–380.

[24] Zack Fitzsimmons, Vignesh Viswanathan, and Yair Zick. 2024. On the Hardness

of Fair Allocation under Ternary Valuations. arXiv:2403.00943 [cs.GT] https:

//arxiv.org/abs/2403.00943

[25] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2018. Approximating the nash

social welfare with budget-additive valuations. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 2326–2340.

[26] Jugal Garg, Edin Husić, Wenzheng Li, László A. Végh, and Jan Vondrák. 2023.

Approximating Nash Social Welfare by Matching and Local Search. In Proceedings
of the 55th Annual ACM Symposium on Theory of Computing (STOC). 1298–1310.

[27] Jugal Garg, Edin Husić, and László A. Végh. 2021. Approximating Nash Social

Welfare under Rado Valuations. In Proceedings of the 53rd Annual ACM Symposium
on Theory of Computing (STOC). 1412–1425.

[28] Jugal Garg and Aniket Murhekar. 2021. Computing Fair and Efficient Allocations

with Few Utility Values. In Proceedings of the 14th International Symposium on
Algorithmic Game Theory (SAGT). 345–359.

[29] Jugal Garg, Aniket Murhekar, and John Qin. 2022. Fair and efficient allocations

of chores under bivalued preferences. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI). 5043–5050.

[30] T. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster Distance.

Theoretical Computer Science 38 (1985), 293–306.
[31] Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. 2020.

Fair Division with Binary Valuations: One Rule to Rule Them All. In Proceedings
of the 16th Conference on Web and Internet Economics (WINE). 370–383.

[32] Pallavi Jain and Rohit Vaish. 2024. Maximizing Nash Social Welfare under

Two-Sided Preferences. In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI).

[33] Euiwoong Lee. 2017. APX-Hardness of Maximizing Nash Social Welfare with

Indivisible Items. Inform. Process. Lett. 22 (June 2017), 17–20.
[34] J. K. Lenstra, D. B. Shmoys, and É. Tardos. 1990. Approximation Algorithms

for Scheduling Unrelated Parallel Machines. Math. Program. 46, 3 (Feb. 1990),
259–271.

[35] Wenzheng Li and Jan Vondrak. 2021. A constant-factor approximation algorithm

for Nash Social Welfare with submodular valuations. In Proceedings of the 62nd
Symposium on Foundations of Computer Science (FOCS). 25–36.

[36] Christos H. Papadimitriou and Mihalis Yannakakis. 1991. Optimization, approxi-

mation, and complexity classes. J. Comput. System Sci. 43, 3 (1991), 425–440.
[37] Erez Petrank. 1994. The hardness of approximation: Gap location. Computational

Complexity 4 (June 1994), 133–157.

[38] Benjamin Plaut and Tim Roughgarden. 2020. Almost envy-freeness with general

valuations. SIAM Journal on Discrete Mathematics 34, 2 (2020), 1039–1068.
[39] Vignesh Viswanathan and Yair Zick. 2023. A General Framework for Fair Alloca-

tion under Matroid Rank Valuations. In Proceedings of the 24th ACM Conference
on Economics and Computation (EC). 1129–1152.

[40] Vignesh Viswanathan and Yair Zick. 2023. Yankee Swap: a Fast and Simple

Fair Allocation Mechanism for Matroid Rank Valuations. In Proceedings of the
22nd International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). 179–187.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

766

https://arxiv.org/abs/2403.00943
https://arxiv.org/abs/2403.00943
https://arxiv.org/abs/2403.00943

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Fairness Notions (or Objectives)
	2.2 Approximation Algorithms and APX-hardness

	3 The All Goods Case: 0<=a<b<c
	4 Mixed Manna
	5 Conclusions and Future Work
	References

