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ABSTRACT
Aggregating preferences of multiple entities is a problem that has

been studied in various models of preference representation, in-

cluding Conditional Preference Networks (CP-nets). Since optimal

aggregation of CP-nets (for a specific natural choice of objective

function) is known to require exponential time, efficient approxi-

mation algorithms have been proposed in the literature, yet with

very limited results on the corresponding approximation ratio. In

this paper, we show that a very simple and efficient method yields

a
4

3
-approximation for aggregating CP-nets from a proper superset

of the set of all tree CP-nets—a well-studied class of CP-nets of

relevance to many applications.
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1 INTRODUCTION
Preference aggregation is the task of finding the best collective pref-

erence model from individual preference models, or, in some cases,

simply determining the best collective outcome. The definition of

“best" typically depends on the specific application. Preference ag-

gregation is crucial in areas such as recommender systems, social

choice theory, and multi-agent systems [19]. Individual preferences

can be represented using various models, from complete/partial or-

derings over outcomes [11, 12, 19] to more concise hypercube-based

models [14, 32]. In this paper, we study preference aggregation us-

ing Conditional Preference Networks (CP-nets) [10], a graphical

representation model which uses conditional dependencies and

the Ceteris Paribus interpretation to compactly encode preferences

in combinatorial domains. With CP-net semantics, outcomes are
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Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

represented as vectors of attribute-value pairs. Through conditional

dependencies, a CP-net can represent preferences using compact

statements that apply to a large number of outcome pairs. For

example, consider a set of attributes 𝑉 = {𝑉1,𝑉2,𝑉3,𝑉4} and the

preference statement “Given 𝑉1 is assigned 0, it is preferred that

𝑉4 be assigned 0 over being assigned 1". Given this information,

for any pair of outcomes with 𝑉1 assigned 0, one would prefer the

outcome with 𝑉4 also assigned 0, all else being equal.

The setting that we target is one in which the preferences of an

entity (i.e., of an individual user or of a group of users) are repre-

sented in the form of a CP-net. Assuming multiple such CP-nets are

given as inputs (representing preferences of multiple entities), the

goal is to aggregate these CP-nets into a single output CP-net that

best represents a form of consensus among the entities’ preferences.

To measure the dissensus of the output CP-net with the given

input CP-nets, we adopt an objective function from the literature

[5]. Since this dissensus function cannot in general be minimized

in polynomial time [5], efficient approximation algorithms for min-

imizing dissensus were introduced, and were shown to yield an

approximation ratio of
4

3
for very special classes of input instances

[5, 6]. For general input instances, a standard argument shows that

an approximation ratio of at most 2 can always be achieved by using

as aggregate CP-net any of the input CP-nets whose dissensus value
is smallest [6]. A core open question is whether the approximation

ratio of
4

3
, which was obtained for special input instances, can also

be obtained for every input instance, by an efficient algorithm.

We make notable progress towards answering this question.

Our main result states that a very simple and efficient algorithm

(proposed by Ali et al. [6]) obtains an approximation ratio at most

4

3
for input instances consisting of CP-nets whose graphs have

maximum in-degree 1. This includes the class of all tree CP-nets

(CP-nets whose underlying graphical structure is a tree).

Tree CP-nets represent preference relations in which the prefer-

ence for one attribute depends on the value of at most one other

attribute. It has been argued that tree CP-nets are highly relevant

for applications, since most user preferences are not conditioned

on the value of a large number of attributes [22]. This makes tree

CP-nets expressive enough for many practical purposes, while be-

ing easier to handle algorithmically in many contexts. Hence, prior

research produced results focused specifically on tree CP-nets in

various contexts, such as, for instance, learning of CP-nets [2–4, 7].
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Our main result substantially generalizes the result by Ali et

al. [6], which proved an approximation ratio of
4

3
to be efficiently

obtainable for a small and not very expressive subclass I of input

instances. In addition, we show that the approximation ratio for

this class I (using the same efficient method proposed by Ali et

al.) converges to 1, as the number of attributes of the underlying

combinatorial domain increases.

We further provide new results on the structural properties of

input instances for which Ali et al.’s method obtains the worst

approximation ratios. The insights obtained from these results and

their corresponding proof techniques may be of value for further

research into approximation algorithms for preference aggregation.

2 RELATEDWORK
Early studies on preference aggregation focus on the case where

individual preferences are given as a list of outcome pairs, and

aim to find an ordering minimizing some objective function [8,

18, 19, 31]. This is not feasible in multi-attribute combinatorial

domains, where compact representationmodels such as dependency

graphs [1], CP-nets [10], LP-trees [9], utility-basedmodels or logical

representations [23] are used instead. Our focus is on CP-nets.

One of the first CP-net based preference aggregation approaches

introduces mCP-nets [30] which do not construct a consensus

model but rather work with a set of partial CP-nets, all of which

must be preserved as given. Reasoning tasks are then carried out

by running queries on each CP-net in the set and applying some

voting rule to choose the collective response. The complexity of

reasoning depends on the voting rule chosen [27–29]. However,

each input CP-net must be stored and reasoned with for each query.

In contrast, Lang [24] also works with CP-nets as input, applying

some voting rule over the attributes sequentially and in topological

order. This ensures that votes on an attribute are taken only after the

best consensus outcome has been chosen for all its parent attributes,

and their goal is to find a consensus outcome given individual CP-

nets. Xia et al. [32, 33] and Lang and Xia [25] showed that this

approach can lead to paradoxes, which can be avoided when all

input CP-nets have the same dependency graph. For more general

CP-nets, hypercube-based approaches are proposed, in order to

find the set of non-dominated consensus outcomes [13, 14, 26, 32].

Several past studies aimed at methods that output a preference

representation model [15–17]. These aggregate a set of CP-nets,

building a single model represented by a Probabilistic CP-net (PCP-

net)—an extension of CP-nets allowing probabilistic reasoning.

In contrast, we focus on finding the best aggregate CP-net given a

set of input CP-nets. As argued by Ali et al. [5, 6], this saves us from

querying each input CP-net to answer a query, and also allows us

to apply existing CP-net preference reasoning algorithms. Since CP-

net aggregation with minimal dissensus cannot in general be done

in polynomial time [5], a recent focus has been on approximation

algorithms for the same problem [6].

For preference aggregation with partial orderings, as well as for

judgment aggregation, optimization has been proven intractable

[19, 21]. Even in the domain of approximate aggregation, it is not

possible to guarantee better than a 2-approximation in general [20].

However, Ali et al. [6] showed that for CP-net based aggregation

and some specific classes of input profiles, approximation ratios

Figure 1: A CP-net 𝑁 over {𝑉1,𝑉2,𝑉3}. Here Pa(𝑁,𝑉1) = {},
Pa(𝑁,𝑉2) = {𝑉1}, and Pa(𝑁,𝑉3) = {𝑉1,𝑉2}. Each node 𝑉𝑖 is
annotated with its CPT, which contains 2 |Pa(𝑁,𝑉𝑖 ) | rules.

strictly better than 2 are possible. Our paper is the first to show

that CP-net aggregation within a factor of
4

3
can be done efficiently

for tree CP-nets (even for a more general class of CP-nets).

3 PRELIMINARIES AND NOTATION
A CP-net, as introduced in [10], is a directed graph with a set

of vertices 𝑉 = {𝑉1, . . . ,𝑉𝑛} representing 𝑛 attributes, each with

domain {0, 1}. A preference statement for 𝑉𝑖 is a total ordering of

{0, 1} associated with 𝑉𝑖 . A directed edge (𝑉𝑖 ,𝑉𝑗 ) indicates that the
preferences for 𝑉𝑗 are conditioned on the value assigned to 𝑉𝑖 , and

we say 𝑉𝑖 is a parent of 𝑉𝑗 . We denote the set of all parents of 𝑉𝑖 in

a CP-net 𝑁 by Pa(𝑁,𝑉𝑖 ).
For each 𝑉𝑖 and for each possible value assignment to Pa(𝑁,𝑉𝑖 ),

the preference ordering of {0, 1} for 𝑉𝑖 is listed in a Conditional

Preference Table (CPT), denoted CPT(𝑁,𝑉𝑖 ), with each conditional

preference ordering referred to as a CPT rule. For example, if

Pa(𝑁,𝑉𝑖 ) = {𝑉1}, the CPT for 𝑉𝑖 may have two rules, one indi-

cating the preference ordering of {0, 1} for𝑉𝑖 when𝑉1 = 0, and one

indicating the preference when𝑉1 = 1. See Figure 1 for an example.

A CPT that contains preference orderings for all possible value

assignments to the parent set is called a complete CPT. In this

paper, we limit ourselves to complete CPTs. In particular, since

attributes are binary, if |Pa(𝑁,𝑉𝑖 ) | = 𝑘 , then CPT(𝑁,𝑉𝑖 ) has 2𝑘
rules. We use the phrase 1-bounded CPT to refer to a CPT whose

parent set has size at most 1. A 1-bounded CP-net is a CP-net 𝑁

with only 1-bounded CPTs, i.e., in which |Pa(𝑁,𝑉𝑖 ) | ≤ 1 for all

𝑉𝑖 ∈ 𝑉 . Note that the class of all 1-bounded CP-nets contains not

only all tree-structured CP-nets, but also some cyclic CP-nets.

An instantiation of some 𝑉 ′ ⊆ 𝑉 is an assignment of values to

each attribute in𝑉 ′
and Inst(𝑉 ′) denotes the set of all instantiations

of 𝑉 ′
. Assuming a fixed order over 𝑉 , each element 𝛾 ∈ Inst(𝑉 ′) is

simply a boolean vector with |𝑉 ′ | components. Elements of Inst(𝑉 )
are called outcomes, and an outcome pair (𝑜, 𝑜′) is called a swap
over 𝑉𝑖 if 𝑜, 𝑜

′
differ only in their value for 𝑉𝑖 . Any swap of some

attribute 𝑉𝑖 can be ordered by reference to a single CPT rule in

CPT(𝑁,𝑉𝑖 ) [10], corresponding to the appropriate instantiation of

Pa(𝑁,𝑉𝑖 ). A complete CP-net 𝑁 can use these CPT rules to order all

swaps, resulting in a preference order over swaps which we denote

by ≻𝑁 . For the CP-net 𝑁 in Figure 1, the swap (100, 101) over 𝑉3
is ordered via the CPT for 𝑉3; the instantiation 10 of the parent
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pair (𝑉1,𝑉2) corresponds to the third row of this CPT, resulting in

100 ≻𝑁 101. Taking the transitive closure ≻[𝑁 ] of ≻𝑁 , one can then

order outcome pairs that are not swaps; for example, for the CP-net

in Figure 1, we obtain 000 ≻[𝑁 ] 011, since 000 ≻𝑁 010 ≻𝑁 011.

In general, a CP-net 𝑁 with a cyclic graph may not induce a

consistent preference ordering, i.e., there may be outcome pairs

(𝑜, 𝑜′) for which both 𝑜 ≻[𝑁 ] 𝑜
′
and 𝑜′ ≻[𝑁 ] 𝑜 hold [10]. More-

over, for both cyclic and acyclic (complete) CP-nets, there may be

outcome pairs (𝑜, 𝑜′) for which neither 𝑜 ≻[𝑁 ] 𝑜
′
nor 𝑜′ ≻[𝑁 ] 𝑜

holds [10]. However, if (𝑜, 𝑜′) is a swap, then exactly one of 𝑜 ≻𝑁 𝑜′

and 𝑜′ ≻𝑁 𝑜 is satisfied.

Ali et al. [5, 6] propose a distance function 𝑓swap (𝑁, 𝑁 ′), called
swap disagreement, defined as the number of swaps (𝑜, 𝑜′) onwhich
≻𝑁 and ≻𝑁 ′ disagree, i.e., for which 𝑜 ≻𝑁 𝑜′, but 𝑜′ ≻𝑁 ′ 𝑜 .

Given a multiset {𝑁1, . . . , 𝑁𝑧 } of CP-nets and an aggregate CP-

net 𝑁 , the term 𝑓swap (𝑁, {𝑁1, . . . , 𝑁𝑧 }) denotes the cumulative

swap disagreement for 𝑁 with all given 𝑁𝑖 , that is,

𝑓swap (𝑁, {𝑁1, . . . , 𝑁𝑧 }) =
∑︁

1≤𝑖≤𝑧
𝑓swap (𝑁, 𝑁𝑖 ) .

If 𝑁 and 𝑁 ′
are defined over attributes 𝑉1, . . . , 𝑉𝑛 , then we can

separately count the swaps over each attribute𝑉𝑗 for which ≻𝑁 and

≻𝑁 ′ disagree: 𝑓swap, 𝑗 (𝑁, 𝑁 ′) = |{(𝑜, 𝑜′) | (𝑜, 𝑜′) is a swap over 𝑉𝑗 ,

and 𝑜 ≻𝑁 𝑜′, 𝑜′ ≻𝑁 ′ 𝑜}|. Note that

𝑓swap (𝑁, 𝑁 ′) =
∑︁

1≤ 𝑗≤𝑛
𝑓swap, 𝑗 (𝑁, 𝑁 ′) .

We obtain a similar equation for 𝑓swap, 𝑗 as for 𝑓swap:

𝑓swap, 𝑗 (𝑁, {𝑁1, . . . , 𝑁𝑧 }) =
∑︁

1≤𝑖≤𝑧
𝑓swap, 𝑗 (𝑁, 𝑁𝑖 ) .

The algorithmic problem in the focus of our study is the follow-

ing: given a multiset {𝑁1, . . . , 𝑁𝑧 } of CP-nets over binary attributes
𝑉1, . . .𝑉𝑛 , compute a CP-net 𝑁 ∗

over 𝑉1, . . .𝑉𝑛 , such that 𝑁 ∗
mini-

mizes the cumulative swap disagreement 𝑓swap (𝑁 ∗, {𝑁1, . . . , 𝑁𝑧 }).
Since aggregating CP-nets can be done separately for each CPT,

this problem reduces to the problem of, given CPTs {𝑁1, . . . , 𝑁𝑧 } for
attribute 𝑉𝑛 (with parents in {𝑉1, . . . ,𝑉𝑛−1}), computing a CPT 𝑁 ∗

for 𝑉𝑛 that minimizes 𝑓swap,𝑛 (𝑁 ∗, {𝑁1, . . . , 𝑁𝑧 }). The cost of such
a minimizer, i.e., of an optimal aggregate CPT, is denoted by

𝑓
opt

swap,𝑛 ({𝑁1, . . . , 𝑁𝑧 }) = min

𝑁
𝑓swap,𝑛 (𝑁, {𝑁1, . . . , 𝑁𝑧 }) .

It was shown by Ali et al. [5] that, for some multisets of given

CPTs, the size of any optimal solution to the above problem is

exponential in the sum of the sizes of the given CPTs. In particular,

no polynomial-time algorithm solving this problem exists, which

motivates the study of approximation algorithms. Ali et al. [6]

studied two approximation algorithms. The simpler one computes

𝑓swap,𝑛 (𝑁𝑖 , {𝑁1, . . . , 𝑁𝑧 }) for all 𝑖 ∈ {1, . . . , 𝑧} and outputs an 𝑁𝑖

minimizing this value. In other words, it outputs one of its inputs

whose value in the objective functions is smallest; we refer to this

method as picking the best input CPT, and we call the corresponding
output 𝑁𝑖 the best input CPT. The second algorithm computes,

for each 𝑖 ∈ {1, . . . , 𝑧}, a CPT 𝑁 ′
𝑖
that has the smallest value of

𝑓swap,𝑛 (𝑁 ′
𝑖
, {𝑁1, . . . , 𝑁𝑧 }) among all CPTs with the same parent set

as 𝑁𝑖 . Both algorithms are guaranteed to provide 2-approximations,

but it was shown that the approximation ratio of the best input

CPT in general exceeds 2 − 𝜖 for every 𝜖 > 0.

One of the main results by Ali et al. [6] states that, when all

input CPTs have pairwise disjoint parent sets and satisfy a certain

symmetry condition, then the best input CPT achieves an approxi-

mation ratio of
4

3
. Below we will relax the premises of this result by

(i) allowing for the empty parent set, which does not satisfy Ali et

al.’s symmetry condition, and by (ii) allowing pairs of parent sets to

be either identical or pairwise disjoint. Our main result (stated in

Theorem 5.1 below) is that for 1-bounded CP-nets, the disjointness

requirement on the parent sets can be dropped. That means, for

any set {𝑁1, . . . , 𝑁𝑧 } of CPTs of 1-bounded CP-nets, we get

min

1≤𝑖≤𝑧
𝑓swap,𝑛 (𝑁𝑖 , {𝑁1, . . . , 𝑁𝑧 }) ≤

4

3

𝑓
opt

swap,𝑛 ({𝑁1, . . . , 𝑁𝑧 }) .

In other words, picking the best input CPT is an efficient method

achieving a
4

3
-approximation for any set of 1-bounded CP-nets.

4 COMBINATORIAL APPROACH
This section gives details of the notation and approach we use

to state most of our results. We begin by proving a lemma that

allows us to make some simplifying assumptions about the problem

instances with which we have to deal.

This lemma says that two 1-bounded CPTs with identical parent

sets but exactly opposite preference ordering can be removed from

a set of input tree CPTs without decreasing the approximation ratio

obtained by picking the best input CPT.

Lemma 4.1. Let N = {𝑁1, . . . , 𝑁𝑧 } be any multiset of 1-bounded
CPTs for attribute 𝑉𝑛 . Suppose there exist 𝑟, 𝑠 ∈ {1, . . . , 𝑧} with
𝑟 ≠ 𝑠 such that Pa(𝑁𝑟 ,𝑉𝑛) = Pa(𝑁𝑠 ,𝑉𝑛) but, for all swaps (𝑜, 𝑜′)
over 𝑉𝑛 , we have 𝑜 ≻𝑁𝑟

𝑜′ iff 𝑜′ ≻𝑁𝑠
𝑜 . Let 𝑁𝑖 ∈ N such that

𝑓swap,𝑛 (𝑁𝑖 ,N) = min𝑁 ∈N 𝑓swap,𝑛 (𝑁,N), and letN ′ = N\{𝑁𝑟 , 𝑁𝑠 }.
Suppose N ′ ≠ ∅. Then

(1) There is an 𝑁 ′
𝑖
∈ N ′ with 𝑓swap,𝑛 (𝑁 ′

𝑖
,N) = 𝑓swap,𝑛 (𝑁𝑖 ,N).

(2) Such 𝑁 ′
𝑖
fulfills

𝑓swap,𝑛 (𝑁𝑖 ,N ′) = 𝑓swap,𝑛 (𝑁 ′
𝑖 ,N

′) = min

𝑁 ∈N′
𝑓swap,𝑛 (𝑁,N ′) .

(3)

𝑓swap,𝑛 (𝑁𝑖 ,N′ )
𝑓
opt

swap,𝑛 (N′ )
≥ 𝑓swap,𝑛 (𝑁𝑖 ,N)

𝑓
opt

swap,𝑛 (N)
.

Proof. Since 𝑁𝑟 and 𝑁𝑠 order each swap over𝑉𝑛 differently, we

know that there exists some fixed 𝛿 ≥ 0 such that 𝑓swap,𝑛 (𝑁,N ′) =
𝑓swap,𝑛 (𝑁,N) − 𝛿 holds for all 𝑁 ∈ N . This means that

𝑓swap,𝑛 (𝑁𝑖 ,N ′) = min

𝑁 ∈N
𝑓swap,𝑛 (𝑁,N ′) ,

and each 𝑁 ′
𝑖
∈ N ′

with 𝑓swap,𝑛 (𝑁𝑖 ,N ′) = 𝑓swap,𝑛 (𝑁 ′
𝑖
,N ′) must

also fulfill 𝑓swap,𝑛 (𝑁𝑖 ,N) = 𝑓swap,𝑛 (𝑁 ′
𝑖
,N). Thus, to prove (1) and

(2), we only need to show that N ′
contains one of the best input

CPTs for N .

If this were false, then the chosen 𝑁𝑟 or 𝑁𝑠—but no further 𝑁 in

the multiset N—would be the best input CPT in N . Let us assume,

without loss of generality, that 𝑁𝑟 is the best input CPT in N . If N
contains a second copy of 𝑁𝑟 , we are done. So consider the case

when N contains only one copy of 𝑁𝑟 .

Then N also contains only one copy of 𝑁𝑠 , since otherwise

𝑓swap,𝑛 (𝑁𝑠 ,N) < 𝑓swap,𝑛 (𝑁𝑟 ,N), contradicting the assumption

that 𝑁𝑟 is the best input CPT inN . (To see why having more copies
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of 𝑁𝑠 than copies of 𝑁𝑟 implies 𝑓swap,𝑛 (𝑁𝑠 ,N) < 𝑓swap,𝑛 (𝑁𝑟 ,N),
note that any two input CPTs with different parent sets agree on

exactly half the swaps, since each parent set is of size at most 1.)

Since N ′ ≠ ∅, choose a CPT 𝑁 ∈ N ′
over a parent set 𝑃 , such

that the number of copies of 𝑁 inN is no smaller than the number

of copies of 𝑁 in N , where 𝑁 is the CPT with parent set 𝑃 that

entails the opposite ordering of ≻𝑁 . Again exploiting the fact that

any two input CPTs with different parent sets agree on exactly half

the swaps, it is not hard to see that 𝑓swap,𝑛 (𝑁,N) ≤ 𝑓swap,𝑛 (𝑁𝑟 ,N).
This is a contradiction. Thus, there is a best input CPT for N that

is still contained in N ′
. Hence (1) and (2) are proven.

For every swap over 𝑉𝑛 , the pair (𝑁𝑟 , 𝑁𝑠 ) contributes exactly
one error to both 𝑓swap,𝑛 (𝑁𝑖 ,N) and 𝑓

opt

swap,𝑛 (N) since they entail

opposite orderings. Therefore, 𝑓swap,𝑛 (𝑁𝑖 ,N ′) = 𝑓swap,𝑛 (𝑁𝑖 ,N) −
2
𝑛−1

and 𝑓
opt

swap,𝑛 (N ′) = 𝑓
opt

swap,𝑛 (N) − 2
𝑛−1

. Now statement (3)

follows from 𝑓swap,𝑛 (𝑁𝑖 ,N) ≥ 𝑓
opt

swap,𝑛 (N). □

By Lemma 4.1, deleting 𝑁𝑟 and 𝑁𝑠 increases the approximation

ratio of the best input CPT. Recall that our goal is to establish an

upper bound on the worst-case approximation ratio. The latter

cannot be maximized by instances containing pairs like (𝑁𝑟 , 𝑁𝑠 ).
In what follows, we hence assume that, in our input instances, all

1-bounded CPTs for 𝑉𝑛 with the same parent set are identical.

Note that a 1-bounded CPT for attribute 𝑉𝑛 can have one of 𝑛

possible parent sets, namely {𝑉1}, . . . , {𝑉𝑛−1}, or ∅. For each parent

set, we only need to consider one of the two possible preference

orderings, by Lemma 4.1. Thus, we can write any input instance as a

vector (𝑞1, . . . , 𝑞𝑛) where the entry 𝑞𝑛 is the number of occurrences

of the CPT with empty parent set, and 𝑞𝑖 , for 1 ≤ 𝑖 ≤ 𝑛 − 1, is the

number of occurrences of the CPT with parent set {𝑉𝑖 }.
Now consider any two parent sets𝑀1 and𝑀2 for𝑉𝑛 , each of size

at most 1. The number of swaps of 𝑉𝑛 for which two CPTs with

parent sets 𝑀1 and 𝑀2, resp., disagree equals 2
𝑛−2

(half the total

number of swaps of 𝑉𝑛). Note that this holds regardless of whether

one of 𝑀1 and 𝑀2 is the empty set or not (this argument is also

used in the proof of Lemma 4.1). Therefore, the best input CPT is

simply one that occurs most frequently, i.e., one for which the value

𝑞𝑖 in the vector (𝑞1, . . . , 𝑞𝑛) is largest. We therefore consider the

following representation of input instances, called input profiles.

Definition 4.2. An input profile (of 1-bounded CPTs for 𝑉𝑛) is a

tuple 𝑃 = (𝑡𝑃
1
, . . . , 𝑡𝑃𝑛 ) with 𝑡𝑃

1
≥ 𝑡𝑃

2
≥ . . . ≥ 𝑡𝑃𝑛 , where (𝑡𝑃

1
, . . . , 𝑡𝑃𝑛 )

is a permutation of (𝑞1, . . . , 𝑞𝑛), which represents an input instance

of 1-bounded CPTs as described above. For any such input profile,

the best input CPT, denoted 𝑁𝑃
, is an input CPT corresponding to

the frequency value 𝑡𝑃
1
.

If 𝑡𝑃
1
= 𝑡𝑃

2
, the best input CPT is not unique. We then use 𝑁𝑃

to

refer to any CPT most frequently occurring in the input instance.

Given a tuple 𝑃 = (𝑡𝑃
1
, . . . , 𝑡𝑃𝑛 ) with 𝑡𝑃

1
≥ 𝑡𝑃

2
≥ . . . ≥ 𝑡𝑃𝑛 , let 𝑝

be the largest index satisfying 𝑡𝑃𝑝 > 0. Let 𝑇𝑖 , 1 ≤ 𝑖 ≤ 𝑝 , be the

CPT corresponding to 𝑡𝑃
𝑖
. Let (Π1,Π2) be a partition of the set

{𝑇1, . . . ,𝑇𝑝 } on a swap𝑤 such that

(1) Π1 contains 𝑇1 and all 𝑇𝑖 that have the same ordering as 𝑇1
on𝑤 , and

(2) Π2 contains all elements that are not in Π1.

𝑧 𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑧 𝑆𝑢𝑚1 𝑆𝑢𝑚2

0 𝑡𝑃
1

𝑡𝑃
2
+ 𝑡𝑃

3
+ 𝑡𝑃

4
2 𝑡𝑃

1
+ 𝑡𝑃

2
+ 𝑡𝑃

3
𝑡𝑃
4

1 𝑡𝑃
1
+ 𝑡𝑃

2
𝑡𝑃
3
+ 𝑡𝑃

4
2 𝑡𝑃

1
+ 𝑡𝑃

2
+ 𝑡𝑃

4
𝑡𝑃
3

1 𝑡𝑃
1
+ 𝑡𝑃

3
𝑡𝑃
2
+ 𝑡𝑃

4
2 𝑡𝑃

1
+ 𝑡𝑃

3
+ 𝑡𝑃

4
𝑡𝑃
2

1 𝑡𝑃
1
+ 𝑡𝑃

4
𝑡𝑃
2
+ 𝑡𝑃

3
3 𝑡𝑃

1
+ 𝑡𝑃

2
+ 𝑡𝑃

3
+ 𝑡𝑃

4
0

Table 1: Possible (𝑆𝑢𝑚1, 𝑆𝑢𝑚2) pairs corresponding to all par-
titions (Π1,Π2) when 𝑛 = 4 and 𝑡𝑃

4
> 0.

Since each of the 𝑝 − 1 CPTs𝑇2, . . . ,𝑇𝑝 has a unique parent set, it is

not hard to see that for any given tuple 𝑃 , there are 2𝑝−1 different
partitions (Π1,Π2). Note that each partition (Π1,Π2) corresponds
to 2

𝑛−𝑝
swaps.

For each such partition and each 𝑏 ∈ {1, 2}, we define 𝑆𝑢𝑚𝑏 to

be the sum of the values 𝑡𝑃
𝑖
where 𝑇𝑖 ∈ Π𝑏 .

For instance, assume the CPTs in Π1 have ordering 0 ≻ 1, and

those in Π2 have ordering 1 ≻ 0. Then the number of CPTs with

vote 0 ≻ 1 is 𝑆𝑢𝑚1 and the number of CPTs with vote 1 ≻ 0 is

𝑆𝑢𝑚2; one can simply swap the numbers for the opposite ordering.

On each of the 2
𝑛−1

swaps of 𝑉𝑛 , an optimal solution 𝑁 ∗
has a

preference ordering not in the minority, and the number of errors

made by 𝑁 ∗
is the frequency of the ordering that is in the minority.

For all swaps whose ordering entailed by 𝑁𝑃
is not in the minority,

𝑁𝑃
and 𝑁 ∗

thus make the same number of errors. For swaps where

the ordering entailed by 𝑁𝑃
is in the minority, 𝑁𝑃

makes more

errors than 𝑁 ∗
. From our notion of partitions, 𝑁𝑃

and 𝑁 ∗
have the

same ordering whenever 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2, and opposite orderings

when 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2. For the former, 𝑁𝑃
and 𝑁 ∗

both make error

𝑆𝑢𝑚2. For the latter, 𝑁𝑃
makes error 𝑆𝑢𝑚2 and 𝑁 ∗

makes error

𝑆𝑢𝑚1. Given any input profile 𝑃 as in Definition 4.2, we introduce

some notation to calculate the errors made by 𝑁𝑃
and 𝑁 ∗

.

A profile 𝑃 lists the multiplicities of 𝑛 distinct input CPTs. Sup-

pose, for some swap, there are 𝑧 (0 ≤ 𝑧 ≤ 𝑛 − 1) distinct input CPTs

other than 𝑁𝑃
with the same ordering as 𝑁𝑃

. These input CPTs

then agree on 2
𝑛−𝑧−1

swaps. Depending on the values of 𝑡𝑃
𝑖
and 𝑧,

the ordering of 𝑁𝑃
may be the same as the majority ordering for

these swaps. This is equivalent to saying that 𝑁𝑃
and the 𝑧 CPTs

in Π1 have the same ordering. We can exhaustively list all possible

partitions where 𝑧 frequency values 𝑡𝑃
𝑖
have the same ordering as

𝑁𝑃
for any specific swap. Summing up these 𝑡𝑃

𝑖
values gives us

the number 𝑆𝑢𝑚1 of input CPTs that agree with 𝑁𝑃
on that swap,

while the sum 𝑆𝑢𝑚2 of the remaining 𝑡𝑃
𝑖
values is the number of

input CPTs that disagree with 𝑁𝑃
on that same swap. An example

for 𝑛 = 4 is shown in Table 1.

Each partition corresponds to some number 𝛼 of swaps. For each

row, the error made by 𝑁𝑃
is 𝛼 · 𝑆𝑢𝑚2, while the error made by 𝑁 ∗

is 𝛼 ·min(𝑆𝑢𝑚1, 𝑆𝑢𝑚2). When 𝑆𝑢𝑚1 = 𝑆𝑢𝑚2, we use 𝛼 × 𝑆𝑢𝑚2 as

the error made by 𝑁 ∗
for convenience with some of our proofs.

We conclude this section with a technical lemma needed for

proving our main result. In what follows, we say that a given parti-

tion aligns with a swap iff the CPTs corresponding to each 𝑡𝑃
𝑖
have

orderings consistent with the two parts of the given partition.
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Lemma 4.3. For an input profile 𝑃 = (𝑡𝑃
1
, . . . , 𝑡𝑃𝑛 ) with 𝑡𝑃1 ≥ 𝑡𝑃

2
≥

. . . ≥ 𝑡𝑃𝑛 ≥ 1, each of the 2𝑛−1 possible partitions (Π1,Π2) aligns
with exactly one swap of 𝑉𝑛 .

Proof. Let (Π1,Π2) be an arbitrary partition of the CPTs corre-

sponding to all 𝑡𝑃
𝑖
. We prove our claim by considering two cases.

Case 1. Π1 contains a CPT 𝑁∅ with empty parent set. WLOG,

assume 𝑁∅ entails 0 ≻ 1 for all 2
𝑛−1

swaps of 𝑉𝑛 . Then all CPTs in

Π1 entail 0 ≻ 1 and all those in Π2 entail 1 ≻ 0. A swap with this

ordering exists, as all input CPTs other than 𝑁∅ can take on either

of the two possible orderings. Clearly, there is exactly one swap

with this configuration of orderings.

Case 2. Π2 contains a CPT 𝑁∅ with empty parent set. WLOG,

assume 𝑁∅ entails 0 ≻ 1 for all 2
𝑛−1

swaps of 𝑉𝑛 . Then all CPTs

in Π1 entail 1 ≻ 0 and all those in Π2 entail 0 ≻ 1. As in Case 1,

exactly one swap with this ordering exists. □

Remark. There might be some 𝑛′ < 𝑛 with 𝑡𝑃
𝑛′ > 𝑡𝑃

𝑛′+1 = 𝑡𝑃
𝑛′+2 =

. . . = 𝑡𝑃𝑛 = 0. Then each 𝑆𝑢𝑚1/𝑆𝑢𝑚2 combination corresponds to

2
𝑛−𝑛′

swaps. While this changes the actual error values, the ratio

will remain unchanged. We thus present all results as if 𝑛′ = 𝑛.

5 BOUNDED APPROXIMATION RATIO FOR
1-BOUNDED CP-NETS

This section establishes our main result:

Theorem 5.1. For any input profile of tree CPTs over 𝑛 ≥ 2 at-
tributes, the best input CPT has an approximation ratio of at most 4

3
.

The proof of this result makes use of a sequence of lemmas, the

first of which proves the main result for the case when 𝑛 = 2.

Lemma 5.2. For any input profile of tree CPTs over 𝑛 = 2 attributes,
the best input CPT is an optimal solution.

Proof. Let 𝑃 = (𝑡𝑃
1
, 𝑡𝑃
2
) be an input profile of tree CPTs. Then

the best input CPT 𝑁𝑃
gives 𝑓 a

swap,𝑛 (𝑁𝑃 , 𝑃) = 𝑓
opt

swap,𝑛 (𝑃) = 𝑡𝑃
2
. □

Thus, when 𝑛 = 2, the approximation ratio of the best input CPT

is 1. We now focus on the case 𝑛 ≥ 3. The next two lemmas, which

are needed for the proof of Lemma 5.9, apply to input profiles 𝑃 of

a specific structure.

Lemma 5.3. Let 𝑃 be an input profile of tree CPTs of the form
𝑃 = (𝑘, . . . , 𝑘, 𝑘′) ∈ N𝑛 where 1 ≤ 𝑘′ ≤ 𝑘 . Let 𝑁𝑃 be the best input
CPT, and 𝑡 = (𝑛 − 1)𝑘 + 𝑘′. Then

𝑓swap,𝑛 (𝑁𝑃 , 𝑃) = 2
𝑛−2

𝑛∑︁
𝑖=2

𝑡𝑃𝑖 = (𝑡 − 𝑘)2𝑛−2 .

Proof. For each 𝑆𝑢𝑚1/𝑆𝑢𝑚2 combination, the error made by𝑁𝑃

is the 𝑆𝑢𝑚2 term, and the total error is the sum of all these 𝑆𝑢𝑚2

terms. Each 𝑡𝑃
𝑖
, 2 ≤ 𝑖 ≤ 𝑛, appears on the 𝑆𝑢𝑚2 in exactly half of

the 2
𝑛−1 𝑆𝑢𝑚1/𝑆𝑢𝑚2 combinations. This proves the lemma. □

Lemma 5.4. Let 𝑛 = 2𝑐 − 1 for some 𝑐 > 1, and let 𝑃 be an
input profile of tree CPTs of the form 𝑃 = (𝑘, . . . , 𝑘, 𝑘′) ∈ N𝑛 where
1 ≤ 𝑘′ ≤ 𝑘 . Let 𝑡 = (𝑛 − 1)𝑘 + 𝑘′. Then

𝑓
opt

swap,𝑛 (𝑃) = (22𝑐−3 −
(
2𝑐 − 3

𝑐 − 2

)
) · 𝑡 .

Proof. 𝑓
opt

swap,𝑛 (𝑃) is the sum of all 𝑆𝑢𝑚1 terms that are no larger

than their corresponding 𝑆𝑢𝑚2 terms, plus the sum of all 𝑆𝑢𝑚2

terms that are smaller than their 𝑆𝑢𝑚1 terms (multiplied by the

number of swaps each combination represents). Since (𝑐 − 1)𝑘 <
1

2
(𝑛 − 1)𝑘 + 𝑘′, we know that no 𝑆𝑢𝑚2 term summing up at most

𝑐 − 1 entries of 𝑃 can form a majority over 𝑆𝑢𝑚1. Hence we only

consider 𝑆𝑢𝑚1/𝑆𝑢𝑚2 combinations in which 𝑆𝑢𝑚2 is a sum of at

least 𝑐 entries of 𝑃 , so that 𝑆𝑢𝑚1 contains 𝑡𝑃
1
(= 𝑘) plus at most

𝑐 − 2 further entries of 𝑃 . We derive an expression for 𝑓
opt

swap,𝑛 by

summing up the errors made by an optimal 𝑁 ∗
for each of the 2

𝑛−1

combinations. Since 𝑡𝑃
1
is in 𝑆𝑢𝑚1, the number of times 𝑡𝑃

1
appears

in 𝑓
opt

swap,𝑛 is

∑𝑐−2
𝑖=0

(
2𝑐−2
𝑖

)
(the number of combinations for which

𝑆𝑢𝑚1 < 𝑆𝑢𝑚2). For 2 ≤ 𝑖 ≤ 𝑛, 𝑡𝑃
𝑖
may appear in the expression for

𝑓
opt

swap,𝑛 , in one of two possible ways:

• Case 1. 𝑡𝑃
𝑖
is in 𝑆𝑢𝑚1 and 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2

• Case 2. 𝑡𝑃
𝑖
is in 𝑆𝑢𝑚2 and 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2

For Case 1, since 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2, the 𝑆𝑢𝑚1 has at most 𝑐 − 3

terms other than 𝑡𝑃
1
and 𝑡𝑃

𝑖
, which corresponds to

∑𝑐−3
𝑖=0

(
2𝑐−3
𝑖

)
combinations. For Case 2, since 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2, the 𝑆𝑢𝑚2 has at most

𝑐−2 terms other than 𝑡𝑃
1
and 𝑡𝑃

𝑖
, yielding

∑𝑐−2
𝑖=0

(
2𝑐−3
𝑖

)
combinations.

Combining these we get 2
2𝑐−3 −

(
2𝑐−3
𝑐−2

)
(the frequency with which

each 𝑡𝑃
𝑖
occurs in the error made by an optimal solution). Thus

𝑓
opt

swap,𝑛 (𝑃) = 𝑡𝑃
1
·
𝑐−2∑︁
𝜅=0

(
2𝑐 − 2

𝜅

)
+

𝑛∑︁
𝑖=2

𝑡𝑃𝑖 · (22𝑐−3 −
(
2𝑐 − 3

𝑐 − 2

)
)

= (22𝑐−3 − 1

2

·
(
2𝑐 − 2

𝑐 − 1

)
) · 𝑡𝑃

1
+ ((22𝑐−3 −

(
2𝑐 − 3

𝑐 − 2

)
) (𝑡 − 𝑡𝑃

1
)

= (22𝑐−3 −
(
2𝑐 − 3

𝑐 − 2

)
) · 𝑡𝑃

1
+ ((22𝑐−3 −

(
2𝑐 − 3

𝑐 − 2

)
) (𝑡 − 𝑡𝑃

1
)

= (22𝑐−3 −
(
2𝑐 − 3

𝑐 − 2

)
) · 𝑡 ,

which completes our proof. □

The following lemma addresses the situation when each input

CPT occurs equally often. A similar result was obtained by Ali et al.

[6], but in their case the empty parent set was not included.

Lemma 5.5. Let 𝑛 = 2𝑐 − 1 for some 𝑐 > 1, and let 𝑃 be an input
profile of tree CPTs of the form 𝑃 = (𝑘, . . . , 𝑘) ∈ N𝑛 . Let 𝑁𝑃 be the
best input CPT. Then

𝑓swap,𝑛 (𝑁𝑃 , 𝑃) = 𝑘 (𝑛 − 1)2𝑛−2 = 𝑘 (𝑛 − 1)22𝑐−3 and

𝑓
opt

swap,𝑛 (𝑃) = (22𝑐−3 −
(
2𝑐 − 3

𝑐 − 2

)
) · 𝑘𝑛 .

In particular, the best input CPT has an approximation ratio of at
most 4

3
.

Proof. Lemmas 5.3 and 5.4 yield the formulas for 𝑓swap,𝑛 (𝑁𝑃 , 𝑃)
and 𝑓

opt

swap,𝑛 (𝑃). It suffices to show that 𝑓swap,𝑛 (𝑁𝑃 , 𝑃)/𝑓 opt
swap,𝑛 (𝑃) ≤

4

3
. Since the factor of 𝑘 cancels out, we only need to show that

(𝑛 − 1)2𝑛−2

𝑛(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
)
≤ 4

3

.
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To this end, Ali et al. [6] showed that, when 𝑛 = 2𝑐 − 1,

(𝑡 − 1)2𝑛−2

𝑡2𝑛−2 − 2
𝑛−𝑡−1𝑐

(
2𝑐−1
𝑐

) ≤ 4

3

,

for any value of 𝑡 . For 𝑡 = 𝑛, this shows that

(𝑛 − 1)2𝑛−2

𝑛2𝑛−2 − 𝑐
2

(
2𝑐−1
𝑐

) ≤ 4

3

.

Note that 𝑛(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
) = 𝑛2𝑛−2 − 𝑛

(𝑛−2
𝑐−2

)
. So, it remains to

show that
𝑐
2

(𝑛
𝑐

)
= 𝑛

(𝑛−2
𝑐−2

)
. The latter holds true since

𝑐
2

(𝑛
𝑐

)
= 𝑛

𝑐 ·
𝑛−1
𝑐−1 · 𝑐

2

(𝑛−2
𝑐−2

)
=

𝑛 (𝑛−1)
2𝑐−2

(𝑛−2
𝑐−2

)
= 𝑛

(𝑛−2
𝑐−2

)
. □

Subsequently, we will often analyze how the approximation ratio

of the best input CPT changes when changing the input profile. For

ease of presentation, we therefore introduce the following notation.

Definition 5.6. Let 𝑃 be an input profile of CPTs. Then 𝑟𝑃 denotes

the approximation ratio of the best input CPT in 𝑃 .

The following corollary is an additional strengthening of one

of the main results by Ali et al. [6]. They showed that, for input

profiles in which each CPT occurs equally often, the best input

CPT gives a
4

3
-approximation. We demonstrate (for odd 𝑛) that this

approximation ratio actually converges to 1 as 𝑛 increases.

Corollary 5.7. Let (𝑃2𝑐−1)𝑐∈N be a sequence of input profiles of
1-bounded CPTs of the form 𝑃𝑛 = (𝑘𝑛, . . . , 𝑘𝑛) ∈ N𝑛 , where𝑛 = 2𝑐−1.
Then 𝑟𝑃2𝑐−1 is a decreasing function of 𝑐 with lim2𝑐−1→∞ 𝑟𝑃2𝑐−1 = 1.

Proof. The approximation ratio of the best input CPT for 𝑃𝑛 is

(𝑛 − 1)22𝑐−3

(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
) · 𝑛

=
(2𝑐 − 2)22𝑐−3

(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
) · (2𝑐 − 1)

=
(2𝑐 − 2)22𝑐−3

(22𝑐−3 − 2
2𝑐−3

𝜃 (
√
𝑐 ) ) · (2𝑐 − 1)

=
(2𝑐 − 2)

(1 − 1

𝜃 (
√
𝑐 ) ) · (2𝑐 − 1)

,

which decreases and converges to 1 as 𝑐 increases. □

This corollary gives suggests that near-optimal aggregation of in-

teresting sub-classes of CP-nets may be possible: for a small number

𝑛 of attributes, one could obtain optimal solutions directly, while for

larger 𝑛 (when optimal aggregation is infeasible), one could invoke

an efficient approximation algorithm with a low approximation

ratio. Pursuing this idea is beyond the scope of this paper.

We now formulate two crucial lemmas that will allow us to

compare the approximation ratios of specific kinds of input profiles.

Lemma 5.8. Let 𝑛 = 2𝑐 for some 𝑐 > 1. Let 𝑃 and 𝑄 be input
profiles of 1-bounded CPTs of the form 𝑃 = (𝑘, . . . , 𝑘, 𝑘′) ∈ N𝑛 and
𝑄 = (𝑘, . . . , 𝑘, 𝑘′ − 1) ∈ N𝑛 where 1 ≤ 𝑘′ ≤ 𝑘 . Then 𝑟𝑄 > 𝑟𝑃 .

Proof. Since 𝑡𝑃𝑛 = 𝑡
𝑄
𝑛 +1, both 𝑓swap,𝑛 (𝑁𝑆 , 𝑆) and 𝑓

opt

swap,𝑛 (𝑆) are
lower for 𝑆 = 𝑄 than for 𝑆 = 𝑃 . Let us denote the difference in these

two errors by 𝛿
app

swap
and 𝛿

opt

swap
, resp. From Lemma 5.3, it follows

that 𝛿
app

swap
= 2

𝑛−2 = 2
2𝑐−2

.

Note that𝑄 results from 𝑃 by decrementing 𝑡𝑃𝑛 , which decreases

𝑓
opt

swap,𝑛 for all 𝑆𝑢𝑚1/𝑆𝑢𝑚2 combinations where 𝑡𝑃𝑛 is in the minority:

• Case 1. 𝑡𝑃𝑛 is in 𝑆𝑢𝑚1 and 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2

• Case 2. 𝑡𝑃𝑛 is in 𝑆𝑢𝑚2 and 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2

For Case 1, since 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2, the 𝑆𝑢𝑚1 has at most 𝑐 − 2

terms other than 𝑡𝑃
1
and 𝑡𝑃𝑛 . The number of combinations satisfying

these constraints is

∑𝑐−2
𝜅=0

(
2𝑐−2
𝜅

)
. For Case 2, since 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2,

the 𝑆𝑢𝑚1 has at least 𝑐 − 1 terms other than 𝑡𝑃
1
and 𝑡𝑃𝑛 . The number

of combinations satisfying these constraints is

∑
2𝑐−2
𝜅=𝑐−1

(
2𝑐−2
𝜅

)
. In

total, from both cases, we get

∑
2𝑐−2
𝜅=0

(
2𝑐−2
𝜅

)
= 2

2𝑐−2
combinations.

Thus, 𝛿
app

swap
= 𝛿

opt

swap
= 2

2𝑐−2
. Since 𝑟𝑃 > 1 and 𝛿

app

swap
= 𝛿

opt

swap
, we

obtain 𝑟𝑄 > 𝑟𝑃 . □

Interestingly, for odd values of𝑛, one observes the opposite effect

to that described in Lemma 5.8.

Lemma 5.9. Let 𝑛 = 2𝑐 − 1 for some 𝑐 > 1. Let 𝑃 and 𝑄 be input
profiles of 1-bounded CPTs of the form 𝑃 = (𝑘, . . . , 𝑘, 𝑘′) ∈ N𝑛 and
𝑄 = (𝑘, . . . , 𝑘, 𝑘′ + 1) ∈ N𝑛 where 1 ≤ 𝑘′ < 𝑘 . Then 𝑟𝑄 > 𝑟𝑃 .

Proof. The proof is in part similar to that of Lemma 5.8. Since

𝑡𝑃𝑛 = 𝑡
𝑄
𝑛 −1, both 𝑓swap,𝑛 (𝑁𝑆 , 𝑆) and 𝑓

opt

swap,𝑛 (𝑆) are higher for 𝑆 = 𝑄

than for 𝑆 = 𝑃 . Let us denote the difference in these two errors by

𝛿
app

swap
and 𝛿

opt

swap
, resp. By Lemma 5.3, 𝛿

app

swap
= 2

𝑛−2 = 2
2𝑐−3

.

Note that 𝑄 results from 𝑃 by incrementing 𝑡𝑃𝑛 , which increases

𝑓
opt

swap,𝑛 for all 𝑆𝑢𝑚1/𝑆𝑢𝑚2 combinations where 𝑡𝑃𝑛 is in the minority:

• Case 1. 𝑡𝑃𝑛 is in 𝑆𝑢𝑚1 and 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2

• Case 2. 𝑡𝑃𝑛 is in 𝑆𝑢𝑚2 and 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2

For Case 1, since 𝑆𝑢𝑚1 < 𝑆𝑢𝑚2, the 𝑆𝑢𝑚1 has at most 𝑐−3 terms

other than 𝑡𝑃
1
and 𝑡𝑃𝑛 . The number of combinations satisfying these

constraints is

∑𝑐−3
𝜅=0

(
2𝑐−3
𝜅

)
. For Case 2, since 𝑆𝑢𝑚1 ≥ 𝑆𝑢𝑚2, the

𝑆𝑢𝑚1 has at least 𝑐 − 1 terms other than 𝑡𝑃
1
and 𝑡𝑃𝑛 . The number of

combinations satisfying these constraints is

∑
2𝑐−3
𝜅=𝑐−1

(
2𝑐−3
𝜅

)
. For the

total number of combinations from both cases, after simplifying

with the help of combinatorial identities, we get 2
2𝑐−3 −

(
2𝑐−3
𝑐−2

)
.

Let 𝑡 = (𝑛 − 1)𝑘 + 𝑘′. From Lemmas 5.3 and 5.4, we have

𝑟𝑃 =
(𝑡 − 𝑡𝑃

1
)22𝑐−3

(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
) · 𝑡

<
𝑡 · 22𝑐−3

(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
) · 𝑡

=
2
2𝑐−3

(22𝑐−3 −
(
2𝑐−3
𝑐−2

)
)
=
𝛿
app

swap

𝛿
opt

swap

.

The above shows that the ratio of the changes to 𝑓swap,𝑛 (𝑁𝑆 , 𝑆)
and 𝑓

opt

swap,𝑛 (𝑆), resp., is strictly greater than 𝑟𝑃 . From this it follows

that 𝑟𝑄 > 𝑟𝑃 , which completes our proof. □

We are now able to prove a special case of our main result:

Theorem 5.10. Let 𝑃 be an input profile of 1-bounded CPTs of the
form 𝑃 = (𝑘, . . . , 𝑘, 𝑘′) ∈ N𝑛 where 1 ≤ 𝑘′ ≤ 𝑘 . Then the best input
CPT has an approximation ratio of at most 4

3
, i.e., 𝑟𝑃 ≤ 4

3
.

Proof. Depending on whether 𝑛 is odd or even, we recursively

apply Lemma 5.8 or Lemma 5.9, resp. For 𝑛 = 2𝑐 , we stop when we

arrive at some 𝑄 with 𝑡
𝑄

𝑖
= 𝑘 for all 𝑖 ≠ 𝑛, and 𝑡

𝑄
𝑛 = 0. Since this

gives us 2𝑐 − 1 non-zero 𝑡
𝑄

𝑖
values, all of which equal 𝑘 , Lemma 5.5

proves our claim. For 𝑛 = 2𝑐 − 1, we stop when we arrive at some𝑄

with 𝑡
𝑄

𝑖
= 𝑘 for all 𝑛. Once again our claim holds by Lemma 5.5. □
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To extend this special case result to a full proof of Theorem 5.1,

we need just one more lemma.

Lemma 5.11. Let 𝑃 = (𝑡𝑃
1
, . . . , 𝑡𝑃𝑛 ) and 𝑄 = (𝑡𝑄

1
, . . . , 𝑡

𝑄
𝑛 ) be input

profiles of 1-bounded CPTs over 𝑛 attributes, 𝑛 ≥ 3. Suppose there
are 𝑖 and 𝑗 , 1 < 𝑖 < 𝑗 ≤ 𝑛, such that 𝑡𝑄

𝑖
= 𝑡𝑃

𝑖
+ 1, 𝑡𝑄

𝑗
= 𝑡𝑃

𝑗
− 1, and

𝑡
𝑄
𝑚 = 𝑡𝑃𝑚 for𝑚 ∉ {𝑖, 𝑗}. Then 𝑟𝑄 ≥ 𝑟𝑃 .

Proof. Since 𝑖 > 1, we have 𝑡𝑃
1

= 𝑡
𝑄

1
. Further, since 𝑃 and 𝑄

have the same total number of CPTs, we have 𝑓swap,𝑛 (𝑁𝑃 , 𝑃) =

𝑓swap,𝑛 (𝑁𝑄 , 𝑄). It suffices to show that 𝑓
opt

swap,𝑛 (𝑃) ≥ 𝑓
opt

swap,𝑛 (𝑄).
Note that 𝑡𝑃

𝑖
≥ 𝑡𝑃

𝑗
. Let 𝑀 = {𝑡𝑃𝑚 | 𝑚 ∉ {𝑖, 𝑗}} be the multiset of

entries in 𝑃 except 𝑡𝑃
𝑖
and 𝑡𝑃

𝑗
. Note that𝑀 has 𝑛 − 2 members. Let

𝑀1 and𝑀2 denote some partition of𝑀 , and 𝑆1 and 𝑆2 the sum of the

integers in 𝑀1 and𝑀2, respectively. For convenience, we assume

𝑀1 always contains 𝑡
𝑃
1
. Note that𝑀2 = ∅ is possible.

Since 𝑡
𝑄

𝑗
= 𝑡𝑃

𝑗
− 1 and 𝑡

𝑄

𝑖
= 𝑡𝑃

𝑖
+ 1, we can abstract all possible

combinations of 𝑆𝑢𝑚1 and 𝑆𝑢𝑚2 to the following four.

(a) 𝑡𝑃
𝑖
+ 𝑆1 and 𝑡

𝑃
𝑗
+ 𝑆2 (b) 𝑡𝑃

𝑗
+ 𝑆1 and 𝑡

𝑃
𝑖
+ 𝑆2

(c) 𝑡𝑃
𝑖
+ 𝑡𝑃

𝑗
+ 𝑆1 and 𝑆2 (d) 𝑆1 and 𝑡

𝑃
𝑖
+ 𝑡𝑃

𝑗
+ 𝑆2

For (c) and (d), the CPTs corresponding to indices 𝑖 and 𝑗 have

identical orderings and there is no net difference between 𝑓
opt

swap,𝑛 (𝑃)
and 𝑓

opt

swap,𝑛 (𝑄) contributed by the swaps associated with such 𝑆𝑢𝑚1

/ 𝑆𝑢𝑚2 combinations. It suffices to show that in cases (a) and (b)

the corresponding swaps do not contribute a net positive difference

𝛿 := 𝑓
opt

swap,𝑛 (𝑄) − 𝑓
opt

swap,𝑛 (𝑃).
The 𝛿 value for a given partition (𝑀1, 𝑀2) in case (a) (or (b))

depends on which of the two sums in (a) (or (b)) is larger. This leads

to the following four cases.

(a.1) 𝑡𝑃
𝑖
+ 𝑆1 < 𝑡𝑃

𝑗
+ 𝑆2, 𝑡

𝑃
𝑗
+ 𝑆1 < 𝑡𝑃

𝑖
+ 𝑆2

(a.2) 𝑡𝑃
𝑖
+ 𝑆1 < 𝑡𝑃

𝑗
+ 𝑆2, 𝑡

𝑃
𝑗
+ 𝑆1 ≥ 𝑡𝑃

𝑖
+ 𝑆2

(b.1) 𝑡𝑃
𝑖
+ 𝑆1 ≥ 𝑡𝑃

𝑗
+ 𝑆2, 𝑡

𝑃
𝑗
+ 𝑆1 < 𝑡𝑃

𝑖
+ 𝑆2

(b.2) 𝑡𝑃
𝑖
+ 𝑆1 ≥ 𝑡𝑃

𝑗
+ 𝑆2, 𝑡

𝑃
𝑗
+ 𝑆1 ≥ 𝑡𝑃

𝑖
+ 𝑆2

By Lemma 4.3, each combination corresponds to exactly one

swap. Thus, each of the abstractions above corresponds to 2
𝑛−3

swaps. For cases (a) and (b), we consider the contribution of the cor-

responding pair of swaps to the value 𝛿 , in each of these four cases.

In a case where 𝑡𝑃
𝑗
is counted in the minority, the corresponding

swap contributes −1 to 𝛿 , and when 𝑡𝑃
𝑗
is counted in the majority, it

contributes +1 to 𝛿 . We thus obtain the following net contributions

for each of the above cases, for a given𝑀1, 𝑀2 pair:

(a.1) Net contribution 0.

(a.2) Since 𝑡𝑃
𝑖
≥ 𝑡𝑃

𝑗
, this combination is not possible.

(b.1) Net contribution −2.
(b.2) Net contribution 0.

Hence, for any given partition (𝑀1, 𝑀2), the contribution to the

value 𝛿 := 𝑓
opt

swap,𝑛 (𝑄) − 𝑓
opt

swap,𝑛 (𝑃) is non-positive. So, 𝑓
opt

swap,𝑛 (𝑃) ≥
𝑓
opt

swap,𝑛 (𝑄), as desired, which yields 𝑟𝑄 > 𝑟𝑃 . □

Finally, we are in a position to prove our main result:

Theorem 5.1. For any input profile of tree CPTs over 𝑛 ≥ 2 at-
tributes, the best input CPT has an approximation ratio of at most 4

3
.

Proof. For 𝑛 = 2, this follows from Lemma 5.2. So, let 𝑃 be an

input profile of 1-bounded CPTs over 𝑛 ≥ 3 attributes. We build a

profile 𝑃 ′ from 𝑃 by repeatedly applying Lemma 5.11 as follows.

Initialize 𝑃 ′ = 𝑃 , 𝑖 = 2, and 𝑗 = 𝑛. As long as 𝑖 < 𝑗 , repeat the

following steps:

(i) If 𝑡𝑃
′

𝑖
= 𝑡𝑃

′
1

then increment 𝑖; if 𝑡𝑃
′

𝑗
= 0 then decrement 𝑗 .

(ii) Consider an input profile 𝑄 such that 𝑡
𝑄

𝑖
= 𝑡𝑃

′
𝑖

+ 1 and

𝑡
𝑄

𝑗
= 𝑡𝑃

′
𝑗

− 1, while 𝑡
𝑄
𝑚 = 𝑡𝑃

′
𝑚 for𝑚 ∉ {𝑖, 𝑗}. By Lemma 5.11,

𝑟𝑄 ≥ 𝑟𝑃 ′ . Set 𝑃 ′ := 𝑄 .

When the above process halts, the profile 𝑃 ′ is of the form 𝑃 ′ =
(𝑘, . . . , 𝑘, 𝑘′) ∈ N𝑛′

, where 𝑛′ ≤ 𝑛 and 𝑘′ ≤ 𝑘 . By construction,

𝑟𝑃 ′ ≥ 𝑟𝑃 . Now Theorem 5.10 yields
4

3
≥ 𝑟𝑃 ′ ≥ 𝑟𝑃 . □

Note that our upper bound in Theorem 5.1 is tight, since Ali et

al. proved that the best input CPT for the profile (𝑚,𝑚,𝑚) has an
approximation ratio of

4

3
[6].

6 INPUT INSTANCES WITHWORST
APPROXIMATION RATIO

While we have proven that a very simple and efficient method

obtains a
4

3
-approximation ratio when aggregating 1-bounded CP-

nets, it remains open which input profiles 𝑃 of a given number 𝑧

of 1-bounded CP-nets yield the maximum value of 𝑟𝑃 , amongst all

such profiles. In other words, it is not known, given a number 𝑧,

which combination of 𝑧 1-bounded CP-nets gives rise to the highest

approximation ratio when using the best input as an aggregate.

We are interested in finding such problem instances since results

along these lines may ultimately help us characterize the problem

instances that have highest ratio, and to bound the average ap-

proximation ratio taken over all problem instances. Such a bound

might be substantially below
4

3
. We conjecture that the ratio of

4

3

is attained only for certain problem instances, and that, for large

values of 𝑛, the approximation ratio may even approach 1, which

would be a significant result. This section provides first steps in

this direction, by identifying a particular such combination for the

special case when, in addition, the number 𝑛 of attributes is fixed

at 𝑛 = 3. In particular, we will show the following:

Among all input profiles of 𝑧 ≥ 3 1-bounded CPTs

over 𝑛 = 3 attributes, a profile 𝑃 maximizing 𝑟𝑃 is

• 𝑃 = (𝑚,𝑚,𝑚) in case 𝑧 = 3𝑚;

• 𝑃 = (𝑚 + 1,𝑚,𝑚) in case 𝑧 = 3𝑚 + 1; (here it should
be noted that, for 𝑃 ′ = (𝑚,𝑚,𝑚, 1), we get 𝑟𝑃 ′ > 𝑟𝑃 ,

but 𝑃 ′ uses more than 3 attributes;)

• 𝑃 = (𝑚 + 1,𝑚 + 1,𝑚) in case 𝑧 = 3𝑚 + 2.

Lemma 6.1. Let 𝑃 = (𝑡𝑃
1
, 𝑡𝑃
2
, 𝑡𝑃
3
) ∈ (N \ {0})3 be an input profile

of 1-bounded CP-nets over 𝑛 = 3 attributes, and define 𝑄𝑘 as follows.
(1) If 𝑡𝑃

2
> 𝑡𝑃

3
+ 1, then 𝑄1 := (𝑡𝑃

1
, 𝑡𝑃
2
− 1, 𝑡𝑃

3
+ 1).

(2) If 𝑡𝑃
1
> 𝑡𝑃

2
> 𝑡𝑃

3
, then 𝑄2 := (𝑡𝑃

1
− 1, 𝑡𝑃

2
, 𝑡𝑃
3
+ 1).

(3) If 𝑡𝑃
1
> 𝑡𝑃

2
+ 1, then 𝑄3 := (𝑡𝑃

1
− 1, 𝑡𝑃

2
+ 1, 𝑡𝑃

3
).

In each case, 𝑄𝑘 is an input profile with 𝑟𝑄𝑘
≥ 𝑟𝑃 .

Proof. In each case, with 𝑘 ∈ {1, 2, 3} and 𝑄 = 𝑄𝑘 , we have

𝑄 = (𝑡𝑄
1
, 𝑡
𝑄

2
, 𝑡
𝑄

3
) for values 𝑡𝑄

1
, 𝑡
𝑄

2
, 𝑡
𝑄

3
satisfying 𝑡

𝑄

1
≤ 𝑡

𝑄

2
≤ 𝑡

𝑄

3
.

Below, we exhaustively enumerate all four 𝑆𝑢𝑚1 / 𝑆𝑢𝑚2 combi-

nations, with each combination corresponding to 2
𝑛−3 = 1 swap.
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We assume 𝑡𝑃
1
< 𝑡𝑃

2
+ 𝑡𝑃

3
because otherwise the best input CPT is

an optimal solution and 𝑟𝑃 = 1, so that obviously 𝑟𝑄 ≥ 𝑟𝑃 . The

remaining three inequalities follow from 𝑡𝑃
1
≥ 𝑡𝑃

2
≥ 𝑡𝑃

3
≥ 1:

(i) 𝑡𝑃
1
< 𝑡𝑃

2
+ 𝑡𝑃

3
(ii) 𝑡𝑃

1
+ 𝑡𝑃

2
> 𝑡𝑃

3

(iii) 𝑡𝑃
1
+ 𝑡𝑃

3
> 𝑡𝑃

2
(iv) 𝑡𝑃

1
+ 𝑡𝑃

2
+ 𝑡𝑃

3
> 0

Case (1). 𝑃 = (𝑡𝑃
1
, 𝑡𝑃
2
, 𝑡𝑃
3
) and𝑄 = (𝑡𝑃

1
, 𝑡𝑃
2
−1, 𝑡𝑃

3
+1). Since 𝑡𝑃

1
= 𝑡

𝑄

1

and 𝑃 and𝑄 have the same total number of CPTs, 𝑓swap,𝑛 (𝑁𝑄 , 𝑄) =
𝑓swap,𝑛 (𝑁𝑃 , 𝑃). From 𝑃 to 𝑄 , the number of errors made by an

optimal solution increases for (ii) and decreases for (iii), cancelling

each other out. For combinations (i) and (iv), there is no change in

the number of errors made by an optimal solution, when moving

from 𝑃 to 𝑄 . Thus 𝑓
opt

swap,𝑛 (𝑄) = 𝑓
opt

swap,𝑛 (𝑃) and 𝑟𝑄 = 𝑟𝑃 .

Case (2). 𝑃 = (𝑡𝑃
1
, 𝑡𝑃
2
, 𝑡𝑃
3
) and𝑄 = (𝑡𝑃

1
−1, 𝑡𝑃

2
, 𝑡𝑃
3
+1). Since 𝑡𝑃

1
> 𝑡

𝑄

1

and 𝑃 and𝑄 have the same total number of CPTs, 𝑓swap,𝑛 (𝑁𝑄 , 𝑄) =
𝑓swap,𝑛 (𝑁𝑃 , 𝑃) + 2

𝑛−2
. Next let us assess the relationship between

𝑓
opt

swap,𝑛 (𝑃) and 𝑓
opt

swap,𝑛 (𝑄). In what follows, the term margin refers

to the absolute difference between 𝑆𝑢𝑚1 and 𝑆𝑢𝑚2.

For combinations (iii) and (iv), there is no change in the number

of errors made by an optimal solution, when moving from 𝑃 to 𝑄 .

For (i), the number of errors made by an optimal solution decreases

by at most 1 (and does not decrease at all if the margin is 1). Sum-

ming up over all swaps under this combination, this gives a decrease

of at most 2
𝑛−3

in the optimal error, when moving from 𝑃 to𝑄 . For

(ii), the margin is strictly greater than 1 since 𝑡𝑃
1
> 𝑡𝑃

2
and 𝑡𝑃

3
> 0,

so the number of errors made by an optimal solution increases by

1. Summing over all swaps under (iii), the error increases by 2
𝑛−3

.

Combined with swaps under (i), this gives a net increase ≤ −2𝑛−3.
Thus 𝑓

opt

swap,𝑛 (𝑄) ≤ 𝑓
opt

swap,𝑛 (𝑃) + 2
𝑛−3

and 𝑟𝑄 > 𝑟𝑃 .

Case (3). 𝑃 = (𝑡𝑃
1
, 𝑡𝑃
2
, 𝑡𝑃
3
) and 𝑄 = (𝑡𝑃

1
− 1, 𝑡𝑃

2
+ 1, 𝑡𝑃

3
). The proof

for this case is symmetric to that for Case 2, with respect to combi-

nations (i) and (iii), and again we have 𝑟𝑄 > 𝑟𝑃 . □

We obtain a formal statement about the “worst” input profiles in

terms of approximation ratio of the best input CPT, for 𝑛 = 3.

Corollary 6.2. Let 𝑛 = 3, 𝑧 ∈ N, and 𝑃 = (𝑡𝑃
1
, 𝑡𝑃
2
, 𝑡𝑃
3
) any input

profile of 1-bounded CPTs, with 𝑡𝑃
3
≥ 1.

(1) If 𝑧 = 3𝑚, then 𝑟𝑃 ≤ 𝑟𝑃∗
0

where 𝑃∗
0
= (𝑚,𝑚,𝑚).

(2) If 𝑧 = 3𝑚 + 1, then 𝑟𝑃 ≤ 𝑟𝑃∗
1

where 𝑃∗
1
= (𝑚 + 1,𝑚,𝑚).

(3) If 𝑧 = 3𝑚 + 2, then 𝑟𝑃 ≤ 𝑟𝑃∗
2

where 𝑃∗
2
= (𝑚 + 1,𝑚 + 1,𝑚).

Proof. Statement (1) is immediate fromTheorem 5.1, since 𝑟𝑃∗
0

=

4

3
by a result in [6]. For (2) and (3), note that 𝑡𝑃

1
≥ 𝑚 + 1, since 𝑡𝑃

1
≥

𝑡𝑃
2
≥ 𝑡𝑃

3
. Now Lemma 6.1 implies that 𝑃 can be converted into 𝑃∗

𝑖
by

a sequence of moves none of which decreases the approximation

ratio of the best input CPT. This proves the corollary. □

Remark. From Theorem 5.1, 𝑟𝑃∗
0

≥ 𝑟𝑃 for all input profiles 𝑃 of

3𝑚 1-bounded CPTs, regardless of the number 𝑛 of attributes. We

conjecture similarly, if 𝑃 has 3𝑚 + 2 CPTs, that 𝑟𝑃∗
2

≥ 𝑟𝑃 , regardless

of the number of attributes in 𝑃 . However, we can prove that, among

profiles of 3𝑚+1 CPTs, the profile 𝑟𝑃∗
1

does not maximize 𝑟𝑃 . (It only

does so when limiting the number 𝑛 of attributes to 3.) In particular,

consider two profiles 𝑃 = (𝑚,𝑚,𝑚, 1) and 𝑃∗
1
= (𝑚+1,𝑚,𝑚). Using

our combinatorial approach, we can see 𝑓swap,𝑛 (𝑁𝑃 , 𝑃) = 8𝑚 + 4

and 𝑓
opt

swap,𝑛 (𝑃) = 6𝑚 + 4. Similarly, we obtain 𝑓swap,𝑛 (𝑁𝑃∗
1 , 𝑃∗

1
) =

4𝑚 and 𝑓
opt

swap,𝑛 (𝑃∗1 ) = 3𝑚 + 1. For all 𝑚 > 0, 𝑟𝑃 > 𝑟𝑃∗
1

because

4𝑚
3𝑚+1 = 8𝑚

6𝑚+2 < 8𝑚+4
6𝑚+4 . This leads to the following conjecture.

Conjecture. Among all input profiles of 𝑧 1-bounded

CPTs (with a variable number𝑛 of attributes), a profile

𝑃 with highest ratio 𝑟𝑃 is

• 𝑃 = (𝑚,𝑚,𝑚, 1) in case 𝑧 = 3𝑚 + 1;

• 𝑃 = (𝑚 + 1,𝑚 + 1,𝑚) in case 𝑧 = 3𝑚 + 2.

Proving this conjecture would complement our result from above,

which states that, among all input profiles of 𝑧 = 3𝑚 1-bounded

CPTs (with a variable number 𝑛 of attributes), a profile 𝑃 with

highest ratio 𝑟𝑃 is 𝑃 = (𝑚,𝑚,𝑚).

7 CONCLUSIONS
We have shown that a very simple and efficient method for ag-

gregating CP-nets guarantees an approximation ratio of at most

4

3
when all input CP-nets are 1-bounded CP-nets. Notably, this

method also produces 1-bounded CP-nets as outputs. Our results

are significant in various ways:

Firstly, 1-bounded CP-nets (including tree-structured CP-nets)

are of interest in multiple studies on CP-nets, since they are ex-

pressive enough to be useful for many applications, while simple

enough to allow for efficient learning and reasoning in many set-

tings. For general voting aggregation (with explicit representation

of preferences), the simple aggregation algorithm that we use can-

not have a better approximation ratio than 2 in the worst case [20].

The fact that for CP-nets (i.e., for compact representation of pref-

erences), an approximation ratio of
4

3
is attainable, at least for a

non-trivial sub-class, is noteworthy.

Secondly, note that the method of the best input CPT, when ap-

plied to 1-bounded CPTs, will always simply output a most frequent

CPT (after subtracting all CPTs with same parent set but opposite

ordering). This means, the method of selecting the best input CPT

can be applied efficiently in an online fashion, when input CPTs

are observed in a stream rather than in a batch. The method simply

has to keep count of how often each CPT has occurred, and can

then output a most frequent one.

Thirdly, our results substantially extend those of Ali et al. [6].

While we do not know the best possible approximation ratio for

inputs more complex than 1-bounded CP-nets, we hope that the

combinatorial techniques we developed here can be used to obtain

new results in this direction. In this context, our insights into input

instances forcing the “worst” approximation ratios (see Section 6)

might also be helpful.

Finally, simple methods like the one we study here are easily

implemented and analyzed in practical settings, thus giving our

result practical relevance.
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