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ABSTRACT
The metric distortion of a randomized social choice function (RSCF)

quantifies its worst-case approximation ratio to the optimal social

cost when the voters’ costs for alternatives are given by distances in

a metric space. This notion has recently attracted significant atten-

tion as numerous RSCFs that aim to minimize the metric distortion

have been suggested. Since such tailored voting rules have, however,

little normative appeal other than their low metric distortion, we

will study the metric distortion of well-established RSCFs. Specifi-

cally, we first show that C1 maximal lottery rules, a well-known

class of RSCFs, have a metric distortion of 4, which is optimal within

the class of majoritarian RSCFs. Secondly, we conduct extensive

computer experiments on the metric distortion of RSCFs to obtain

insights into their average-case performance. These computer ex-

periments are based on a new linear program for computing the

metric distortion of a lottery and reveal that the average-case metric

distortion of some classical RSCFs is often only slightly worse than

that of RSCFs tailored to minimize the metric distortion. Finally, we

also analytically study the expected metric distortion of RSCFs for

the impartial culture distribution. Specifically, we show that, under

this distribution, every reasonable RSCF has an expected metric

distortion close to 2 when the number of voters is large.
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1 INTRODUCTION
An important challenge in multi-agent systems is collective

decision-making: given the possibly conflicting preferences of a

group of agents over some alternatives, a joint decision has to be

made. To address this problem, researchers in the field of social

choice theory try to identify desirable mechanisms to aggregate the

agents’ preferences. In more detail, social choice theory is mainly

concerned with social choice functions (SCFs) and randomized social
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choice functions (RSCFs), which formalize deterministic and random-

ized voting rules: an SCF maps the voters’ preferences (expressed

as linear rankings of the alternatives) to a single winner, and an

RSCF returns a probability distribution over the alternatives from

which the final winner will eventually be chosen [6, 13].

In an attempt to quantitatively measure the quality of SCFs and

RSCFs, Procaccia and Rosenschein [47] introduced the distortion

of voting rules. The idea of this notion is that voters have latent

cardinal utilities over the alternatives and that voting rules should

try to select alternatives with high social welfare. However, (R)SCFs

do not have access to the voters’ utilities, and the distortion of a

voting rule thus quantifies the worst-case ratio between the (ex-

pected) social welfare of the selected alternative and that of the

optimal alternative. A prominent variant of this problem has been

suggested by Anshelevich et al. [3]: in the metric distortion setting,

voters and alternatives are located in a metric space and the distance

between a voter and an alternative specifies the cost incurred to a

voter when an alternative is elected. Voting rules should then try

to select an alternative with low social cost but, since voters only

report ordinal preferences, they can only approximate the optimal

social cost. Themetric distortion of an SCF (resp. RSCF) is hence the

worst-case ratio between the (expected) social cost of the selected

alternative and of the optimal alternative, where the worst-case

is taken over all preference profiles and all metric spaces that are

consistent with the given profile.

The metric distortion of SCFs and RSCFs has recently attained

significant attention [see, e.g., 4]. In particular, after Anshelevich

et al. [3] and Anshelevich and Postl [5] have shown that no SCF

(resp. RSCF) has a metric distortion of less than 3 (resp. 2), numerous

authors tried to find voting rules with minimal metric distortion

[e.g., 2, 16, 36–38]. However, many of the suggested voting rules are

specifically tailored to minimize the metric distortion and have oth-

erwise little normative appeal. For example, the recently proposed

Plurality-Veto rule [37] is not even anonymous and its latest variant

called Simultaneous-Veto [38] fails Pareto-optimality. We thus find

it noteworthy that some well-established RSCFs also have a low

metric distortion. For instance, the uniform random dictatorship

and C2 maximal lottery (C2ML) rules, two of the most prominent

RSCFs in the literature, both have a metric distortion of 3 [5, 16, 22].

Since such established RSCFs satisfy numerous desirable properties,

we will study their metric distortion in more detail, even though

voting rules with lower metric distortion are known.

Our Contribution. The goal of this paper is to enhance the un-

derstanding of the metric distortion of established RSCFs. We will

contribute to this end in three ways. Firstly, we investigate the met-

ric distortion of C1 maximal lottery (C1ML) rules, a class of RSCFs

that is well-known for being robust to small changes in the voters’
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preferences [12, 34, 39]. C1ML rules intuitively choose randomized

Condorcet winners: these rules return a lottery 𝑝 such that, for

every lottery 𝑞, it is at least as likely that a majority of the voters

prefers an outcome drawn from 𝑝 to an outcome drawn from 𝑞 than

vice versa. As our first result, we show that every C1ML rule has a

metric distortion of at most 4 and give a lower bound on the metric

distortion of all majoritarian RSCFs (which only depend on the

majority relation) that converges to 4 as the number of alternatives

increases. Since C1ML rules are majoritarian, this proves that they

minimize the metric distortion within this class of RSCFs.

Secondly, we conduct extensive computer experiments on the

metric distortion of five RSCFs: the uniform random dictatorship, C1

and C2 maximal lottery rules, a randomized variant of the Plurality-

Veto rule [37], and the CRWW rules suggested by Charikar et al.

[16], which have the best currently known metric distortion. In

more detail, we sample preference profiles from numerous dis-

tributions, compute the lotteries chosen by our RSCFs, and then

compute the worst-case metric distortion for the given lotteries

and profiles. Moreover, we conduct an analogous experiment also

with real-world data taken from PrefLib [42]. Our simulations show

that the average metric distortion of all RSCFs is rather similar and

significantly better than their worst-case guarantees. In particular,

for many “structured” distributions C1ML and C2ML rules are only

slightly worse than CRWW rules, which typically have the best

metric distortion in our experiments. In light of their normative

appeal, this gives a strong argument for using a C1ML or C2ML

rule instead of an RSCF designed to minimize the metric distortion.

Our computer experiments rely on a new linear program for

computing the metric distortion of a lottery for a given profile,

which we believe to be of independent interest. Specifically, our

LP has only O(𝑛𝑚2) constraints, where 𝑛 is the number of voters

and𝑚 the number of alternatives, and thus allows us to efficiently

compute the metric distortion of a lottery even for large profiles.

Finally, we complement our simulations with an analytical study

of the expected metric distortion of RSCFs when preference profiles

are sampled from the impartial culture distribution. For this setting,

we show that the expected metric distortion of every reasonable

RSCF converges to a value between 2 and 2 + 1

𝑚−1 (where 𝑚 is

the number of alternatives) when the number of voters goes to

infinity. This result aligns with our simulations for the impartial

culture model and shows that, at least under the simplistic impartial

culture distribution, the choice of the voting rule has surprisingly

little effect on the expected metric distortion.

Related Work. We will next review the most relevant related

works and refer to the survey by Anshelevich et al. [4] for more

details. An overview of the upper and lower bounds for the metric

distortion of various classes of voting rules is given in Table 1. The

study ofmetric distortionwas initiated byAnshelevich et al. [3] who

have, e.g., shown that no deterministic SCF has a metric distortion

of less than 3. Inspired by this work, numerous researchers tried to

find rules with a metric distortion of 3 [1, 2, 31, 48], but it was only

in a recent line of work that such SCFs have been designed [30, 36–

38, 44]. In particular, these works culminated in the Plurality-Veto

rule, a simple SCF with a metric distortion of 3 [37]. Interestingly,

Kizilkaya and Kempe [38] recently aimed to design a normatively

more appealing SCF with optimal metric distortion.

Table 1: Overview of the best known upper and lower bounds
on the metric distortion in various classes of voting rules.
Each row together with the labels “RSCF” and “SCF” deter-
mines a class of voting rules. The columns labeled “LB” and
“UB” show the best known lower and upper bounds for the
metric distortion of rules within the given class when there
is an unbounded number of alternatives. The bold numbers
are proven in this paper.

RSCF SCF

LB UB LB UB

All 2.112 2.753 3 3

Tops-only 3 3 ∞ ∞
Pairwise 3 3 3 2 +

√
5

Majoritarian 4 4 5 5

As an alternative approach to minimize the metric distortion,

researchers also studied RSCFs. In particular, Anshelevich and Postl

[5] have shown that no RSCF has a metric distortion of less than

2 and that the uniform random dictatorship has a metric distor-

tion of 3. Moreover, Gross et al. [33] have proven that all tops-only

RSCFs (i.e., RSCFs that can only access the voters’ favorite alterna-

tives) have a metric distortion of at least 3 − 2

𝑚 when there are𝑚

alternatives. Similarly, Charikar et al. [16] have shown that C2 max-

imal lottery rules have a metric distortion of 3 and it is known that

all pairwise RSCFs (i.e., RSCFs that only depend on the numbers

of voters that prefer 𝑥 to 𝑦 for all alternatives 𝑥,𝑦) have a metric

distortion of at least 3 − 2

𝑚 [31]. Thus, when the number of alter-

natives is unbounded, the uniform random dictatorship minimizes

the metric distortion within the class of tops-only RSCFs and C2

maximal lottery rules within the class of pairwise RSCFs. Moreover,

several RSCFs have been designed with the goal to minimize the

metric distortion [21, 30, 33], but none of them guarantees a metric

distortion of less than 3. It was hence only recently that both the

upper and lower bound of the metric distortion of RSCFs has been

improved: Charikar and Ramakrishnan [15] have shown that every

RSCF has a metric distortion of at least 2.112 and Charikar et al. [16]

designed the CRWW rules with a metric distortion of at most 2.753.

Finally, our work is related to several papers [14, 17, 18, 32] that

analyze the expected distortion of voting rules when the voters’

utilities are drawn from a distribution. By contrast, we study the ex-

pected metric distortion of voting rules for the worst-case metrics of

randomly drawn profiles, i.e., we consider realistic profiles without

imposing any additional structure on the voters’ utilities. Further-

more, we note that Ebadian et al. [20] suggested an improved linear

program for computing the non-metric distortion of voting rules,

which can be seen as a mathematically unrelated analog of our new

linear program for computing the metric distortion of RSCFs.

2 MODEL
Let 𝑉𝑛 = {𝑣1, . . . , 𝑣𝑛} denote a finite set of 𝑛 ≥ 1 voters and 𝑋𝑚 =

{𝑥1, . . . , 𝑥𝑚} a finite set of 𝑚 ≥ 1 alternatives. We suppose that

every voter 𝑣 ∈ 𝑉𝑛 reports a preference relation ≻𝑣 , which is formally

a complete, transitive, and anti-symmetric binary relation over 𝑋𝑚 .

The set of all preference relations over 𝑋𝑚 is denoted by R(𝑋𝑚). A
preference profile 𝑅 is the collection of the preference relations of all
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voters in 𝑉𝑛 . The set of all preference profiles over an electorate 𝑉𝑛

and a set of alternatives 𝑋𝑚 is given by R(𝑋𝑚)𝑉𝑛 . In this paper, we

will allow for both varying sets of voters and alternatives. The set

of all preference profiles is hence given by R∗ =
⋃

𝑛,𝑚∈N 𝑅(𝑋𝑚)𝑉𝑛 .
Moreover, R∗

𝑚 is the set of all profiles on𝑚 alternatives, i.e., R∗
𝑚 =⋃

𝑛∈N 𝑅(𝑋𝑚)𝑉𝑛 . Given a profile 𝑅, we will denote by𝑉𝑅 and𝑋𝑅 the

sets of voters and alternatives that are present in the profile 𝑅, and

by 𝑛𝑅 and𝑚𝑅 the sizes of these sets.

Next, we introduce additional notation for preference profiles.

In particular, we define 𝑡𝑅 (𝑥) = |{𝑣 ∈ 𝑁𝑅 : ∀𝑦 ∈ 𝑋𝑅 \ {𝑥} : 𝑥 ≻𝑣 𝑦}|
as the number of voters that top-rank alternative 𝑥 in the profile 𝑅.

Furthermore, we let the support 𝑛𝑥𝑦 (𝑅) = |{𝑣 ∈ 𝑉𝑅 : 𝑥 ≻𝑣 𝑦}| for
𝑥 against 𝑦 denote the number of voters who prefer 𝑥 to 𝑦 in 𝑅.

Finally, the majority relation ≿𝑅 of a profile 𝑅 is defined by 𝑥 ≿𝑅 𝑦

if and only if 𝑛𝑥𝑦 (𝑅) ≥ 𝑛𝑦𝑥 (𝑅). That is, 𝑥 ≿𝑅 𝑦 if at least as many

voters prefer 𝑥 to 𝑦 than vice versa. Following the literature, ≻𝑅
denotes the strict part of ≿𝑅 (i.e., 𝑥 ≻𝑅 𝑦 iff 𝑥 ≿𝑅 𝑦 and not 𝑦 ≿𝑅 𝑥 )

and ∼𝑅 the indifference part (i.e., 𝑥 ∼𝑅 𝑦 iff 𝑥 ≿𝑅 𝑦 and 𝑦 ≿𝑅 𝑥 ).

2.1 Randomized Social Choice Functions
The study objects of this paper are randomized social choice func-

tions which are voting rules that may use chance to determine

the winner of the election. To formalize this, we define lotteries
as probability distributions over the set of alternatives 𝑋𝑅 : a lot-

tery is a function 𝑝 : 𝑋𝑅 → [0, 1] such that

∑
𝑥∈𝑋𝑅

𝑝 (𝑥) = 1. We

furthermore denote by Δ(𝑋𝑅) the set of all lotteries over 𝑋𝑅 . A

randomized social choice function (RSCF) 𝑓 is then a function that

maps every preference profile 𝑅 ∈ R∗
to a lottery 𝑝 ∈ Δ(𝑋𝑅). We

denote by 𝑓 (𝑅, 𝑥) the probability that 𝑓 assigns to alternative 𝑥 in

the profile 𝑅 and next introduce five (classes of) RSCFs:

Uniform random dictatorship. The uniform random dictatorship

𝑓RD picks a voter 𝑣 ∈ 𝑉𝑅 uniformly at random and implements his

favorite alternative as the winner of the election. More formally,

the probability that an alternative 𝑥 is selected in a profile 𝑅 by the

uniform random dictatorship is 𝑓RD (𝑅, 𝑥) = 𝑡𝑅 (𝑥 )
𝑛𝑅

.

Randomized Plurality-Veto. Kizilkaya and Kempe [38] suggested

the Plurality-Veto rule as a deterministic SCF with the optimal met-

ric distortion of 3. For this rule, we first fix a sequence of the voters

(𝑣1, . . . , 𝑣𝑛) and assign a score 𝑠 (𝑥) to each alternative that is ini-

tially equal to 𝑡𝑅 (𝑥). Then, we iterate through the voters according

to the given sequence, ask each voter for his worst alternative with

positive score, and reduce the score of this alternative by 1. Finally,

the winner of this rule is the last alternative with positive score.

Since the winner of Plurality-Veto rule depends on the order over

the voters, we denote by 𝑃𝑉 (𝑅) the set of alternatives that can

be chosen for some order. Furthermore, we define the randomized
Plurality-Veto rule 𝑓RPV as the RSCF that picks an alternative from

𝑃𝑉 (𝑅) uniformly at random. The set 𝑃𝑉 (𝑅) and hence 𝑓RPV can be

efficiently computed by solving𝑚 matching problems [37, 38].

C2ML rules. C2 maximal lottery (C2ML) rules, which have been

suggested by Fishburn [23] and recently promoted by, e.g., Brandl

et al. [11], compute a randomized Condorcet winner: these rules

select a lottery 𝑝 such that, for all lotteries 𝑞, the expected num-

ber of voters that prefer the outcome chosen from 𝑝 to the out-

come chosen from 𝑞 is at least as large as the expected number

of voters that prefer the outcome chosen from 𝑞 to the outcome

chosen from 𝑝 . To formalize this, we extend the support 𝑛𝑥𝑦 (𝑅)
to lotteries 𝑝 , 𝑞 by defining 𝑛𝑝𝑞 (𝑅) =

∑
𝑥,𝑦∈𝐴 𝑝 (𝑥)𝑞(𝑦)𝑛𝑥𝑦 (𝑅).

Then, the set of C2 maximal lotteries is given by C2ML(𝑅) =

{𝑝 ∈ Δ(𝑋𝑅) : ∀𝑞 ∈ Δ(𝑋𝑅) : 𝑛𝑝𝑞 (𝑅) ≥ 𝑛𝑞𝑝 (𝑅)}. The set of C2 max-

imal lotteries is always non-empty by the minimax theorem and

almost always a singleton [40, 41]. Finally, an RSCF is a C2ML rule

if 𝑓 (𝑅) ∈ C2ML(𝑅) for every profile 𝑅 ∈ R∗
.

C1ML rules. C1 maximal lottery (C1ML) rules, which go back

to Fishburn [23], also choose a randomized Condorcet winner but

in a different sense: C1ML rules select a lottery 𝑝 such that, for all

lotteries 𝑞, it is at least as likely that a majority of the voters prefers

the outcome chosen from 𝑝 to the outcome chosen from 𝑞 than vice

versa. To formalize this, we extend the majority relation to lotteries

𝑝 , 𝑞 by defining that 𝑝 ≿𝑅 𝑞 if and only if
∑
𝑥,𝑦∈𝐴 : 𝑥≻𝑅𝑦 𝑝 (𝑥)𝑞(𝑦) ≥∑

𝑥,𝑦∈𝐴 : 𝑥≻𝑅𝑦 𝑝 (𝑦)𝑞(𝑥). The set of C1 maximal lotteries is then

C1ML(𝑅) = {𝑝 ∈ Δ(𝑋𝑅) : ∀𝑞 ∈ Δ(𝑋𝑅) : 𝑝 ≿𝑅 𝑞}. Just as for C2
maximal lotteries, this set is always non-empty and almost always

a singleton. In particular, if the number of voters is odd, there are

unique C1 and C2 maximal lotteries. An RSCF is a C1ML rule if

𝑓 (𝑅) ∈ C1ML(𝑅) for all profiles 𝑅 ∈ R∗
.

CRWW rules. Finally, we introduce the RSCFs suggested by

Charikar et al. [16], which we refer to as CRWW rules. As a sub-

routine, these rules rely on another RSCF called 𝑓𝛽−radius . To define
this RSCF, we say 𝑥 𝛽-covers 𝑦 in a profile 𝑅 for some 𝛽 ∈ [0, 1]
if 𝑛𝑥𝑦 (𝑅) ≥ 𝛽𝑛𝑅 and 𝑛𝑧𝑥 (𝑅) ≥ 𝛽𝑛𝑅 implies 𝑛𝑧𝑦 (𝑅) ≥ 𝛽𝑛𝑅
for all 𝑧 ∈ 𝑋𝑅 . Moreover, we define 𝑈𝛽 (𝑅) as the set of alterna-

tives that are not 𝛽-covered in 𝑅 and 𝑅 |𝑈𝛽 (𝑅) as the profile that
arises from 𝑅 by removing all alternatives not in 𝑈𝛽 (𝑅). Then,
𝑓𝛽−radius computes the uniform random dictatorship on 𝑅 |𝑈𝛽 (𝑅) ,
i.e., 𝑓𝛽−radius (𝑅) = 𝑓RD (𝑅 |𝑈𝛽 (𝑅) ). Based on this subroutine, con-

stants 𝐵 = 0.876353, 𝑝 = 1

1+
∫ 𝐵

0.5
1

1−𝑥2 𝑑𝑥
≈ 0.552327, and the distri-

bution 𝜌 (𝛽) =
𝑝

(1−𝑝 ) (1−𝛽2 ) on the interval ( 1
2
, 𝐵), CRWW rules

are defined as follows: with probability 𝑝 , we execute a C2ML rule

and with probability 1 − 𝑝 , we sample a value 𝛽 ∈ (0.5, 𝐵) from the

distribution 𝜌 (𝛽) and return 𝑓𝛽−radius (𝑅). Hence, an RSCF 𝑓 is a

CRWW rule if there is a C2ML rule 𝑓 ′ such that

𝑓 (𝑅) = 𝑝𝑓 ′ (𝑅) + (1 − 𝑝)
∫ 𝐵

0.5

𝜌 (𝛽) 𝑓𝛽−radius (𝑅)𝑑𝛽.

The uniform random dictatorship 𝑓RD , C2ML rules, and C1ML

rules are well-established in the literature. For example, 𝑓RD is

known to be strategyproof [29], whereas both C2ML rules and

C1ML rules satisfy, e.g., Condorcet-consistency and composition-

consistency [11]. By contrast, the randomized Plurality-Veto rule

and the CRWW rules are designed to minimize the metric distortion

and only known to satisfy basic further axioms. Moreover, we

note that the uniform random dictatorship 𝑓RD , C2ML rules, and

C1ML rules belong to important classes of RSCFs: 𝑓RD is a tops-only
RSCF as it only accesses the voters’ favorite alternatives, C2ML

rules are pairwise as they only access the supports 𝑛𝑥𝑦 (𝑅) for all
𝑥,𝑦 ∈ 𝑋𝑅 , and C1ML rules are majoritarian as they only depend on

the majority relation ≿𝑅 . In more detail, an RSCF 𝑓 is majoritarian

if 𝑓 (𝑅) = 𝑓 (𝑅′) for all profiles 𝑅, 𝑅′ ∈ R∗
with ≿𝑅 = ≿𝑅′ .
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2.2 Metric Distortion
In order to assess the quality of RSCFs, we analyze their metric

distortion. The idea of this approach is that voters and alternatives

are embedded in a metric space and that the distance between a

voter 𝑣 and an alternative 𝑥 specifies the cost that 𝑣 experiences

when 𝑥 is selected. Following the utilitarian approach, the optimal

alternative is then the one that minimizes the total distance to all

voters. However, since voters only report ordinal preferences over

the alternatives instead of their cardinal costs, we cannot determine

the best alternative. The goal of metric distortion is hence to select

a lottery that approximates the optimal social cost well for every

metric space that is consistent with the voters’ preferences.

To formalize this, we call a function 𝑑 : (𝑉𝑅 ∪ 𝑋𝑅)2 → R≥0
a metric if it satisfies for all 𝑥,𝑦, 𝑧 ∈ 𝑉𝑅 ∪ 𝑋𝑅 that i) 𝑑 (𝑥, 𝑥) = 0,

ii) 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥), and iii) 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧). We note

that some definitions of metrics also require that 𝑑 (𝑥,𝑦) > 0 if

𝑥 ≠ 𝑦, but the literature on metric distortion typically omits this

condition since it does not affect the results. The distance 𝑑 (𝑣, 𝑥)
states the cost incurred to voter 𝑣 when alternative 𝑥 is selected.

The social cost of an alternative 𝑥 is thus 𝑠𝑐 (𝑥, 𝑑) = ∑
𝑣∈𝑉𝑅 𝑑 (𝑣, 𝑥)

and the social cost of lottery 𝑝 is 𝑠𝑐 (𝑝, 𝑑) =
∑
𝑥∈𝑋𝑅

𝑝 (𝑥)𝑠𝑐 (𝑥, 𝑑).
Finally, a metric 𝑑 is consistent with a profile 𝑅 if 𝑥 ≻𝑣 𝑦 implies

𝑑 (𝑣, 𝑥) ≤ 𝑑 (𝑣,𝑦) for all voters 𝑣 ∈ 𝑉𝑅 and alternatives 𝑥,𝑦 ∈ 𝑋𝑅 .

We denote by 𝐷 (𝑅) the set of metrics that are consistent with 𝑅.

Given a profile 𝑅, the goal of metric distortion is to find a lottery

whose social cost is close to the optimal social cost for all metrics

that are consistent with 𝑅. We thus define the metric distortion of

a lottery 𝑝 in a profile 𝑅 as dist (𝑝, 𝑅) = sup𝑑∈𝐷 (𝑅)
𝑠𝑐 (𝑝,𝑑 )

min𝑥 ∈𝑋𝑅
𝑠𝑐 (𝑥,𝑑 ) .

Note that min𝑥∈𝑋𝑅
𝑠𝑐 (𝑥, 𝑑) might be 0; we hence define

0

0
= 1

and
𝑧
0
= ∞ for 𝑧 > 0. For the ease of presentation, we will use

in our results that ∞ > 𝑥 for all 𝑥 ∈ R and 𝑦 + 𝑧 · ∞ = ∞ for all

𝑦 ∈ R, 𝑧 ∈ R>0. Next, the metric distortion dist (𝑓 ) of an RSCF 𝑓

is its worst-case metric distortion over all possible profiles, i.e.,

dist (𝑓 ) = sup𝑅∈R∗ dist (𝑓 (𝑅), 𝑅). To allow for a more fine-grained

analysis, we further define dist𝑚 (𝑓 ) = sup𝑅∈R∗
𝑚
dist (𝑓 (𝑅), 𝑅) as

the metric distortion of 𝑓 when only profiles on𝑚 alternatives are

considered. We note that dist (𝑓 ) = ∞ and dist𝑚 (𝑓 ) = ∞ if the

respective suprema are unbounded.

We recall here that the uniform random dictatorship 𝑓RD , the

randomized Plurality-Veto rule 𝑓RPV , C2ML rules 𝑓C2ML, and CRWW

rules 𝑓CRWW have a metric distortion of dist (𝑓RD) = 3, dist (𝑓RPV ) =
3, dist (𝑓C2ML) = 3, and dist (𝑓CRWW ) ≤ 2.753, respectively. By

contrast, the metric distortion of C1ML rules is unknown.

3 ANALYSIS OF C1ML RULES
As our first contribution, we will show that C1ML rules have a met-

ric distortion of 4 and that no other majoritarian RSCF has a lower

metric distortion when the number of alternatives is unbounded.

Thus, our results show that C1ML rules minimize the metric distor-

tion among majoritarian RSCFs. Our analysis of the C1ML rule is

further motivated by the fact that maximal lottery rules have been

repeatedly recommended for practical usage [11, 12]. All missing

proofs can be found in the full version of this paper [25].

To prove our results, we first show a strong relation between the

metric distortion of majoritarian RSCFs and distances in the major-

ity relation. To this end, we define themajority distancemd (𝑥,𝑦,≿𝑅)

as the length of the shortest path from 𝑥 to 𝑦 in the majority rela-

tion ≿𝑅 . In particular, md (𝑥, 𝑥,≿𝑅) = 0, md (𝑥,𝑦,≿𝑅) = 1 if 𝑥 ≿𝑅 𝑦,

and md (𝑥,𝑦,≿𝑅) = ∞ if there is no path from 𝑥 to 𝑦 in ≿𝑅 . We

extend this notion also to lotteries 𝑝 by defining md (𝑝,𝑦,≿𝑅) =∑
𝑥∈𝑋𝑅

𝑝 (𝑥)md (𝑥,𝑦,≿𝑅) and note that md (𝑝,𝑦,≿𝑅) = ∞ if and

only if there is an alternative 𝑥 with 𝑝 (𝑥) > 0 andmd (𝑥,𝑦,≿𝑅) = ∞.

Proposition 1. It holds for all majoritarian RSCFs 𝑓 and preference
profiles 𝑅 on𝑚 ≥ 3 alternatives that
(1) dist (𝑓 (𝑅), 𝑅) ≤ 1 + 2max𝑥∈𝑋𝑅

md (𝑓 (𝑅), 𝑥,≿𝑅).
(2) dist𝑚 (𝑓 ) ≥ 1 + 2max𝑥∈𝑋𝑅

md (𝑓 (𝑅), 𝑥,≿𝑅).

Proof sketch. For Claim (1), we first note that there is noth-

ing to show if max𝑥∈𝑋𝑅
md (𝑓 (𝑅), 𝑥,≿𝑅) = ∞ and we hence sup-

pose that md (𝑓 (𝑅), 𝑥,≿𝑅) < ∞ for all 𝑥 ∈ 𝑋𝑅 . We then prove

that 𝑠𝑐 (𝑥, 𝑑) ≤ (1 + 2md (𝑥,𝑦,≿𝑅))𝑠𝑐 (𝑦,𝑑) for all 𝑥,𝑦 ∈ 𝑋𝑅

and 𝑑 ∈ 𝐷 (𝑅) by an induction on the majority distance be-

tween 𝑥 and 𝑦. This insight implies Claim (1) as dist (𝑓 (𝑅), 𝑅) =

sup𝑑∈𝐷 (𝑅)

∑
𝑥 ∈𝑋𝑅

𝑓 (𝑅,𝑥 )𝑠𝑐 (𝑥,𝑑 )
min𝑦∈𝑋𝑅

𝑠𝑐 (𝑦,𝑑 ) . For Claim (2), we show that there

is for every 𝜖 > 0 a preference profile 𝑅𝜖 and a metric space

𝑑 ∈ 𝐷 (𝑅𝜖 ) such that ≿𝑅𝜖 = ≿𝑅 and
𝑠𝑐 (𝑓 (𝑅),𝑑 )

min𝑦∈𝑋𝑅
𝑠𝑐 (𝑦,𝑑 ) ≥ 1 +

2max𝑥∈𝑋𝑅
md (𝑓 (𝑅), 𝑥,≿𝑅) − 𝜖 . Since 𝑓 (𝑅𝜖 ) = 𝑓 (𝑅) as 𝑓 is ma-

joritarian, we then infer Claim (2) by letting 𝜖 go to 0. □

Claims related to Proposition 1 have been shown by Anshelevich

et al. [2, Lemma 6] and Kempe [36, Corollary 5.1], but these results

lack the lower bound given in (2). Based on our proposition, we

will next compute the metric distortion of C1ML rules. In particular,

our subsequent theorem shows that C1ML rules have a metric

distortion of at most 4 and that no majoritarian RSCF has a lower

metric distortion if the number of alternatives𝑚 is unbounded.

Theorem 1. The following claims are true:
(1) It holds for all C1ML rules 𝑓 and𝑚 ≥ 3 that dist𝑚 (𝑓 ) ≤ 4 and

dist𝑚 (𝑓 ) ≥ 4 − ( 1
3
) ⌊

𝑚−3
2

⌋ .
(2) It holds for all majoritarian RSCFs 𝑓 that dist𝑚 (𝑓 ) ≥ 4 − 3

𝑚 if
𝑚 ≥ 3 is odd and dist𝑚 (𝑓 ) ≥ 4 − 3

𝑚−1 if𝑚 ≥ 3 is even.

Proof. Wewill only prove Claim (1) here and give a proof sketch

for Claim (2). The full proof of Claim (2) can be found in [25].

Claim (1), upper bound: Let 𝑓 denote a C1ML rule, let 𝑅 denote

a profile, and define 𝑝 = 𝑓 (𝑅). It follows from a result by Dutta and

Laslier [19] that 𝑝 (𝑥) > 0 impliesmd (𝑥,𝑦,≿𝑅) ≤ 2 for all 𝑥,𝑦 ∈ 𝑋𝑅 .

Based on this insight, we will show that md (𝑝, 𝑧,≿𝑅) ≤ 3

2
for all

𝑧 ∈ 𝑋𝑅 as Claim (1) of Proposition 1 then proves that dist (𝑝, 𝑅) ≤ 4.

We thus fix an alternative 𝑧 ∈ 𝑋𝑅 and let 𝑞 denote the lottery with

𝑞(𝑧) = 1. Further, we define 𝑋+ = {𝑥 ∈ 𝑋𝑅 : 𝑥 ≻𝑅 𝑧} and 𝑋 − =

{𝑥 ∈ 𝑋𝑅 : 𝑧 ≻𝑅 𝑥}. By the definition of C1ML rules, it holds that

𝑝 ≿𝑅 𝑞, which implies that

∑
𝑥∈𝑋 + 𝑝 (𝑥) ≥ ∑

𝑥∈𝑋 − 𝑝 (𝑥). This means

that

∑
𝑥∈𝑋 − 𝑝 (𝑥) ≤ 1

2
. Next, it holds for all 𝑥 ∈ 𝑋𝑅 with 𝑝 (𝑥) > 0

that md (𝑥, 𝑧,≿𝑅) = 1 if 𝑥 ≿𝑅 𝑧 and md (𝑥, 𝑧,≿𝑅) = 2 if 𝑧 ≻𝑅 𝑥 due

to our previous observation. Hence, we infer that md (𝑝, 𝑧,≿𝑅) ≤∑
𝑥∈𝑋𝑅 : 𝑥≿𝑅𝑧 𝑝 (𝑥) + 2

∑
𝑥∈𝑋𝑅 : 𝑧≻𝑅𝑥 𝑝 (𝑥) = 1 + ∑

𝑥∈𝑋 − 𝑝 (𝑥) ≤ 3

2
.

Finally, Claim (1) of Proposition 1 shows that dist (𝑝, 𝑅) ≤ 4.

Claim (1), lower bound: For proving our lower bound, we

recall that C1ML rules are majoritarian and that |C1ML(𝑅) | = 1 if

the majority relation of 𝑅 is strict [40]. Moreover, by McGarvey’s

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

788



construction [43], there is for every complete binary relation ≿ on

𝑋𝑚 a profile 𝑅 with ≿𝑅 = ≿. Due to Claim (2) of Proposition 1,

we can hence show the lower bound by constructing a complete

and anti-symmetric binary relation ≿∗ for every 𝑋𝑚 with𝑚 ≥ 3

such that max𝑥∈𝑋𝑅
md (𝑝, 𝑥,≿∗) = 3

2
− 1

2
· ( 1

3
) ⌊

𝑚−3
2

⌋
, where 𝑝 is

the unique C1 maximal lottery of a profile 𝑅 with ≿𝑅 = ≿∗. We

first suppose that𝑚 ≥ 3 is odd and consider the following relation

≿∗ on 𝑋𝑚 : for all odd 𝑘 < 𝑚 and all 𝑗 with 𝑘 + 2 ≤ 𝑗 ≤ 𝑚, it

holds that 𝑥𝑘+1 ≻∗ 𝑥𝑘 , 𝑥𝑘 ≻∗ 𝑥 𝑗 , and 𝑥 𝑗 ≻∗ 𝑥𝑘+1. It can be checked

that the unique C1 maximal lottery 𝑝 for this relation is defined by

𝑝 (𝑥𝑘 ) = 𝑝 (𝑥𝑘+1) = ( 1
3
)
𝑘+1
2 for all odd 𝑘 < 𝑚 and 𝑝 (𝑥𝑚) = ( 1

3
)
𝑚−1
2 .

This means that

∑
𝑥∈𝑋𝑜 𝑝 (𝑥) = ∑

𝑥∈𝑋𝑒 𝑝 (𝑥𝑘 ) = 1

2
− 1

2
𝑝 (𝑥𝑚) for the

sets 𝑋𝑜 = {𝑥1, 𝑥3, . . . , 𝑥𝑚−2} and 𝑋𝑒 = {𝑥2, 𝑥4, . . . , 𝑥𝑚−1}. Next, by
definition of ≿∗, it holds for all odd 𝑘 < 𝑚 that md (𝑥𝑘 , 𝑥𝑚,≿∗) = 1

and md (𝑥𝑘+1, 𝑥𝑚,≿∗) = 2. Hence, md (𝑝, 𝑥𝑚,≿∗) = ∑
𝑥∈𝑋𝑜 𝑝 (𝑥) +

2

∑
𝑥∈𝑋𝑒 𝑝 (𝑥) = 3

(
1

2
− 1

2
𝑝 (𝑥𝑚)

)
= 3

2
− 1

2
· ( 1

3
)
𝑚−3
2 . Proposition 1

then shows that dist𝑚 (𝑓 ) ≥ 4 − ( 1
3
)
𝑚−3
2 . Finally, to extend this

result to even 𝑚, we add a new alternative to ≿∗ that loses all

majority comparisons. Every C1ML rule will assign probability 0

to this alternative and it does hence not affect our analysis.

Claim (2): In this proof sketch, we assume that 𝑚 ≥ 3 is

odd. To prove the theorem in this case, we will again use Claim

(2) of Proposition 1 and hence construct a profile 𝑅 such that

max𝑥∈𝑋𝑅
md (𝑝, 𝑥,≿𝑅) ≥ 3

2
− 3

2𝑚 for every lottery 𝑝 . Next, Mc-

Garvey’s theorem [43] allows us to focus on complete binary

relations on 𝑋𝑚 . The theorem then follows by proving that

max𝑥∈𝑋𝑅
md (𝑝, 𝑥,≿) ≥ 3

2
− 3

2𝑚 for all lotteries 𝑝 and the “cyclic” re-

lation ≿ given by 𝑥𝑖 ≻ 𝑥𝑖+𝑚𝑘 for all 𝑖 ∈ {1, . . . ,𝑚}, 𝑘 ∈ {1, . . . , 𝑚−1
2

}
(where 𝑖 +𝑚 𝑘 = 𝑖 + 𝑘 if 𝑖 + 𝑘 ≤ 𝑚 and 𝑖 +𝑚 𝑘 = 𝑖 + 𝑘 −𝑚 else). □

Remark 1. The upper bound in Claim (1) of Theorem 1 is tight

as there are C1ML rules 𝑓 with dist (𝑓 ) = 4. To see this, consider

the lottery 𝑝 given by 𝑝 (𝑎) = 𝑝 (𝑐) = 1

2
and a profile 𝑅 with 𝑋𝑅 =

{𝑎, 𝑏, 𝑐}, 𝑎 ≻𝑅 𝑏, 𝑏 ≻𝑅 𝑐 , and 𝑐 ∼𝑅 𝑎. Since 𝑝 is C1 maximal in 𝑅

and md (𝑝,𝑏,≿𝑅) = 3

2
, Proposition 1 shows that dist (𝑓 ) = 4 for

all C1ML rules 𝑓 with 𝑓 (𝑅) = 𝑝 . By contrast, the lower bound for

C1ML rules is not tight. It can be shown that every C1ML rule has a

metric distortion of at least 4− 3𝛾𝑚 , where 𝛾𝑚 denotes the minimal

non-zero probability that a C1ML rule assigns to an alternative in a

profile with𝑚 alternatives and an odd number of voters. However,

the probabilities 𝛾𝑚 are not well-understood [26], so we cannot use

them to improve our lower bound for C1ML rules.

Remark 2. Proposition 1 allows us to identify the majoritarian

RSCF that minimizes dist𝑚 (𝑓 ) for a fixed number of alternatives𝑚:

this RSCF 𝑓 ∗ chooses for each profile 𝑅 a lottery 𝑝 that minimizes

max𝑥∈𝑋𝑅
md (𝑝, 𝑥,≿𝑅). Based on a computer-aided approach, we

have shown that dist𝑚 (𝑓 ∗) = 4− 3

𝑚 for all odd𝑚 ≤ 9, which proves

that Claim (2) of Theorem 1 is tight in these cases.

Remark 3. Proposition 1 recovers known bounds on the met-

ric distortion of majoritarian SCFs. For instance, this proposition

implies that every alternative in the uncovered set has a metric

distortion of 5 because the uncovered set is the set of alternatives

that can reach every other alternative in at most two steps. This

result has been first shown by Anshelevich et al. [2].

4 SIMULATIONS
As our second contribution, we conduct extensive computer experi-

ments to gain insights into the average-case metric distortion of the

RSCFs in Section 2.1. To this end, we first derive a linear program

that efficiently computes the metric distortion of a lottery for a

profile (Section 4.1), and then explain the setup and results of our

experiments (Sections 4.2 and 4.3). The code for our experiments is

publicly available on Zenodo [24].

4.1 Computing the Metric Distortion
The main challenge for our experiments is to compute the metric

distortion dist (𝑝, 𝑅) for a given lottery 𝑝 and profile 𝑅. To this

end, we note that it suffices to compute the term dist (𝑝, 𝑅, 𝑥) =

sup𝑑∈𝐷 (𝑅)
𝑠𝑐 (𝑝,𝑑 )
𝑠𝑐 (𝑥,𝑑 ) for all alternatives 𝑥 ∈ 𝑋𝑅 because dist (𝑝, 𝑅) =

max𝑥∈𝑋𝑅
dist (𝑝, 𝑅, 𝑥). Moreover, we can assume that 𝑠𝑐 (𝑥, 𝑑) = 1

since the term
𝑠𝑐 (𝑝,𝑑 )
𝑠𝑐 (𝑥,𝑑 ) is invariant under scaling 𝑑 . Hence, we only

need to find for every alternative 𝑥 the metric 𝑑𝑥 that maximizes

𝑠𝑐 (𝑝, 𝑑𝑥 ) subject to 𝑑𝑥 ∈ 𝐷 (𝑅) and 𝑠𝑐 (𝑥, 𝑑𝑥 ) = 1. While this can be

done by linear programs that use the distances 𝑑 (𝑥, 𝑣) as variables
and encode that 𝑑 ∈ 𝐷 (𝑅) and 𝑠𝑐 (𝑥, 𝑑) = 1, this straightforward

approach is too slow for our experiments as we need O((𝑛 +𝑚)3)
constraints to formalize the triangle inequalities for metrics.

To derive a more efficient method to compute dist (𝑝, 𝑅, 𝑥), we
will use that the metric distortion of a lottery 𝑝 for a profile 𝑅 can

be computed by only considering the biased metrics of Charikar

and Ramakrishnan [15]. To define these metrics, we let ⪰𝑣 denote

the relation given by 𝑥 ⪰𝑣 𝑦 if and only if 𝑥 ≻𝑣 𝑦 or 𝑥 = 𝑦 for

all 𝑥,𝑦 ∈ 𝑋𝑅 . Then, a metric 𝑑 is biased for a profile 𝑅 if there is

an alternative 𝑥∗ ∈ 𝑋𝑅 and a function 𝑡 : 𝑋𝑅 → R≥0 such that

(i) 𝑡 (𝑥∗) = 0, (ii) 𝑑 (𝑥∗, 𝑣) = 1

2
max𝑥,𝑦∈𝑋𝑅 : 𝑥⪰𝑣𝑦 𝑡 (𝑥) − 𝑡 (𝑦) for all

𝑣 ∈ 𝑉𝑅 , and (iii) 𝑑 (𝑥, 𝑣) = 𝑑 (𝑥∗, 𝑣) + min𝑦∈𝑋𝑅 : 𝑥⪰𝑣𝑦 𝑡 (𝑦) for all
𝑣 ∈ 𝑉𝑅 and all 𝑥 ∈ 𝑋𝑅 \ {𝑥∗}. Unfortunately, due to the maxima and

minima in the definition of these metrics, we cannot directly use

them to compute dist (𝑝, 𝑅). We thus adapt the idea of biased metrics

to construct a linear program that efficiently computes this value. In

more detail, we will show that the following LP (called LP 1), which

uses variables 𝑑 (𝑥, 𝑣) and 𝑡 (𝑥) for 𝑥 ∈ 𝑋𝑅 and 𝑣 ∈ 𝑉𝑅 , computes

dist (𝑝, 𝑅, 𝑥∗) for every lottery 𝑝 , profile 𝑅, and alternative 𝑥∗.

max

∑
𝑥∈𝑋𝑅

𝑝 (𝑥) ∑
𝑣∈𝑉𝑅

𝑑 (𝑥, 𝑣)

s.t. 𝑡 (𝑥∗) = 0

𝑡 (𝑥) ≥ 0 ∀𝑥 ∈𝑋𝑅

𝑑 (𝑥∗, 𝑣) ≥ 1

2
(𝑡 (𝑥) − 𝑡 (𝑦)) ∀𝑣 ∈𝑉𝑅, 𝑥,𝑦 ∈𝑋𝑅 : 𝑥 ⪰𝑣 𝑦

𝑑 (𝑥, 𝑣) ≤ 𝑑 (𝑥∗, 𝑣) + 𝑡 (𝑦) ∀𝑣 ∈𝑉𝑅, 𝑥,𝑦 ∈𝑋𝑅 : 𝑥 ⪰𝑣 𝑦

𝑑 (𝑥, 𝑣) + 𝑑 (𝑥∗, 𝑣) ≥ 𝑡 (𝑥) ∀𝑣 ∈𝑉𝑅, 𝑥 ∈𝑋𝑅∑
𝑣∈𝑉𝑅 𝑑 (𝑥

∗, 𝑣) = 1

(LP 1)

Proposition 2. Fix a profile 𝑅, a lottery 𝑝 , and an alterna-
tive 𝑥∗. If the optimal objective value 𝑜∗

𝐿𝑃
of LP 1 is bounded, then

dist (𝑝, 𝑅, 𝑥∗) = 𝑜∗
𝐿𝑃

and otherwise dist (𝑝, 𝑅, 𝑥∗) = ∞.

Proof sketch. Let 𝑅 denote a profile, 𝑝 a lottery, and 𝑥∗ an al-

ternative. It can be checked that every biased metric 𝑑 together with

its inducing function 𝑡 satisfies the conditions of LP 1, so the opti-

mal objective value 𝑜∗
𝐿𝑃

of our LP is lower bounded by dist (𝑝, 𝑅, 𝑥∗).
Specifically, the constraints in the first four lines follow directly
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from the definition of 𝑑 and 𝑡 , the fifth line follows by substitut-

ing the definitions of 𝑑 (𝑥, 𝑣) and 𝑑 (𝑥∗, 𝑣), and the constraint that∑
𝑣∈𝑉𝑅 𝑑 (𝑥

∗, 𝑣) = 1 can be enforced by scaling𝑑 and 𝑡 without affect-

ing dist (𝑝, 𝑅, 𝑥∗). Conversely, to show that dist (𝑝, 𝑅, 𝑥∗) ≥ 𝑜∗
𝐿𝑃

, we

prove that every feasible solution of LP 1 with objective value 𝑜𝐿𝑃

can be transformed into a metric𝑑 ∈ 𝐷 (𝑅) such that 𝑠𝑐 (𝑝,𝑑 )
𝑠𝑐 (𝑥∗,𝑑 ) ≥ 𝑜𝐿𝑃 .

We note that this direction is independent of the work of Charikar

et al. [16] as we need to reason about our constraints to turn a

feasible solution of our LP into a metric. □

Given a profile𝑅 on𝑛 voters and𝑚 alternatives, LP 1 hasO(𝑛𝑚2)
constraints and it is thus very fast to solve this LP. For example,

based on LP 1, we need in average roughly 20 seconds on a single

core of an Apple M1 Ultra chip to compute the metric distortion of

a lottery for a profile with 201 voters and 15 alternatives.

4.2 Simulations with Synthetic Data
As our first computer experiment, we conduct extensive simulations

based on synthetically generated preference profiles. In more detail,

we generate 1000 preference profiles on𝑚 alternatives and 𝑛 voters

for 14 distributions over preference profiles and all combinations

of (𝑚,𝑛) ∈ {5, 10, 15} × {11, 21, . . . , 201}. For each of the sampled

preference profiles 𝑅, we then compute the lottery 𝑓 (𝑅) chosen by

the five RSCFs discussed in Section 2.1 and their respective metric

distortion dist (𝑓 (𝑅), 𝑅). Finally, for each𝑚 ∈ {5, 10, 15} and each

distribution, we plot the average metric distortion of each RSCF

as a function depending on the number of voters 𝑛. Due to space

restrictions, we show the results of these simulations only for two

exemplary distributions, namely the impartial culture model and

the 3-dimensional Euclidean cube model. The plots for the other

distributions (the Mallow’s model, the Pólya-Eggenberg urn model,

and the 𝑡-dimensional Euclidean cube and ball models with various

parameterizations) as well as further statics can be found in the full

version [25]. In particular, our experiments cover all major models

used in the “map of elections” [7, 8, 49]. We next define the impartial

culture and the Euclidean cube models.

Impartial Culture (IC). In this model, each voter is assigned a

preference relation independently and uniformly at random. Hence,

for each voter 𝑣 ∈ 𝑉𝑛 and preference relation ≻ ∈ R(𝑋𝑚), the
probability that ≻ is assigned to 𝑣 is 1

𝑚!
.

𝑡-Dimensional Euclidean Cube (𝑡EC). In this model, we assign

voters and alternatives independently and uniformly at random to

points in the 𝑡-dimensional cube [−1, 1]𝑡 . The voters’ preference
relations are then given by their distances to the alternatives: a voter

𝑣 prefers alternative𝑥 to alternative𝑦 if |𝑝𝑣−𝑝𝑥 |2 < |𝑝𝑣−𝑝𝑦 |2 where
𝑝𝑣 , 𝑝𝑥 , and 𝑝𝑦 denote the points of 𝑣 , 𝑥 , and 𝑦 in the hypercube. In

the main body, we use this model with 𝑡 = 3 dimensions.

The results of our simulations for these two models are shown

in Figure 1. We first note that, in most experiments, the measured

variance is rather lower, with typical values lying between 0.05 to

0.01 (see the full version [25] for details). Moreover, in all exper-

iments, the average metric distortion of the considered RSCFs is

significantly smaller than their worst-case metric distortion, thus

indicating that such worst-case bounds are too pessimistic for more

realistic profiles. In particular, the average metric distortion of all

RSCFs is usually in the interval [2, 2.5], which also shows that the

choice of a particular rule has only limited effect. This is especially

striking when comparing C1ML and C2ML rules, which are almost

indistinguishable in our experiments even though the worst-case

metric distortion is 3 for C2ML rules and 4 for C1ML rules.

Beyond these general observations, there are several interesting

trends in our experiments that can be observed for most of the

distributions. We explain these trends for each RSCF individually.

CRWW rule. In most of our simulations and especially when

𝑚 ∈ {10, 15}, the CRWW rule 𝑓CRWW has the lowest average met-

ric distortion among the tested rules. In particular, for effectively

all distributions and all numbers of voters, the average metric dis-

tortion of this rule lies between 2 and 2.15. These results suggest

that, when the metric distortion is the central factor for deciding

on the RSCF, we should use the CRWW rule as it has both the best

worst-case and average-case metric distortion.

Randomized Plurality-Veto. The randomized Plurality-Veto rule

𝑓RPV has often a very low average metric distortion if there are

only𝑚 = 5 alternatives, but it becomes worse as𝑚 increases. For

instance, in the 3-dimensional Euclidean cube model, it has for

most values of 𝑛 an average metric distortion of less than 2, but

its average metric distortion increases to over 2.2 when𝑚 = 15.

By contrast, in the impartial culture model, the average metric

distortion of 𝑓RPV depends significantly on the number of voters

and roughly converges against 2 + 1

𝑚−1 . We believe the reason for

this is that, in our simulations, 𝑓RPV randomizes over larger sets

of alternatives when𝑚 increases. This is beneficial for the metric

distortion if preference profiles are sufficiently close to uniform, but

detrimental if there is an alternative that every voter appreciates.

Uniform random dictatorship. The average metric distortion of

the uniform random dictatorship 𝑓RD becomes smaller as the num-

ber of voters increases when using distributions that are close

to uniform. For instance, for the impartial culture model and all

𝑚 ∈ {5, 10, 15}, the average metric distortion of 𝑓RD converges to a

value close to 2 as the number of voters 𝑛 increases. By contrast, if

the voters’ preferences are more structured (e.g., in the Euclidean

cube model), the average metric distortion is largely independent of

the number of voters and significantly worse than that of the other

rules. A possible explanation for this is that 𝑓RD only considers

the voters’ favorite alternatives and thus fails to identify strong

compromise alternatives. In particular, such strong alternatives are

likely to exist for structured distributions, but typically do not exist

if 𝑛 is large and the distribution over profiles is close to uniform.

C1ML and C2ML rules. The average metric distortion of C1ML

and C2ML rules is rather high for the impartial culture model

with 𝑚 = 5 (close to 2.25 when 𝑛 ≥ 100), but it is close to that

of the CRWW rule for more structured distributions (e.g., the 3-

dimensional Euclidean cube model). Moreover, for most distribu-

tions, the average metric distortion of these rules decreases when

the number of alternatives increases. Our explanation for this is

that C1ML and C2ML rules use very little randomization as they

select randomized Condorcet winners. This behavior results in a

low metric distortion if there are alternatives that severely beat all

other alternatives in a pairwise comparison, but it is detrimental if

all alternatives are roughly equally good.
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Figure 1: Results of our simulations for the impartial culture and 3-dimensional Euclidean cube models. For both models and
𝑚 ∈ {5, 10, 15} alternatives, we plot the average metric distortion (𝑦-axis) of the uniform random dictatorship, the C2ML and
C1ML rules, the randomized Plurality-Veto rule, and the CRWW rule subject to the number of voters 𝑛 ∈ {11, 21, . . . , 201} (𝑥-axis).
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Figure 2: Results of our simulations with the Spotify Daily
dataset. Each data point presents the average metric distor-
tion of one of our RSCFs over 14 days (e.g., the first data point
averages the metric distortion from January 01 to January
14, the second one from January 15 to January 28, etc.).

4.3 Simulations with Real-world Data
We also conduct computer experiments on the average metric dis-

tortion of our RSCFs on real-world data from PrefLib [42]. In more

detail, we use the Spotify Daily dataset provided by Boehmer and

Schaar [9] for our experiments. This dataset contains the rankings

of the 200 most listened songs on Spotify for 53 countries and ev-

ery day in 2017, and the rankings of each day form an election.

Since not every country ranks the same songs among their top-200,

Boehmer and Schaar [9] have identified maximal complete subelec-

tions for each day, which typically contain between 40 and 50 voters

and around 20 alternatives. These maximal subelections are very

well-suited for our computer experiments because they contain a

reasonable number of voters and alternatives and all voters rank

all alternatives. Due to these characteristics, we can directly com-

pute our five RSCFs and their metric distortion on these maximal

subelections, i.e., we conduct our experiments on the real-world

data without any modifications other than those made by Boehmer

and Schaar [9]. This also means that it suffices to compute the

metric distortion of our RSCFs for each subelection once since no

randomization is used in the generation of preference profiles.

The results of our experiments with the Spotify Daily dataset are

shown in Figure 2, where we display the average metric distortion

of each RSCF in a biweekly rhythm, i.e., each data point is the

average of 14 days. Additional statistics can again be found in the

full version [25]. We note that the simulations on the Spotify Daily

dataset roughly agree with our computer experiments based on,

e.g., the Euclidean models or Mallow’s model (see [25] for more

details). In more detail, Figure 2 shows that the metric distortion of

the randomized Plurality-Veto and CRWW rules is typically only

slightly better than that of the C1ML and C2ML rules, whereas the

uniform random dictatorship often performs significantly worse.

There are, however, two central differences between our simulations

with synthetic data and the Spotify Daily dataset. Firstly, in the

first three month, there is often a very dominant alternative in the

elections from Spotify, which results in a very low metric distortion

for all tested RSCFs but 𝑓RD . Such profiles do typically not appear

in our synthetic data, which may hint at the fact that our computer

experiments are still too pessimistic. However, after the first three

month, this effect vanishes and our RSCFs take similar values as

in the simulation with synthetic data. Secondly, the randomized

Plurality-Veto rule 𝑓RPV performs surprisingly well on the real-

world data, in particular in light of the large number of alternatives.

The reason for this may be that, while there are many alternatives,

only few of them are first-ranked in the preference profiles and

only such alternatives have a chance to win under 𝑓RPV .

To summarize our computer experiments with both synthetic

and real-world data, we believe that they firstly show that that tai-

lored RSCFs, such as the CRWW rule and the randomized Plurality-

Veto rule, typically also have the smallest average-case metric distor-

tion. However, especially when preference profiles are sufficiently

structured, C1ML and C2ML rules are only slightly worse, thus

providing an argument in favor of these rules. Lastly, our simula-

tions show that the uniform random dictatorship is not suitable

to minimize the metric distortion in practice, especially when we

expect strong alternatives to exist.
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5 THEORETICAL AVERAGE-CASE ANALYSIS
Lastly, we will analytically examine the average-case metric distor-

tion of our RSCFs by calculating their expected metric distortion for

a randomly drawn profile. In particular, the results in this section

can be seen as a rigorous mathematical counterpart to the simula-

tions in Section 4. For mathematical feasibility, we will restrict our

attention to the impartial culture model and write IC (𝑚,𝑛) for the
respective probability distribution over profiles with𝑚 alternatives

and 𝑛 voters. While the impartial culture model is somewhat unre-

alistic, it is frequently analyzed as it is often seen as a good starting

point for average-case analyses [e.g., 10, 27, 28, 35, 45, 46].

As we show next, if the number of voters goes to infinity, the

expected metric distortion of every RSCF with bounded metric

distortion converges to a value between 2 and 2 + 1

𝑚−1 under the

impartial culture model. This means that the choice of the voting

rule has only a small effect on the expected metric distortion if

there is a large number of voters and alternatives.

Theorem 2. Let𝑚 ≥ 3. It holds for every RSCF 𝑓 with dist𝑚 (𝑓 ) < ∞
and 𝑧 = lim inf𝑛→∞ P𝑅∼𝐼𝐶 (𝑚,𝑛) [∃𝑥 ∈ 𝑋𝑅 : 𝑓 (𝑅, 𝑥) = 0] that
(1) lim sup𝑛→∞ E𝑅∼𝐼𝐶 (𝑚,𝑛) [dist (𝑓 (𝑅), 𝑅)] ≤ 2 + 1

𝑚−1
(2) lim inf𝑛→∞ E𝑅∼𝐼𝐶 (𝑚,𝑛) [dist (𝑓 (𝑅), 𝑅)] ≥ 2 + 𝑧

𝑚−1 .

Proof sketch. The basic idea of this proof is that, as 𝑛 grows

larger, a profile drawn from 𝐼𝐶 (𝑚,𝑛) is with high probability close

to the profile 𝑅∗ where each preference relation is reported by the

same amount of voters. We thus start by analyzing the profile 𝑅∗

and showwith the help of LP 1 that the metric distortion of a lottery

𝑝 on 𝑅∗ is 2 + 1

𝑚−1 −
𝑚

𝑚−1 ·min𝑥∈𝑋𝑚
𝑝 (𝑥). Next, we prove that the

metric distortion of a lottery 𝑝 for a profile 𝑅 that contains 𝑅∗ as a
large subprofile can be bounded based on the metric distortion of 𝑝

for 𝑅∗. Based on these two insights, we then fix a number of voters

𝑛, set 𝛼 = 1

3
√
𝑛
, and define 𝑇𝛼

as the set of profiles for 𝑛 voters such

that each preference relation is reported by more than (1 − 𝛼) 𝑛
𝑚!

voters. Using the law of total probability, we derive that

E[dist (𝑓 (𝑅), 𝑅)] = P[𝑅 ∉ 𝑇𝛼 ] · E[dist (𝑓 (𝑅), 𝑅) |𝑅 ∉ 𝑇𝛼 ]
+ P[𝑅 ∈ 𝑇𝛼 ] · E[dist (𝑓 (𝑅), 𝑅) |𝑅 ∈ 𝑇𝛼 ]

Finally, for our upper bound, we use standard concentration

bounds to show that P[𝑅 ∉ 𝑇𝛼 ] goes to 0 as 𝑛 increases. Since

E[dist (𝑓 (𝑅), 𝑅) |𝑅 ∉ 𝑇𝛼 ] ≤ dist𝑚 (𝑓 ) < ∞, it hence follows that

E[dist (𝑓 (𝑅), 𝑅)] converges to E[dist (𝑓 (𝑅), 𝑅) |𝑅 ∈ 𝑇𝛼 ] when 𝑛

goes to infinity, and using our previous insights, we can bound

this expectation by 2 + 1

𝑚−1 . Similarly, for our lower bound, we use

that E[dist (𝑓 (𝑅), 𝑅)] ≥ P[𝑅 ∈ 𝑇𝛼 ] · E[dist (𝑓 (𝑅), 𝑅) |𝑅 ∈ 𝑇𝛼 ] and
derive a lower bound on E[dist (𝑓 (𝑅), 𝑅) |𝑅 ∈ 𝑇𝛼 ]. □

Based on a similar approach as in Theorem 2, we will next pre-

cisely compute the expected metric distortion of the uniform ran-

dom dictatorship 𝑓RD and the randomized Plurality-Veto rule 𝑓RPV .

In particular, we will show that, in the limit, 𝑓RD has an optimal

expected metric distortion of 2 under the impartial culture model,

whereas the expected metric distortion of 𝑓RPV is 2 + 1

𝑚−1 .

Theorem 3. It holds for every𝑚 ≥ 3 that
(1) lim𝑛→∞ E𝑅∼𝐼𝐶 (𝑚,𝑛) [dist (𝑓𝑅𝐷 (𝑅), 𝑅)] = 2.
(2) lim𝑛→∞ E𝑅∼𝐼𝐶 (𝑚,𝑛) [dist (𝑓𝑅𝑃𝑉 (𝑅), 𝑅)] = 2 + 1

𝑚−1 .

Proof Sketch. For Claim (1), we show that 𝑓RD (𝑅) returns with
high probability a lottery close to the uniform one when 𝑛 is large

and 𝑅 is drawn from 𝐼𝐶 (𝑚,𝑛). From this insight, we then derive

that lim sup𝑛→∞ E𝑅∼𝐼𝐶 (𝑚,𝑛) [dist (𝑓 (𝑅), 𝑅)] ≤ 2. Combined with

the lower bound in Theorem 2, this proves Claim (1). For the claim

on 𝑓RPV , we prove that this rule only randomizes over all alterna-

tives when each alternative is top-ranked and bottom-ranked by

the same number of voters. Since this happens with probability 0

when 𝑛 goes to infinity, we infer that lim inf𝑛→∞ P𝑅∼𝐼𝐶 (𝑚,𝑛) [∃𝑥 ∈
𝑋𝑅 : 𝑓RPV (𝑅, 𝑥) = 0] = 1, and Claim (2) follows from Theorem 2. □

Remark 4. We leave an analogous result to Theorem 3 for C1ML

and C2ML rules open because completely reversed preference re-

lations cancel each other out for these RSCFs. Thus, a small part

of the profile may determine the outcome, which severely compli-

cates the analysis of these rules. However, computer experiments

by Brandl et al. [12] suggest that the probability P𝑅∼𝐼𝐶 (𝑚,𝑛) [∃𝑥 ∈
𝑋𝑅 : 𝑓 (𝑅, 𝑥) = 0] is close to 1 for C1ML and C2ML rules. Hence,

Theorem 2 implies that the expected metric distortion of these

RSCFs under the IC model is close to 2 + 1

𝑚−1 when 𝑛 goes to ∞.

Remark 5. Theorem 2 shows that, under the impartial culture

distribution, every deterministic SCF 𝑓 with dist𝑚 (𝑓 ) < ∞ has an

expected metric distortion of 2+ 1

𝑚−1 when 𝑛 goes to∞. This holds

because every SCF is an RSCF that always assigns probability 1 to

a single alternative, so the value 𝑧 in Theorem 2 is 1.

6 CONCLUSION
In this paper, we study the metric distortion of randomized social

choice functions, with a particular focus on well-established RSCFs

such as the uniform random dictatorship, C1ML rules, and C2ML

rules. Specifically, we first show that every C1ML rule has a metric

distortion of at most 4, and we give a lower bound on the metric dis-

tortion of all majoritarian RSCFs that converges to 4 as𝑚 increases.

This means that C1ML rules minimize the metric distortion within

the class of majoritarian RSCFs when the number of alternatives is

unbounded. Secondly, we conduct extensive computer experiments

on the metric distortion of these three classical RSCFs as well as

two RSCFs designed to minimize the metric distortion. These ex-

periments show that, while RSCFs designed to minimize the metric

distortion have also the best average-case metric distortion, C1ML

and C2ML rules are often only slightly worse. Finally, we also con-

duct an analytical average-case analysis for the impartial culture

model and, surprisingly, derive that the exact choice of voting rule

has only a negligible influence on the expected metric distortion if

the number of voters is large. In summary, we believe that these re-

sults demonstrate that established RSCFs, such as C1ML and C2ML

rules, are also appealing when studied through the lens of metric

distortion as they have a reasonable worst-case metric distortion

and their average-case metric distortion is only slightly worse than

that of RSCFs that are tailored to minimize the metric distortion.
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