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ABSTRACT
Pricing algorithms have demonstrated the capability to learn tacit
collusion that is largely unaddressed by current regulations. Their
increasing use in markets, including oligopolistic industries with
a history of collusion, calls for closer examination by competition
authorities. In this paper, we extend the study of tacit collusion
in learning algorithms from basic pricing games to more complex
markets characterized by perishable goods with� xed supply and
sell-by dates, such as airline tickets, perishables, and hotel rooms.
We formalize collusion within this framework and introduce a
metric based on price levels under both the competitive (Nash)
equilibrium and collusive (monopolistic) optimum. Since no analyt-
ical expressions for these price levels exist, we propose an e�cient
computational approach to derive them. Through experiments, we
demonstrate that deep reinforcement learning agents can learn to
collude in this more complex domain. Additionally, we analyze the
underlying mechanisms and structures of the collusive strategies
these agents adopt.1
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1 INTRODUCTION
Algorithms are increasingly replacing humans in pricing decisions,
o�ering improved revenue management and handling of complex
dynamics in large-scale markets such as retail and airline ticket-
ing. These algorithms, whether programmed or self-learning, can
engage in tacit collusion charging supra-competitive prices (i.e.,
above the competitive level) or limiting production without explicit
agreements. For example, algorithmic pricing in Germany led to a
38% increase in fuel retailer margins after adoption [7]. Our study
is primarily motivated by airline revenue management (ARM), a
market with $800 billion in annual revenue and thin pro�t margins.

1Code and data available at: https://github.com/pfriedric/EpisodicCollusion.
Preprint including appendix available at: https://arxiv.org/abs/2410.18871
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Airlines have already been under regulatory scrutiny [26] due to ev-
idence of tacit collusion even before the introduction of algorithmic
pricing [14] but the current trend of moving towards algorithmic
pricing [35, 44] could lead to further cases.

Tacit collusion is maintained without explicit communication
or agreement between sellers, therefore it eludes detection and
often falls outside the scope of current competition laws. These
concerns and potential negative e�ects on social welfare have been
recognized both by regulators [17, 23, 41] and scholars [10, 15, 31].
To develop comprehensive legislation on algorithmic pricing, a
thorough understanding of the factors that in�uence the emergence
of collusive strategies is required under assumptions that align with
real markets [19].

Previous research has already shown that reinforcement learning
(RL) algorithms can engage in tacit collusion in pricing games with
in�nite time-horizon [6, 20, 34, 40]. However, most markets follow
some form of periodicity, e.g., seasonality in retail or� scal years
for public companies, which breaks the continuity of the interac-
tions between sellers. In the markets of perishable goods, hotels, or
tickets, the markets only persist until the given sell-by dates and
sellers are aware of the� nite nature of competition. Importantly,
in the previously investigated in�nite time-horizon settings the
collusive equilibrium is maintained via punishment strategies, e.g.,
grim-trigger, but it is not an equilibrium in the� nite-horizon case.
This is because these strategies are only credible if su�cient time re-
mains for the punishment to o�set short-term gains from deviating
from collusion. In the� nite-horizon setting, such punishments be-
come unmaintainable as the sell-by date approaches. However, RL
algorithms show the potential to learn collusion through their mem-
ory over several episodes interacting against the same opponents.
Additionally, in� nite time-horizonmarkets supplies are often prede-
termined and limited, therefore, pricing strategies have to consider
additional constraints and anticipate future demand to avoid expir-
ing inventory while maximizing total pro�t. Both aspects are crucial
in many real-world markets. For example, airlines selling tickets
between two cities on a certain day have to� ll their planes’ capacity
before departure. However, selling tickets too quickly could lead to
a missed opportunity to sell tickets closer to departure time to less
price-sensitive consumers, while selling tickets too slowly could
result in empty seats. The added complexity of� nite time horizon
and inventory constraints results in more complex strategies and
interactions between pricing algorithms; therefore, previous results
do not immediately hold and further investigation is necessary to
develop comprehensive collusion mitigation approaches.

In this work, we aim to contribute to these e�orts by extending
the analysis of tacit collusion between pricing algorithms to episodic
markets with inventory constraints.
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In particular, in Section 2, we give an overview of related liter-
ature. In Section 3, we de�ne the episodic,� nite-horizon pricing
problem with inventory constraints as a Markov game, inspired
by Airline Revenue Management (ARM), and formalize both com-
petitive (Nash) and collusive (monopolistic) equilibrium strategies.
Building on these, we de�ne a measure that quanti�es collusion
in an observed episode. Notably, our de�nitions are on the space
of pricing strategies instead of price levels at a certain point in
time which is the standard in the in�nite-horizon setting. This is
a signi�cant change in the analysis and a challenge in episodic
markets compared to the in�nite-horizon case. In Section 4, we
discuss how our model’s� nite time horizon and inventory con-
straints change the dynamics of collusion compared to previous
work. Reward-punishment schemes cannot extend past the end
of the episode, making collusion theoretically impossible (with a
backward induction argument), but practically achievable (with
imperfect learning agents and long enough episodes). In Section 5,
we demonstrate e�cient computation of the competitive Nash Equi-
librium, a challenging task on its own. We show that two common
deep RL algorithms, Proximal Policy Optimization (PPO) [46] and
Deep Q-Networks (DQN) [39], learn to collude in our model in two
distinct ways that align with the intuition provided in Section 4.
We analyze the learned strategies,� nding that agents collude while
being aware of the competitive best response, and maintain collu-
sion with a reward-punishment scheme. We show that collusion is
robust to changes in agent hyperparameters, unless learning targets
are made intentionally unstable, in which case agents converge to
a competitive best response strategy. In Section 6, we conclude and
discuss future research directions.

2 RELATEDWORK
Our work is related to a line of research into competitive and collu-
sive dynamics that emerge between reinforcement learning algo-
rithmic pricing agents in economic games. We refer to Abada et al.
[1] for an excellent survey on this topic, and to Appendix C for a
more detailed literature review.

Recent research most relevant to us focuses on the Bertrand
oligopoly, where agents compete by setting prices and using Q-
learning. The main line of research uses Bertrand competition
with an in�nite time horizon [20], with follow-up work using
DQN [32], varying the demand model [6], modeling sequential
rather than simultaneous agent decisions [34], or an episodic set-
ting with contexts [24]. Findings reveal frequent, though not uni-
versal, collusion emergence, often explained by environmental non-
stationarity preventing theoretical convergence guarantees. Agents
consistently learn to charge supra-competitive prices, punishing
deviating agents through ’price wars’ before reverting to collusion.
The robustness of collusion emergence to factors like agent number,
market power asymmetry, and demand model changes underscores
the potential risks posed by AI in pricing.

Which factors support and impede the emergence of learned
collusion remain debated. Some [2, 54] argue collusion results from
agents ‘locking in’ on supra-competitive prices early on due to in-
su�ciently exploring the strategy space, suggesting a dependence
on the choice of hyperparameters. Most studies identifying collu-
sion used Q-learning, with others showing competitive behavior,

raising questions about algorithm speci�city [45]. However, re-
cent work [21, 36] using PPO in ridesharing markets and in�nite
Bertrand competition respectively, suggests otherwise. We expand
on these� ndings in a more realistic episodic,� nite horizon market
with inventory constraints using deep RL algorithms (PPO and
DQN), to manage our model’s larger state spaces and dynamic
environments.

3 PROBLEM STATEMENT
We introduce amulti-agentmarketmodel for inventory-constrained
goods with a sell-by date, such as perishable items, hotel rooms, or
tickets, using airline revenue management (ARM) as an example.
We show how to model such markets as a Markov game and de-
�ne a collusion metric based on the pro�ts achieved under perfect
competition and collusion.

3.1 Episodic Markov Games
An episodic Markov game [38] is de�ned by the tuple (S,A, %,',))
where S represents the common state space shared by all agents,
A = A1 ⇥ · · · ⇥ A= denotes the joint action space for = agents,
% : S ⇥ A ! P(S) is the stochastic state transition function,
'8 : S ⇥ A ! R de�nes the reward received by agent 8 , and )
speci�es the episode length in discrete timesteps.

At each time step C , agents observe the current state BC 2 S
and simultaneously choose actions following their respective time-
dependent policies c8,C : S ! P(A8 ). We use c8 to denote agent
8’s vector of policies over time. Each agent’s goal is to maximize its
cumulative reward over the episode given the game’s dynamics,

max
c8

)’
C=1

'8 (BC ,0C ) (1a)

s.t. BC+1 ⇠ % (BC ,0C ); 0 9,C ⇠ c 9,C (BC ) . (1b)
The main challenge in� nding optimal policies in a Markov game
is that agent 8’s optimization problem depends on the actions cho-
sen by all other agents. In a learning context, where agents op-
timise their policies simultaneously, this optimisation becomes
non-stationary and convergence is not guaranteed. For a detailed
discussion on the challenges of multi-agent reinforcement learning
we refer the reader to a number of surveys [18, 30, 57, 58].

3.2 Markets as Episodic Markov Games
We extend the Bertrand competition [11] model, where agents com-
pete to sell a common good. In its simpli�ed one-shot setting, sellers
choose prices, and consumers react, deciding which quantity to buy
from each seller based on some demand function of those prices.
In contrast, we model markets where goods can be sold in multiple
timesteps C = 1, . . . , ) over a� nite episode. The Markov game’s
action space A consists of the prices agents can set, and an agent’s
policy c8 represents their pricing strategy. Each timestep C , agents
observe the state BC and simultaneously use their policy c8 to choose
an action in the form of a price ?8,C = c8 (BC ), forming the price vec-
tor ?C = (?1,C , . . . , ?=,C ). In the following, we use ?8,C for actions
instead of 08,C to emphasize that the actions represent prices.

Additionally, we assume that each agent has a�nite capacity �8 2
N of goods that they can sell throughout the episode. At each time
C , each agent has a remaining inventory of tickets G8,C 2 {0, . . . , �8 },
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resulting in an inventory vector GC = (G1,C , . . . , G=,C ). We de�ne
the state of the game at time C as the most recent price vector and
current inventory, i.e., BC = (?C�1, GC ). We motivate this de�nition
of the state by the fact that in the non-episodic setting, most recent
prices provide agents su�cient information to learn various strate-
gies including perfect competition and collusion [20, 24]. However,
investigating the e�ect of longer recall is an interesting direction
for future research.

With prices chosen, a state transition from time C to C + 1 occurs:
For each agent 8 , the market determines a demand 38,C , the agent
sells a corresponding quantity @8,C = min(38,C, G8,C) bounded by
their inventory, and their inventory is updated to G8,C+1 = G8,C �@8,C .
With our choice of demand function (cf. Section 3.4), this transition
to the next period’s state BC+1 = (?C , GC+1) is deterministic. Finally,
each agent receives their pro�t as a reward '8,C := '8 (BC , ?C ) =
(?8,C � 28 )@8,C , with 28 their constant marginal cost per good sold.

3.3 Application to Airline Revenue
Management

To motivate the episodic Markov game framework, we consider
the Airline Revenue Management (ARM) problem. In ARM, agents
represent airlines competing to sell a� xed number of seats on a
direct� ight (also called a single-leg �ight) between two cities on the
same day. The problem is naturally episodic; episodes start when the
�ight schedule is announced and end at departure, i.e., the sell-by
date of the tickets. Furthermore, each airline is constrained by the
capacity of their respective aircraft. We consider each route on each
day to form a single independent market. Expanding our model
to connecting (multi-leg)� ights, several� ights on the same day,
cancellations, and overbooking promises interesting future work.
This market is a great example with� erce competition, a history of
tacit collusion [14], real-time public information on o�ered ticket
prices and inventories via Global Distribution Systems (GDS), and
early adoption of dynamic pricing algorithms [35]2.

3.4 Demand Model
We employ a modi�edmultinomial logit (MNL) demand model, com-
monly used in Bertrand price competition [20, 21, 24], to simulate
the probability of a customer choosing each agent’s product, ensur-
ing demand distribution among all agents rather than clustering
on the best o�ering. The normalized demand for agent 8’s good in
period C is

38,C =
exp

�
(U8 � ?8,C)/`

�
Õ

92#0
C
exp

�
(U 9 � ? 9,C)/`

�
+ exp(U0/`)

2 (0, 1), (2)

where #0
C := { 9 2 # | G 9,C > 0}, U8 is agent 8’s good’s qual-

ity, U0 is the quality of an outside good for vertical di�erenti-
ation, and ` is the horizontal di�erentiation scaling parameter.
The quantity demanded from agent 8 at time C is then de�ned as
@8,C = min{b_38,Cc, G8,C}, scaling demand with a factor _ 2 N and
rounding to the nearest integer to account for the sale of goods
in whole numbers. We incorporate choice substitution, or demand
adaptation, by summing only over agents with available inventory

2Adoption of dynamic pricing algorithms in this industry has historically been limited
to low-cost carriers, due to established carriers heavily depending on legacy systems
and data-driven forecasting models. See lit. review in Appendix C.

#0
C . If an agent is sold out, demand shifts to those with remaining

inventory, preventing the sold-out agent’s actions from a�ecting
the demand and rewards of others.

3.5 Measuring Collusion and Competition
We measure the collusion of an observed episode and agent strate-
gies on a scale from 0 (competitive) to 1 (collusive). First, we establish
the two extremes in the Markov game as the competitive Nash equi-
librium and the monopolistic optimum that we can later use as
reference points for collusion.

De�nition 3.1 (Competitive & collusive solutions). A collection of
agent policies (c1, . . . , c=) is called

• Competitive, or Nash equilibrium, if no agent 8 can improve
their expected episode pro�t Ec [⌃)C=1'8,C] by unilaterally
picking a di�erent policy given� xed opponent policies.

• Collusive, or monopolistic optimum, if it maximizes expected
collective pro�ts, Ec [⌃=8=1⌃)C=1'8,C].

As we argue theoretically in Section 4 and show experimentally
in Section 5.1, both admit solutions that feature constant prices
across an episode, which we call ?# and ?" for the Nash and
monopoly cases, respectively. In our model, the collusive prices
?" are higher than the competitive prices ?# , and the same holds
for the correspondingly achieved pro�ts '" and '# . At the Nash
equilibrium, both unilaterally increasing or decreasing one’s price
reduces pro�ts. However, if all agents jointly increase prices, the
increase in margin outpaces the decrease in (MNL) demand, leading
to increased pro�ts for everyone. Building on these two solutions,
we de�ne a measure for collusion.

De�nition 3.2 (Collusion measure). We de�ne agent 8’s episodic
pro�t gain as

�8,4 :=
1
)

)’
C=1

'̄8,C � '#8,C

'"8,C � '#8,C
.

The episodic collusion index is measured as the generalized mean
of the individual episodic pro�t gains, i.e.,

�4 :=

 
1
=

=’
8=1

�W8,4

! 1
W

indicating a competitive or collusive outcome at 0 or 1, respectively.

The generalized mean interpolates the arithmetic mean (i.e., av-
erage) and geometric mean, which are obtained by setting W = 1
and W = 0 respectively. We use W = 0.5 for our collusion index. Our
reason is that the geometric mean has an advantage against the
simple average used in previous studies [20, 24], as it more strongly
penalizes unilateral competitive defections in a collusive arrange-
ment. However, it interprets any outcome where at least one agent
achieves only competitive, or even sub-competitive pro�ts (de�n-
ing the measure via clamping negative pro�t gains to zero) as fully
competitive, even if others prices above the competitive level and
achieve considerable supra-competitive pro�ts. The generalized
mean provides a good middle ground. To better interpret negative
values, we replace �W8,4 with sgn(�8,4) |�8,4 |W . See Appendix E.1 for
a comparison of means. Ultimately, how to aggregate the individual
pro�t gains is a subjective question with trade-o�s that depend
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on which outcomes one wants to di�erentiate the best. E.g., the
following outcomes (�1,4 ,�2,4 ) of (0.1, 0.1), (0, 0.2) or (�0.1, 0.3)
have the same average episodic pro�t gain, but quite di�erent agent
behavior and implications on consumer welfare, especially if agents’
qualities, costs, and thus equilibrium pro�ts, are not symmetric.
Exploring alternative measures, which could be inspired by social
choice theory, is a promising avenue for future research.

4 THE COLLUSIVE STRATEGY LANDSCAPE
In this section, we discuss how our model’s episodic nature and
�nite inventory signi�cantly a�ect the strategies for establishing
and maintaining learned tacit collusion compared to the previously
considered in�nite horizon setting. It is common economic intu-
ition (e.g., [31]) that in order to maintain collusive agreements,
agents need to remember past actions and have mechanisms to
punish those who deviate from the agreed-upon strategy3. Stan-
dard punishment strategies include a temporary or permanent shift
to a competitive price level after the deviation is detected which
results in lower pro�ts for all� rms. It has been well documented
that learning algorithms converge to these strategies in the in�nite
horizon setting [20, 21, 32]. Such strategies are only credible as
long as su�cient time and supply is available for the punishment to
o�set the short-term gains from a deviation. These conditions are
not always met in our settings that lead to new collusive strategies.

In�nite horizon games. These settings allow for deriving unique
competitive and collusive equilibrium price levels through implicit
formulas with the most commonly used Bertrand competition mod-
els. They provide the most room for collusive strategies to emerge
and sustain since there is no time constraint for a punishment
strategy’s credibility. Typically, stable collusion manifests in two
forms. First, reward-punishment schemes: Agents cooperate by de-
fault and punish deviations. A deviating agent is punished by others
charging competitive prices, thereby removing the bene�ts of collu-
sion temporarily, until the supra-competitive prices are reinstated.
This dynamic involves agents synchronizing over rounds to restore
higher price levels after a deviation. This pattern can be observed as
�xed, supra-competitive prices and veri�ed by forcing one agent to
deviate and recording everyone else’s responses. Second, Edgeworth
price cycles: This pattern involves agents sequentially undercutting
each other’s prices until one reverts to the collusive price, prompt-
ing others to follow, restarting the undercutting cycle [34].

Episodic games. In comparison to the in�nite horizon setting, col-
lusive strategies can now emerge in two distinct ways. First, through
intra-episode action-based communication, where agents gradually
raise their prices through signaling within a single episode. Sec-
ond, through training across many episodes, where agents eventu-
ally learn policies that implement collusive pricing immediately
from the start of each new episode. The latter form is prevalent
in oligopolistic settings and possibly explained by learners over-
�tting their strategies to familiar opponents. When faced with
new opponents, collusive agents initially play competitively be-
fore reestablishing collusion through continued learning [24]. This
3Recent work [5] suggests that there can exist stable, collusive equilibria of strate-
gies that do not encode threats. They show that near-monopoly prices can arise if
a� rst-moving agent deploys a no-regret learning algorithm, and the second agent
subsequently picks a non-responsive pricing policy.

robustness result suggests that� rms aiming to collude can pre-
train their pricing agents separately, needing only (likely legal)
alignment on the high-level training setups (e.g., algorithm classes,
observation modeling, exploration schedule). In our experiments
in Section 5.5, we observe evidence of both types of collusion.

The� nite time horizon restricts collusive potential by limiting
the e�cacy of reward-punishment schemes used in in�nite-horizon
games to maintain collusion. In a one-shot game () = 1) in our
Bertrand setting, there exists a unique Nash equilibrium at the com-
petitive price level, as unilateral deviation from collusive prices is
pro�table and future punishment is impossible. In the� nite horizon
case () > 1), the same logic applies at the� nal period (C = ) ), such
that any Nash equilibrium strategy will price competitively in the
last timestep. By induction from C = ) backwards, this argument
extends to all periods C = ) � 1, . . . , 1, de�ning a unique Nash equi-
librium where agents compete throughout the episode. Does this
mean that collusion in episodic games is impossible? No: If agents
remember past interactions across episodes, deviations can be pun-
ished in future episodes. Surprisingly, our experiments in Section 5
show that even without cross-episode memory, learning agents in
su�ciently long episodes can converge to collusive strategies of
the signaling, stable or cyclic kind. We observe that some agents
learn to play collusively at episode start and defect toward the end,
suggesting that discovering the full backward induction argument
through (often random) exploration is unlikely enough in practice.

Episodic, inventory-constrained model. Inventory constraints sig-
ni�cantly complicate the state and strategy space by making the
reward achieved from a pricing strategy dependent on inventory lev-
els. Determining the competitive and collusive price levels becomes
more complex because the solution formulas from the Bertrand
or Cournot settings require smoothness or convexity assumptions
that no longer hold, preventing the standard uniqueness proofs. We
approach� nding a Nash equilibrium by modeling each episode as a
simultaneous-move game where agents set entire price vectors be-
fore the episode starts for the complete episode. We provide further
details in Section 5.1. We solve the resulting generalized Nash equi-
librium problem numerically and prove that its solutions are Nash
equilibria in our Markov game. We� nd that in our model, both the
competitive and collusive solutions consist of repeating their prices
from the one-period equivalents ) times. If agents discount future
rewards, both equilibria shift to lower prices and higher pro�ts
early in the episode and vice versa toward its end. In addition, price
levels remain distinct even with strict inventory constraints. Due
to the di�culty in predicting or interpreting observed behavior in
this complex setting, we see value in analyzing di�erent types of
learners as part of future work.

5 EXPERIMENTS
In Section 5.1 we� rst show how to� nd the competitive and mo-
nopolistic price levels needed to calculate the collusion measure
de�ned in De�nition 3.2, and how they change under di�erent in-
ventory constraints. Then, we show that PPO [46] and DQN [39],
two commonly used deep RL algorithms, can learn to collude in
our episodic model. Finally, we analyze their learned strategies and
their dependence on hyperparameters.
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5.1 Obtaining Competitive and Collusive
Equilibrium Prices

Previous works’ Bertrand settings use analytic formulae to compute
Nash equilibrium and monopolistic optimum price vectors ?# and
?" for single-period cases. However, a closed-form solution is
not available for our problem setting. We therefore use numerical
methods to calculate the competitive and collusive solutions as
de�ned in De�nition 3.1 and use these values to de�ne the collusion
measure in De�nition 3.2.

First, we calculate the pro�ts and prices in the monopolistic
(perfectly collusive) setting by assuming a central optimizer who
chooses prices for all agents maximizing the total pro�t. Second, to
calculate the same for the competitive Nash equilibrium, we model
an entire episode as a simultaneous-move game (SMG), where all
agents 8 must simultaneously decide all) prices in their vector ?8 =
(?8,1, . . . , ?8,)) before an episode begins. Let ? = (?1, . . . , ?=) en-
compass all agents’ price vectors, with ?�8 representing all agents’
vectors except 8’s. The solution to this SMG is then a Generalized
Nash Equilibrium de�ned as follows.

De�nition 5.1. TheGeneralized Nash Equilibrium Problem (GNEP)
consists of� nding the price vector ?⇤ = (?⇤1, . . . , ?⇤=) such that for
each agent 8 , given ?⇤�8 , the vector ?

⇤
8 solves the following inventory-

constrained revenue maximization problem

max
? (8 )

)’
C=1

(?8,C � 28 )b_38,Cc

subject to
)’
C=1

b_38,Cc  � ,? 8 � 0.

(3)

The solution price vector ?⇤ can be interpreted as the actions of
a set of agent policies playing an episode of the Markov game. The
following lemma shows that a set of policies that result in the price
vector ?⇤ form a Nash Equilibrium in the Markov Game.

L����5.2. Given a Markov Game with deterministic transitions,
let ?⇤ = (?⇤1, . . . , ?⇤=) be the solution to Equation (3) and de�ne c⇤ =
(c⇤1 , . . . , c⇤=), as c⇤8 (BC ) = ?⇤8,C for all 8 , C , and BC 2 S. Then c⇤ is a
Nash equilibrium in the Markov Game.

The full proof can be found in Appendix D. Details of our nu-
merical approach to solving the GNEP are found in Appendix A.

Without discounting, the episodic equilibrium price vectors re-
peat the single-period equilibrium with the same parameters )
times. Figure 1 shows how inventory constraints a�ect market dy-
namics. When inventories exceed the demand at the competitive
equilibrium, the equilibria correspond to the unconstrained set-
ting. As inventories shrink, the competitive price level rises, as it
is harder for� rms to undercut and pro�t from the increased de-
mand. When inventory size matches the demand at the collusive
price, the collusive and competitive price levels converge. Further
tightening of constraints pushes both coinciding prices higher. In
our experiments we choose the constraint’s value between the two
extremes to allow for di�erentiation between competitive and col-
lusive behavior and a well-de�ned collusion index, and investigate
the e�ect of the inventory size on learned collusion in Section 5.6.

Figure 1: One-period equilibrium price levels as a function
of inventory capacity for two equally constrained agents.

5.2 Model Parameters
We evaluate the potential for RL algorithms to collude in our model
using a duopoly situation with two agents4. We use either of two
popular algorithms, namely Deep Q-Networks (DQN) [39] and Prox-
imal Policy Optimization (PPO) [46] for learning without weight-
sharing between agents. Agents represent identical� rms, sharing
the same qualities U8 = 2, marginal costs 2 = 28 = 1 88 , a hori-
zontal di�erentiation factor of ` = 0.25, an outside good quality
of U0 = 0, and a demand scaling factor of _ = 1000. For the main
results presented in Section 5.4 and Section 5.5, we set the inventory
constraints to 440 ·) and the episode length ) = 20.

Due to the symmetry between agents, Nash and monopolistic
price levels are identical for both of them, and the price levels
and the corresponding demands are ?# = 1.693, ?" = 1.925 and
3# = 4403" = 365 for our inventory constrained case. Agents
choose prices from a discretized interval [?# � b (?" � ?# ), ?" +
b (?"�?# )] with 15 steps and b = 0.2, such that the competitive and
collusive actions correspond to 0# = 2 and 0" = 12 respectively.
In particular, the price range for our setting is [1.693, 1.925]. In
Appendix E.3, we provide further results on experiments with a
price range de�ned with the unconstrained Nash equilibrium prices
to demonstrate that agents are still capable of learning collusion
and their actions quickly converge to the price range de�ned with
the constrained Nash equilibrium prices.

5.3 Training Setup
We train our algorithms by playing 1000 and 50, 000 episodes for
PPO and DQN, respectively, and updating weights after every
episode for PPO or every fourth for DQN. We train 100 pairs of PPO
or DQN on unique random seeds (40 for the boxplots). After train-
ing, we analyze each agent pair by observing their play in a single
episode. This joint training aligns with previous work [20, 36] and
real market situations, where� rms learn while competing, updating
pricing strategies based on market success. Solid lines and shaded

4Two agents su�ce to demonstrate learned collusion in the� nite horizon game and
the impact of inventory constraints. A duopoly is a reasonable assumption in the ARM
domain, as many routes are dominated by 2-3 airlines. For = > 2 agents, [2, 32] show
collusion indeed diminishes due to exponential growth in joint policy space hindering
joint exploration, but does not fully disappear.
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Figure 2: Evolution of training two DQN and two PPO agents
in ourmodel, showing average agent actions per episode (top,
middle) and collusion index (bottom) with collusive (green)
and competitive (red) actions indicated. The dotted lines are
DQN’s greedy actions. Both DQN and PPO� rst converge to
competition before gradually rising toward collusion.

areas in our plots represent the averages and standard deviations
of their metrics. For our DQN agent, we use epsilon-greedy explo-
ration with an exponentially decaying epsilon, while the PPO agent
anneals its entropy coe�cient to similarly reduce exploration over
time. For evaluation episodes, DQN uses a fully greedy action selec-
tion. We normalize the rewards during training to the interval [0, 1]
based on minimum and maximum possible values. This makes train-
ing slightly more stable. However, collusion is still achieved with un-
normalized rewards. A full description of the hyperparameters used
for DQN and PPO can be found in Appendix B.2. We use the JAX
framework on a custom codebase built on [56]. Our experiments
were run on a compute cluster on a mix of nodes with each run
using at most four vCPU cores, 8GB of RAM, and either a NVIDIA
T4 or NVIDIA V100 GPU. However, a single run can be done on a
consumer laptop (Apple M1 Max, 32GB RAM) in under one hour.

Figure 3: Behavior of two DQN agents during an episode
after forcing one agent to deviate at time C = 1 and C = 9 re-
spectively. Dotted lines indicate evolution without deviation.
Deviations provoke a competitive reaction, with both agents
quickly returning to collusion.

5.4 Analysis of Learning Process
Figure 2 shows two training runs for DQN and PPO agents. For
both algorithms, agents quickly converge to each other and to
competition as their learning targets are initially unstable, with
high epsilon (DQN) and entropy (PPO) forcing random actions. This
makes it hard for agents to adapt to their opponent’s underlying
policy and leads to them learning the best-response strategy against
a random opponent, playing competitively. As the exponentially
decaying epsilon and entropy curves� atten and the agents face
an increasingly predictable opponent that they can adapt to, they
begin colluding. Prices rise gradually and jointly before leveling o�
at a collusive level. PPO converges in both much fewer episodes and
achieves higher levels of collusion, with an average collusion index
of �4 = 0.43 over the last 10% of episodes, compared to DQN’s
�4 = 0.23. These values, lower than in prior studies in the standard
Bertrand setting [20, 21, 32], highlight the greater challenge of
collusion in ourmore complexmodel. Regulatory e�orts could focus
on the gradual increase in prices to mitigate algorithmic collusion,
which we consider to be an interesting direction for future work.

5.5 Analysis of Collusive Strategies
After training, we simulate the agents in an evaluation episode
(Figure 3). We focus on DQN here, discussing PPO in Appendix E.2.
Our DQN agents show behavior that slowly rises in collusiveness
until both agents defect near the end of the episode. This suggests
that the agents are capable of learning that late defection cannot be

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

808



Figure 4: The surfaces show a DQN agent 1’s learned best response under their greedy policy (i.e., the action with the highest
Q-value) to a state given by both agent’s prices (x- and y-axes), timestep and symmetric remaining inventory level.

punished, while not fully applying the backward induction argu-
ment from Section 4. The rise in collusion at the beginning of the
episode suggests a capability of establishing intra-episode collusion,
with the gradual, mutual price increase acting as a form of signaling.
In Appendix E.8, we show results without inventory constraints,
where the agents’ price curve is� atter, suggesting a strategy more
based on solidi�ed collusion over multiple episodes.

To analyze the nature of the learned strategy, we force one agent
to deviate at a certain timestep and record the response by both
agents similarly to Calvano et al. [20]. Interestingly, deviation pro-
duces only a small reaction by the competing agent, while the
deviating agent quickly returns to near their collusive level. With a
deviation at time C = 1 or at C = 9, the impact on overall episode
pro�ts is negligible for both agents, with the deviating agent break-
ing even and the non-deviating agent losing only 0.2% pro�t overall.
We refer the reader to Appendix E.9 for details.

Figure 4 shows the best-response surfaces of the� rst agent at
di�erent points in the episode, with a remaining inventory linearly
interpolated from full to none over the episode (corresponding to
the agents’ evaluated strategy) and averaged over 100 trained agent
pairs. The agent always punishes opponent deviations by pricing
lower than the previous price level. At episode start and end, the
agent’s best-response surface shows some symmetry indicative of
more competitive behavior, reacting to their own deviations with
even lower prices, anticipating a ‘price war’. During themiddle, they
instead return to previous or even higher collusion levels after own
defections, signaling cooperation, and punish opponent deviations
with slight undercutting. Near the end, they shift to more compet-
itive behavior, punishing deviations more strongly. This topology
suggests that if both agents start near the competitive equilibrium,
they will both react in a way that jointly ‘climbs the hill’ to collu-
sion, leveling out at an action of roughly 7 as indicated by the�at
top. The second agent behaves similarly. These results suggest that
DQN agents are well aware of competitive strategies and choose
to collude in a robust way reliant on rewards and punishments.
Appendices E.4 and E.5 contain results for uneven inventory con-
straints and limiting observability of opponent inventory and time,
neither of which signi�cantly hinder the emergence of collusion.

5.6 Hyper- and Environment Parameters
We analyze the impact of changing agent hyperparameters and
environment characteristics on the convergence and collusive ten-
dencies of DQN and PPO agents. We show comparisons for agent
learning rate, inventory constraint, and episode length here, with
additional results deferred to Appendix E.10. To judge the conver-
gence of two agents toward each other throughout the training run,
we use the following metric:

1
0.1⇢

⇢’
4=0.9⇢

1
)

)’
C=1

|?0,C � ?1,C |
?" � ?#

(4)

adapted from Deng et al. [21], where ⇢ is the number of training
episodes. It takes the average di�erence of both agents’ prices across
an episode relative to the width of the Nash-monopolistic price
interval. Values below 0.2 are interpreted as converged.

In our analysis, we vary single parameters from the reference
setup described in Section 5.2, train agents on 40 di�erent seeds, and
for each parameter value, record the distribution of convergence
metric and collusion index over those seeds, averaged over the last
10% of training run episodes.

Learning rate is perhaps the most important agent parameter,
as it regulates the impact of all other agent parameters. Figures 5a
and 5b demonstrate that both PPO and DQN agents achieve better
convergence and increased tendency to compete at lower learning
rates. The reduced ability to adapt to an opponent’s strategy still
allows agents to learn the opponent-independent best-response of
competition at initial training episodes, but attempts to establish
the gradual, mutual increase in price seen in Figure 2 happen more
rarely and revert to competition more often. A higher learning rate
does not translate to more likely collusion, as the increased ability
to adapt to an opponent is balanced by the potential to overreact to
the opponent’s random actions. Overall, collusion and convergence
appear to be robust to moderate changes in learning rate.

We compare metrics among di�erent initial inventory sizes in
Figure 5c. Inventory sizes shown are per-timestep; a value of 440 rep-
resents a total inventory size of 440 ·) , which we use for the other
results. Smaller inventories show better convergence and more
competitive behavior for both PPO and DQN. This has geometric

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

809



intuition (cf. Appendix E.6): visualize each agent’s reward land-
scape as a surface over the grid of both agents’ prices. Each agent
tries to climb toward their peak on the side of the grid’s diagonal
where they undercut their opponent. Steps toward their peak along
their axis harm their opponent. To achieve collusion, agents must
jointly climb the ridge along the diagonal of the grid where their
landscapes intersect. The closer the two agent’s peaks are to the
monopolistic optimum on the diagonal, the smaller their incentive
to deviate and the smaller the negative impact on their opponent
from deviation, easing cooperation. Decreasing inventory capac-
ities reduces the range of prices that agents are incentivized to use
as the Nash equilibrium price approaches the monopolistic price. In
this “zoomed in” part of the price grid, the peaks now appear further
away from each other, making the coordination problem harder.

Figure 5d shows the e�ect of changing episode lengths. As con-
jectured in Section 4, longer episodes increase collusion tendencies
for both types of learners by providingmore opportunities to punish
deviations. While PPO’s convergence is una�ected, DQN’s conver-
gence su�ers. This is expected, as DQN generally scales worse to
larger state spaces than PPO. It relies on accurately estimating the
expected reward for each state-action pair and su�ciently exploring
the state space, which becomes harder as that space grows.

We identi�ed additional hyperparameters a�ecting collusion,
such as PPO’s number of training epochs (higher increases collu-
sion) and DQN’s bu�er size (larger increases collusion), shown in
Appendix E.10. It is possible to hinder collusion by introducing
instability in learning targets, e.g., by� lling DQN’s bu�er or PPO’s
rollouts with experiences gathered from ‘parallel environments’.
This parallelization is commonly done to increase training speed
on accelerator hardware, but has a concrete impact in this model.
We demonstrate this with PPO in Appendix E.7.

6 CONCLUSION
We formulate price competition between producers as an episodic
Markov game motivated by Airline Revenue Management (ARM)
and facilitating the analysis of tacit collusion within a� nite time
horizon and inventory-constrained markets. We propose numerical
methods to� nd competitive and collusive solutions in our model
due to the lack of analytical solutions and de�ne a collusion metric
based on the total pro�t achieved in a full episode. Our analysis
shows that collusion consistently emerges between independent
DQN and PPO algorithms after a brief period of competition and
that trained agents quickly revert back to collusive prices after a
forced deviation. The proven collusive potential of RL agents in
our setting covering many real markets reinforces the call for the
development of mitigation strategies and regulatory e�orts [19].

We see our work as a� rst step toward understanding pricing
competition in markets like airline tickets, hotels, and perishable
goods with future research directions in extending our Markov
Game model to domain speci�cs. Additionally, we see a need to
consider multi-agent speci�c algorithms, e.g., opponent-shaping
agents [50], that could establish stronger collusion or even exploit
market participants, signi�cantly harming social welfare.
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Figure 5: Convergence and collusion metrics for DQN and
PPO training runs with varied learning rate (a) & (b), inven-
tory sizes (c), and episode time horizons (d). Initial inventory
size is the value shown, times the time horizon ) . Collusion
is robust against varying (yet su�ciently large) learning rate.
Longer episodes show less reliable convergence, higher po-
tential collusion due tomore e�ective punishment strategies.
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