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ABSTRACT
We initiate the study of parallel algorithms for fairly allocating

indivisible goods among agents with additive preferences. We give

fast parallel algorithms for various fundamental problems, such

as finding a Pareto Optimal and EF1 allocation under restricted

additive valuations, finding an EF1 allocation for up to three agents,

and finding an envy-free allocation with subsidies. On the flip

side, we show that fast parallel algorithms are unlikely to exist

(formally, CC-hard) for the problem of computing Round-Robin

EF1 allocations.
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1 INTRODUCTION
The last two decades have witnessed a remarkable improvement in

our computational power, largely due to the widespread adoption

of parallel computing. Parallel computing has become the dominant

paradigm in computer architecture, mainly in the form of multi-

core processors [7, 22]. At the same time, in the overwhelming

majority of the AI literature, “efficient algorithm” is a synonym

for “efficient sequential algorithm.” To bridge this gap, we initiate

the study of parallel algorithms for a fundamental problem in fair

division: allocating a set of 𝑚 indivisible items to 𝑛 agents with

additive preferences.

Some classical algorithms for this problem proceed in rounds,

e.g. the Round Robin procedure or the Envy-Cycle Elimination pro-

cedure [17] that achieve envy-freeness up to one item (henceforth,

EF1), while others are computationally intractable (NP-hard), e.g.

the maximum Nash welfare (MNW) solution that achieves Pareto

efficiency (henceforth, PO) and EF1. Our goal in this paper is to de-

sign, for various, fundamental fair division tasks, algorithms that run

in polylogarithmic time and use a polynomial number of processors,

or to prove that no such algorithm is likely to exist.

Large-scale fair resource allocation problems are the prime can-

didates for parallel fair division algorithms. We give two examples

of problems that fit this description here. In the context of high-

performance computing, computational workloads have grown in
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size and complexity considerably. Managing the timely comple-

tion of these computational workloads is fundamentally a resource

allocation problem, e.g. [16, 19]. Another use case is for distribut-

ing items for disaster relief. In 2017, after Hurricane Harvey, the

United States Federal Emergency Management Agency (FEMA)

was in charge of distributing 5.1 million meals, 4.5 million liters of

water and over 20,000 tarps to Houston. In the same year, FEMA

had to distribute 1.6 million meals, 2.8 million liters of water and

roughly 5,000 tarps to Puerto Rico after HurricaneMaria [21]. These

large-scale fair resource allocation problems necessitate fast and

fair solutions.

1.1 Our contribution
As a warm-up for the reader unfamiliar with the capabilities of

parallel algorithms, in Section 3 we consider the basic problem of

whether, given an allocation, various fairness properties can be

quickly verified in parallel. We show that envy-freeness, EF1, and

envy-freeness up-to-any item (EFX) can all be checked efficiently in

parallel, i.e. we give NC algorithms for verifying these properties. In

Section 4, we show how to use algorithms with logarithmic query

complexity [20] to get fast parallel algorithms for computing EF1

allocations for two and three agents, as well as how to compute

EF1 and fractionally PO allocations for two agents, by mimicking

the adjusted winner process. We also give a parallel value-query

algorithm that finds an EF1 allocation for two agents with general

monotonic valuations. Our last result for this section shows how

to find EF1 allocations for 𝑛 identical additive agents in parallel.

In Sections 5 and 6, we study the complexity of allocating items

to restricted additive agents, that is when the value of agent 𝑖 for item

𝑗 is either 0 or 𝑣 𝑗 (i.e. each item has an inherent value 𝑣 𝑗 and agent

𝑖 either sees this value or not), and the value of agent 𝑖 for a subset

of items 𝑆 is simply

∑
𝑗∈𝑆 𝑣𝑖, 𝑗 . We first explore the complexity of

finding an EF1 allocation. Arguably, the simplest EF1 algorithm in

this setting is the Round-Robin procedure (agents choose items one

at a time, following a fixed order). In Section 5, we show that, for a

given order 𝜎 over the agents, one cannot “shortcut” the execution

of Round-Robin: the problem is CC-hard. Surprisingly, this holds

even for the case when each agent positively values at most 3 items

and each item is positively valued by at most 3 agents.

Despite this strong negative result, we can efficiently, in parallel,

compute an EF1 and PO allocation when there are a constant num-

ber of inherent values, even when agents positively value more

items, and items are positively valued by more agents. Furthermore,

our algorithm outputs allocations that guarantee each agent at least

⌊ 𝑣𝑖𝑛 ⌋ items where 𝑣𝑖 is the number of items agent 𝑖 has a positive

value for and 𝑛 is the number of agents. The complexity of our algo-

rithm is parameterized by 𝑡 , the number of inherent values: it runs

in time 𝑂 (log2 (𝑚𝑛)) and requires 𝑂 (𝑚5.5+𝑡𝑛5.5) processors. Our
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algorithm is via a reduction to the problem ofmaximum weight per-

fect matching in a bipartite graph. A beautiful result of [18] shows

that a minimum weight perfect matching (which can be used to

find a maximum weight perfect matching) can be found efficiently

in parallel when the weight of the heaviest edge is polynomially

bounded. Our reduction creates multiple copies of each agent such

that the unique item matched to the 𝑗-th copy corresponds to the

item allocated in the 𝑗-th round of some Round-Robin procedure

(and hence the overall allocation is EF1). The edge weights are

increasing (for different copies of the same agent), in a way that

every maximum weight matching must give a high-value item to

a copy of agent 𝑖 before giving two high-value items to copies of

a different agent. The restriction on the valuations allows us to

control the rate at which the weights increase, and specifically

bound the maximum weight by a polynomial, so that the algorithm

of [18] can be used. We note that when weights are not bounded by

a polynomial, the maximum weight matching problem cannot be

solved efficiently in parallel (formally, the problem is CC-hard), so

removing the condition on the valuation functions would require a

fundamentally different approach.

Finally, in Section 7, we study the problem of fair allocation with

subsidies [4, 12], where the goal is to find an integral allocation of

the items as well as payments to the agents, such that the overall

solution is envy-free.We give anNC algorithm for this problem, and,

in fact, prove that one can compute similar solutions in parallel

even in the presence of additional constraints on the payments,

e.g. “A should not be paid more than B”, or “A should be paid

no more than 10 dollars.” We formulate the problem of finding a

constraint-satisfying and envy-eliminating vector as a purely graph-

theoretic problem on a graph we call the payment rejection graph.

The constraints are included by adding edges to this graph. In the

most general sense, we can add edges to our graph that correspond

to a constraint of the form “if agent 𝑖 gets paid more than 𝑥 dollars,

then agent 𝑗 must get paid more than 𝑦 dollars”. Any meaningful

overall constraint that can be formulated as a set of such smaller

constraints can be added to the problem instance. We highlight

that it is not straightforward to implement such constraints in the

existing algorithms for the fair division with subsidies problem,

especially if one insists on a parallel solution. Our main insight here

is that by carefully constructing a large graph to represent the set

of all payment vectors, the problem of simultaneously eliminating

envy and satisfying constraints can be solved by computing directed

reachability in parallel. Details and any missing proofs appear in

the full version of the paper [9].

1.2 Related work
Understanding the parallel complexity of various problems has been

a central theme in theoretical computer science, with some major

recent breakthroughs, e.g. [1]. However, the parallel complexity of

problems in fair division remains relatively unstudied. The closest

works to ours are that of Zheng and Garg [23] and Friedman [8].

Zheng and Garg [23] study the housing allocation and housing

market problems, and give parallel and distributed algorithms. The

housing allocation problem asks for a matching between 𝑛 agents

and 𝑛 houses when agents have strict orderings over the houses.

The housing market problem asks for a matching between 𝑛 agents

and 𝑛 houses when the agents arrive at a market each owning a

single house. On the flip side, Zheng and Garg [23] show that find-

ing the core of a housing market is CC-hard by showing that the

Top-Trading Cycle Algorithm also solves a CC-complete problem:

Lexicographically First Maximal Matching. Friedman [8] studies

the parallel complexity of allocating𝑚 divisible homogeneous re-

sources to a set of 𝑛 agents with nondecreasing utility functions

over the amount of each resource received. They show, that for 𝑛

processors, the parallel time complexity of finding an allocation

that has welfare no more than 𝜖 less than a welfare-maximizing

allocation is lower bounded by Ω(𝑚 log
1

𝑛𝜖 ). They also give an effi-

cient parallel algorithm that computes an approximately accurate

solution for𝑚 = 2 resources.

2 PRELIMINARIES
We consider the problem of allocating a set M of indivisible goods,

labeled by {1, . . . ,𝑚}, to a set of agents N , labeled by {1, . . . , 𝑛}. A
fractional allocation 𝑋 ∈ [0, 1]𝑛·𝑚 defines for each agent 𝑖 ∈ N and

𝑗 ∈ M the fraction of item 𝑗 that agent 𝑖 receives. A allocation 𝑋

is integral if 𝑋𝑖, 𝑗 ∈ {0, 1} for all 𝑖 ∈ N and 𝑗 ∈ M. An allocation

𝑋 = (𝑋1, . . . , 𝑋𝑛) is complete if ∪𝑖∈N𝑋𝑖 = M and partial otherwise.

Unless stated otherwise, we use allocation to refer to a complete

allocation. We use the term bundle to refer to a subset of items, and

use [𝑘] to denote the set {1, . . . , 𝑘}. We use the terms item and good

interchangeably throughout the paper.

Each agent 𝑖 ∈ N has a private valuation function 𝑣𝑖 : 2
M →

R+ which describes the utility agent 𝑖 receives for each bundle. A

valuation function 𝑣𝑖 is additive if 𝑣𝑖 (𝑋𝑖 ) =
∑

𝑗∈𝑋𝑖
𝑋𝑖, 𝑗 · 𝑣𝑖 ({ 𝑗}). A

valuation function 𝑣𝑖 is restricted additive when 𝑣𝑖 is additive, and

for each item 𝑔 ∈ M, 𝑣𝑖 (𝑔) ∈ {0, 𝑣 (𝑔)}. To ease notation, we write

𝑣𝑖, 𝑗 = 𝑣𝑖 ({ 𝑗}) for the value of agent 𝑖 for item 𝑗 .

An allocation 𝑋 is envy-free (EF) if 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ) for all agents
𝑖, 𝑗 ∈ N . Since integral EF allocations don’t always exist (e.g. con-

sider the case of a single item and two agents that have positive

value for it), the community has turned to notions of approximate

fairness. An integral allocation 𝑋 is envy-free up to one good (EF1)

if for all agents 𝑖, 𝑗 ∈ N there exists a good 𝑔 ∈ 𝑋 𝑗 such that

𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗\𝑔) [17]. An integral allocation 𝑋 is envy-free up

to any good (EFX) if for all agents 𝑖, 𝑗 ∈ N , for all goods 𝑔 ∈ 𝑋 𝑗 ,

𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗\𝑔) [5]. The envy-graph for an allocation 𝑋 is the

complete weighted directed graph 𝐺𝑋 = (N , 𝐸), where there is a
vertex for each agent 𝑖 ∈ N , and there is an edge 𝑒 ∈ 𝐸 from vertex

𝑖 to vertex 𝑗 with the weight 𝑣𝑖 (𝑋 𝑗 ) − 𝑣𝑖 (𝑋𝑖 ) [17].
An allocation𝑋 Pareto dominates another allocation𝑌 if 𝑣𝑖 (𝑋𝑖 ) ≥

𝑣𝑖 (𝑌𝑖 ), for all 𝑖 ∈ N , and there exists some agent 𝑗 such that

𝑣 𝑗 (𝑋 𝑗 ) > 𝑣 𝑗 (𝑌𝑗 ). An integral allocation is called Pareto-Optimal

(PO) or Pareto-Efficient (PE) if no other integral allocation Pareto

dominates it. An allocation is called Fractionally Pareto-Optimal

(fPO) if no other (integral or fractional) allocation Pareto dominates

it. An allocation is 𝛼-PO, for 𝛼 ∈ (0, 1], if there is no other allocation
such that every agent’s utility is larger by a factor of 1/𝛼 .

Fair division with subsidies. In the problem of fair division with

subsidies, we eliminate the envy of an allocation by using payments.

An allocation with payments 𝑋 ®𝑞 = (𝑋, ®𝑞) is a tuple of an integral

allocation 𝑋 and a payment vector ®𝑞 = (𝑞1, . . . , 𝑞𝑛), where 𝑞𝑖 is
the payment to agent 𝑖 . Under such an allocation with payments
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𝑋 ®𝑞 , agent 𝑖’s utility is 𝑣𝑖 (𝑋𝑖 ) + 𝑞𝑖 . We can extend the definition of

envy-freeness to this setting: an allocation with payments (𝑋, ®𝑞)
is envy-free if 𝑣𝑖 (𝑋𝑖 ) + 𝑞𝑖 ≥ 𝑣𝑖 (𝑋 𝑗 ) + 𝑞 𝑗 for all agents 𝑖, 𝑗 ∈ N .

An allocation 𝑋 is envy-freeable if there exists a payment vector ®𝑞
such that (𝑋, ®𝑞) is envy-free. For a given envy-freeable allocation

𝑋 , a payment vector ®𝑞 is envy-eliminating if the allocation with

payments 𝑋 ®𝑞 is envy-free. [12] prove that, given an envy-freeable

allocation 𝑋 , one can find an envy-eliminating payment vector for

𝑋 by computing all-pairs-shortest paths on the envy graph of 𝑋

with the edge weights negated.

Parallel computation. For sequential algorithms, our model of

computation is a single processor that has access to some mem-

ory. For parallel algorithms, in this paper, we adopt the CREW

(Concurrent Read ExclusiveWrite) PRAM (Parallel RAM) model

of computation [14]. The CREW PRAM model allows simultaneous

access to any one memory location for read instructions only.
1
We

assume a shared memory model where each processor has some

local memory to execute its program and all processors can access

some amount of global shared memory. Additionally, all computa-

tion is synchronous, i.e., all processors are coordinated by a common

clock.

To describe parallel algorithms, we use 𝑝𝑘 to denote the 𝑘-th

processor. Often we will index processors by items or agents or

pairs, e.g. 𝑝 𝑗 for the processor assigned to item 𝑗 , or 𝑝 (𝑖, 𝑗 ) for the
processor assigned to the agent 𝑖 , item 𝑗 pair. We give the basic

notions of efficiency and hardness in the parallel world as well as

some useful parallel primitives in the full version of the paper [9].

3 VERIFICATION OF FAIRNESS
As a warm-up, we show that, given an allocation, we can efficiently

(in parallel) verify its fairness properties.

Theorem 3.1. Given an allocation 𝑋 and the valuation functions

of 𝑛 additive or restricted additive agents, the problem of deciding

whether 𝑋 satisfies EF is in NC.

Proof. We wish to test whether or not each agent prefers their

own bundle to any other agent’s bundle. For each ordered pair of

agents (𝑖, 𝑗), we assign |𝑋𝑖 |+ |𝑋 𝑗 | ≤ 𝑚 processors. First, we compute

the value of 𝑣𝑖 (𝑋𝑖 ) and 𝑣𝑖 (𝑋 𝑗 ) using parallel sum procedures; each

sum takes 𝑂 (log𝑚) time. Next, we test whether 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ).
For each ordered pair of agents (𝑖, 𝑗), we assign one bit in memory,

initially set to 0. If 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ), processor 𝑝 (𝑖, 𝑗 ) will flip the

bit indexed by the agent pair (𝑖, 𝑗) to 1. Setting this bit for all

ordered pairs is done simultaneously. Finally, using 𝑛2 processors,

we take the minimum across these bits to find if there is any pair of

agents that does not respect envy-freeness; this step takes𝑂 (log𝑛2)
time; if the minimum is 1, then the allocation is envy-free. We

overall used at most 𝑂 (𝑛2𝑚) processors, and the total time was

𝑂 (log𝑚 + log𝑛). □

To test if an allocation is EF1, we use similar ideas to that of

testing EF. For every ordered pair of agents, we allocate 𝑂 (𝑚)
processors to test whether or not the removal of each item from 𝑗 ’s

1
It is well known that the strongest PRAM model, the CRCW PRAM model, with 𝑝

processors can be simulated by the weakest PRAM model, the EREW PRAM model,

with 𝑝 processors with at most a𝑂 (log𝑝 ) factor slowdown [13].

bundle eliminates 𝑖’s envy. For each item, we set a separate bit to 1

to signify whether or not that item’s removal eliminates envy; we

take the maximum across all bits to see if there is any one item for

which the EF1 condition holds. Then we ensure that the minimum

for all ordered pairs of agents is 1.

To test if an allocation is EFX, we run the same procedure as

that of testing EF1 except instead of computing maximums of the

inequality bits, we compute minimums.

Theorem 3.2. Given an allocation 𝑋 and the valuation functions

of 𝑛 additive or restricted additive agents, the problem of deciding

whether 𝑋 satisfies EF1 is in NC.

Theorem 3.3. Given an allocation 𝑋 and the valuation functions

of 𝑛 additive or restricted additive agents, the problem of deciding

whether 𝑋 satisfies EFX is in NC.

4 EF1 ALLOCATIONS FOR TWO AND THREE
ADDITIVE AGENTS

In this section, we discuss how to efficiently, in parallel, compute

EF1 allocations for two and three agents. We first focus on the case

of two and three additive agents and give algorithms that work via

a reduction. We then give a family of algorithms (parametrized by a

trade-off parameter) that compute an EF1 allocation for two agents

with general monotonic valuations in the value query model.

4.1 Two and three additive agents
Our algorithms work via a reduction. Specifically, Oh et al. [20]

prove that EF1 allocations can be found using a logarithmic num-

ber of value queries
2
for two agents with monotonic utilities and

three agents with additive utilities. For sequential algorithms and

additive agents, implementing a query takes 𝑂 (𝑚) time, since one

needs to sum the values of the items in a subset. However, using

𝑂 (𝑚) processors, one can implement a value query in 𝑂 (log𝑚)
time. Therefore, the results of [20] can be directly translated to our

setting.

Theorem 4.1. For the case of additive agents, if there exists a query

algorithm that uses 𝑘 queries to compute an allocation 𝑋 , then there

exists a parallel algorithm that uses 𝑂 (𝑚) processors and computes

𝑋 in time 𝑂 (𝑘 log𝑚).

Proof. Consider any sequential fair division algorithm A for

additive agents that only has query access to agents’ valuations,

and specifically, it can ask a query, 𝑞𝑢𝑒𝑟𝑦 (𝑆, 𝑖), to learn the value of

subset 𝑆 for agent 𝑖 . Suppose A requires 𝑘 query calls. We give a

parallel algorithm that efficiently implements 𝑞𝑢𝑒𝑟𝑦 (𝑆, 𝑖). In order

to implement 𝑞𝑢𝑒𝑟𝑦 (𝑆, 𝑖), we run a parallel-sum procedure using

𝑂 (𝑚) processors on the elements specified by 𝑆 , using the valuation

function of agent 𝑖 . In 𝑂 (log𝑚) time, we then have the sum of all

item values in 𝑆 for agent 𝑖 . Since A uses 𝑘 queries, and for each

query we compute a sum, we get an overall runtime of 𝑂 (𝑘 log𝑚)
using 𝑂 (𝑚) processors. □

As corollaries, we can derive NC algorithms that produce EF1

allocations for two or three agents with additive utilities via the

2
A value query on input 𝑖 , 𝑆 ⊆ M returns the value 𝑣𝑖 (𝑆 ) of agent 𝑖 for the subset 𝑆
of items.
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algorithms of Oh et al. [20], since these algorithms have polyloga-

rithmically many value queries.

Corollary 4.2. The problem of finding an EF1 allocation for two

and three additive agents is in NC.

Next, we notice that the two-agent algorithm of Oh et al. [20]

mimics the classic cut-and-choose algorithm from continuous cake-

cutting. The authors show that for any ordering of indivisible items

on a line, there exists a way for the first agent to cut (split the

items into two pieces) such that when the second agent selects her

favorite piece, the overall allocation is EF1. The main difficulty is, of

course, finding this cut using only a logarithmic number of queries.

Here, we observe that since such a cut can be found for an arbitrary

ordering of the items, by ordering the items in increasing 𝑣1, 𝑗/𝑣2, 𝑗
(mimicking the adjusted-winner process [3]) we can also guarantee

fractional Pareto efficiency (fPO). Since the basic operations (sorting,

adding, etc) in the adjusted winner process can be done in parallel,

we overall get a fractionally PO and EF1 NC algorithm.

Theorem 4.3. The problem of finding an fPO and EF1 allocation

for two additive agents is in NC.

4.2 Two general monotonic agents
General monotonic valuations may not have a succinct representa-

tion in memory. As such, we have to adopt a different parallel model

- the adaptive model of computation. In the adaptive model, we are

allowed to directly issue value queries. Further, in each round our

algorithm can make polynomially many (in 𝑛 and𝑚) simultaneous

queries per round. The goal is to minimize the number of rounds of

computation required for the algorithm to terminate.

Studying the adaptive complexity of various problems has seen a

surge of interest in recent years, specifically in the areas of submod-

ular maximization and minimization. We refer the reader to [2, 6]

for more details on adaptive complexity.

The algorithm given by [20] works by placing items on a line

and finding a cut point. They do this by finding a good 𝑔 such that

agent 1 is almost indifferent between the set of goods to the left of 𝑔

and the set of goods to the right of 𝑔. We follow the same approach

of placing the items on a line and finding the cut point, but utilizing

parallel queries we can find the cut point faster.

We give an algorithm parameterized by a value 𝑘 where 𝑘 repre-

sents a desired trade-off between the total number of rounds and

the number of queries per round.

The algorithm of [20] begins by placing the items on a line. For

each good 𝑔, let 𝐿𝑔 and 𝑅𝑔 represent the set of goods to the left

and to the right of good 𝑔 respectively. The goal is to find the

rightmost good 𝑔 such that 𝑣1 (𝐿𝑔) ≤ 𝑣1 (𝑅𝑔 ∪ {𝑔}). After finding
this good, we check to see if 𝑣1 (𝐿𝑔) ≤ 𝑣1 (𝑅𝑔). If this inequality
holds, we present the partition (𝐿𝑔 ∪ {𝑔};𝑅𝑔) to agent 2 and let

them select their preferred half. If the inequality does not hold, we

present the partition(𝐿𝑔;𝑅𝑔 ∪ {𝑔}) to agent 2 and let them select

their preferred half. In [20], the authors find the good 𝑔 by using

binary search. Translated directly, this becomes a 𝑂 (log𝑚)-round
adaptive algorithm with one query per round.

The first observation is that with𝑚 processors, we can, in parallel,

evaluate each item as a potential cut point and identify the rightmost

good 𝑔 in exactly one round of computation. Evaluating the two

halves to determine the partition takes another query and letting

agent 2 select their favorite half takes another query. In total, this

takes 3 rounds and requires 𝑂 (𝑚) queries per round. As a result,
we get the following theorem.

Theorem 4.4. There is a 3-round adaptive algorithm that makes

𝑂 (𝑚) queries per round that finds an EF1 allocation of𝑚 indivisible

items for two general monotonic agents.

More carefully, we can use a recursive approach to introduce a

trade-off parameter 𝑘 between the total number of rounds and the

number of queries per round.

Theorem 4.5. There is a 𝑘 + 2-round adaptive algorithm that

makes 𝑂 ( 𝑘
√
𝑚) queries per round that finds an EF1 allocation of𝑚

indivisible items for two general monotonic agents.

Proof. Let ℓ be the length of the line segment we are considering

and 𝑖 be the round number we are currently on. Let 𝑔∗ be the

rightmost good such that 𝑣1 (𝐿𝑔∗ ) ≤ 𝑣1 (𝑅𝑔∗∪{𝑔∗}). In round one, we
consider the entire line of items. We set ℓ =𝑚 and 𝑖 = 1. We query

the goods with indices that are multiples of the value ( 𝑘
√
𝑚)𝑘−𝑖 . For

each good 𝑔 in this set, We check to see if the inequality 𝑣1 (𝐿𝑔) ≤
𝑣1 (𝑅𝑔 ∪ {𝑔}) holds. After this set of queries, we will have identified
a line segment of size ( 𝑘

√
𝑚)𝑘−1 that contains good 𝑔∗. Now, we

move to round two and only consider this smaller line segment. So,

ℓ = ( 𝑘
√
𝑚)𝑘−1 and 𝑖 = 2. We recursively repeat this process. In the

𝑖’th iteration, ℓ = ( 𝑘
√
𝑚)𝑘−(𝑖−1)

. After 𝑘 − 1 iterations, we have a

line segment of length exactly
𝑘
√
𝑚. We then apply Theorem 4.4 to

query all items in this smaller segment to find the correct good 𝑔∗ in
one round. Finally, we require two more rounds: one to determine

the correct partition and one to find agent 2’s preferred half. □

4.3 Identical additive agents
Finally, we show that for𝑛 identical and additive agents, there exists

a simple NC algorithm for finding an EF1 allocation. For identical

agents, it is easy to predict what item will be allocated in the 𝑘-th

round of the Round-Robin procedure: since all agents have the same

ranking over the items, the 𝑘-th item allocated is precisely the 𝑘-th

favorite item.

Theorem 4.6. The problem of finding an EF1 allocation for 𝑛

identical and additive agents is in NC.

5 TRADITIONAL EF1 ALGORITHMS ARE
INHERENTLY SEQUENTIAL

In this section, we give limits to what parallel algorithms can

achieve in our setting. Specifically, we show that “Round-Robin

looking” allocations cannot be found efficiently in parallel. We con-

sider the following problem, which we call Fixed-Order Round-

Robin: Given a setM of𝑚 items, a setN of 𝑛 agents, a strict order-

ing 𝜎 = {𝜎1 ≻ · · · ≻ 𝜎𝑛} over the agents, and a designated agent,

item pair (𝑖∗, 𝑗∗), decide if agent 𝑖∗ is allocated item 𝑗∗ by Round-

Robin with 𝜎 as the order over the agents. We give a log-space

reduction from Lexicographically-First Maximal Matching to

Fixed-Order Round-Robin.

Theorem 5.1. Fixed-Order Round-Robin is CC-Hard, even for

the case of𝑛 restricted additive agents, i.e. 𝑣𝑖, 𝑗 ∈ {0, 𝑣 ( 𝑗)}, where every
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agent positively values at most 3 items and every item is positively

valued by at most 3 agents.

Proof. We reduce 3-Lexicographically-FirstMaximalMatch-

ing (3-LFMM) to Fixed-Order Round-Robin. In the LFMM prob-

lem, we are given a bipartite graph𝐺 = (𝑋,𝑌, 𝐸) where𝑋 = {𝑥𝑖 }𝑛𝑖=1,
𝑌 = {𝑦𝑖 }𝑚𝑖=1, and 𝐸 ⊆ 𝑋 × 𝑌 . The lexicographically first maximal

matching of𝐺 ,𝑀𝑙𝑒𝑥 , is produced by successively matching vertices

in 𝑋 , in the order 𝑥1, . . . , 𝑥𝑛 , each one with the available vertex in

𝑌 that has the smallest index. The LFMM problem is to decide if

a designated edge belongs to the lexicographically first maximal

matching of a bipartite graph 𝐺 . In the 3-LFMM problem, each

vertex in 𝐺 has degree at most 3. [15] prove that 3-LFMM is CC-

complete.

Let 𝐺 = (𝑋,𝑌, 𝐸) with a designated edge 𝑒∗ be an instance of

the 3-LFMM problem. Without loss of generality, let |𝑋 | ≥ |𝑌 |. We

construct an instance of Fixed-Order Round-Robin as follows. For

each vertex 𝑥𝑖 ∈ 𝑋 we create an agent, and for each vertex 𝑦 𝑗 ∈ 𝑌

we create an item. For each 𝑒 = (𝑥𝑖 , 𝑦 𝑗 ) ∈ 𝐸, we set 𝑣𝑖, 𝑗 =𝑚 − 𝑗 + 1.

For 𝑒 = (𝑥𝑖 , 𝑦 𝑗 ) ∉ 𝐸, 𝑣𝑖, 𝑗 = 0. By construction, since each vertex

in 𝐺 has degree at most 3, each agent values positively at most

3 items, and each item is valued positively by at most 3 agents.

Let the ordering of the vertices in 𝑋 correspond to 𝜎 , i.e. 𝜎𝑖 = 𝑖 .

This construction takes logarithmic space. Therefore, to conclude

the proof of Theorem 5.1, it suffices to show that 𝑒∗ = (𝑥𝑖∗ , 𝑦 𝑗∗ ) ∈
𝑀𝑙𝑒𝑥 iff agent 𝑖∗ gets item 𝑗∗ in the execution of Round-Robin that

corresponds to 𝜎 . We prove a stronger statement, using induction.

Our inductive hypothesis is that, for a given number 𝑘 , for any

𝑗 ∈ [𝑚], (𝑥𝑘 , 𝑦 𝑗 ) ∈ 𝑀𝑙𝑒𝑥 iff agent 𝑘 gets item 𝑗 in the 𝑘-th round of

the execution of Round-Robin that corresponds to 𝜎 . For 𝑘 = 1, we

have that (𝑥1, 𝑦 𝑗 ) ∈ 𝑀𝑙𝑒𝑥 iff 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛ℓ∈[𝑚] {(𝑥1, 𝑦ℓ ) ∈ 𝐸}, which,
by construction, happens iff 𝑣1, 𝑗 > 𝑣1,ℓ for all ℓ ∈ [𝑚], i.e., iff agent

1 picks item 𝑗 in the execution of Round Robin, noting that agent 1

is first in 𝜎 and that agents don’t pick items they have zero value

for. Assume the hypothesis is true for numbers less than or equal

to 𝑘 , and that (𝑥𝑘+1, 𝑦 𝑗 ) ∈ 𝑀𝑙𝑒𝑥 . By the inductive hypothesis, all

edges (𝑥𝑖 , 𝑦ℓ ) ∈ 𝑀𝑙𝑒𝑥 for 𝑖 ≤ 𝑘 correspond to items allocated in the

first 𝑘 rounds in the execution of Round-Robin. (𝑥𝑘+1, 𝑦 𝑗 ) ∈ 𝑀𝑙𝑒𝑥

iff 𝑗 is the smallest index among all unmatched neighbors of 𝑥𝑘+1
at the (𝑘 + 1)-st step of building the lexicographically first maximal

matching. Since smaller indices (of edges) correspond to strictly

higher valuations, we have that, by construction, (𝑥𝑘+1, 𝑦 𝑗 ) ∈ 𝑀𝑙𝑒𝑥

iff 𝑣𝑘+1, 𝑗 > 𝑣𝑘+1,ℓ for all items ℓ ∈ [𝑚] that have not been allocated

in the first 𝑘 rounds in the execution of Round-Robin. This holds

iff 𝑗 is the item selected by agent 𝑘 + 1 in the (𝑘 + 1)-st round of

Round-Robin (noting once again that, in Round-Robin, agents don’t

pick items with zero value for them). □

6 EF1 + PO FOR RESTRICTED ADDITIVE
WITH A BOUNDED NUMBER OF VALUES

In this section, we present a new randomized parallel algorithm that

gives an EF1 and PO allocation for assigning𝑚 indivisible items to

𝑛 agents with restricted additive valuations. Recall that a valuation

function 𝑣𝑖 is restricted additive if 𝑣𝑖 is additive, and for each item

𝑔 ∈ M, 𝑣𝑖 (𝑔) ∈ {0, 𝑣 (𝑔)}. The complexity of the algorithm is param-

eterized by 𝑡 , the number of “inherent” item values, i.e. the number

of different values 𝑣 (𝑔) can take. Formally, our parallel algorithm

has polylog(m, n) time complexity and requires poly(𝑚,𝑛) ·𝑂 (𝑚𝑡 )
processors.

Here, we describe how our algorithm works. We construct a

weighted bipartite graph 𝐺 where on one side of the graph, we

have vertices corresponding to items, and on the other side, we

have vertices corresponding to copies of agents. We ensure that

the two sides have the same number of vertices by adding𝑚𝑛 −𝑚

dummy items that all agents have zero value for. We first describe

the vertices representing the set of items. Let this side be 𝐴. To

populate 𝐴, we create a vertex 𝑎 𝑗 for each 𝑗 ∈ M. We will think

of 𝐴 as partitioned in buckets M1 . . .M𝑡 , where 𝑡 is the number

of different item values.𝑀𝑖 is the set of items with the 𝑖’th highest

value. Finally, we add vertices that correspond to dummy items.

Let the set of dummy vertices be M𝑑 . On the other side of the

bipartition, we have vertices corresponding to copies of agents. Let

this side be 𝐵. We create 𝑚 buckets of 𝑛 vertices where each of

these 𝑛 vertices represents an agent. Formally, we create a set of

vertices {𝑏1, 𝑗 , 𝑏2, 𝑗 , . . . , 𝑏𝑛,𝑗 } for 𝑗 ∈ [𝑚]. The 𝑐-th bucket will be

called N𝑐 . For each 𝑗 ∈ M𝑓 and 𝑖 ∈ N , if 𝑣𝑖, 𝑗 > 0, we add, for all

𝑐 ∈ [𝑚], the edge (𝑎 𝑗 , 𝑏𝑖,𝑐 ) with weight −𝑚𝑡−𝑓 ·𝑐 . For each dummy

item 𝑗 ∈ M𝑑 and 𝑖 ∈ [𝑛], we add, for all 𝑐 ∈ [𝑚], the edge (𝑎 𝑗 , 𝑏𝑖,𝑐 )
with weight 0. We refer to this weight function as𝑤 (·). We give an

example of the weighted bipartite graph in Figure 1 where there

are three agents, three items in buckets M1 and M𝑓 , and some

dummy vertices in M𝑑 .

a1A a2

M1

a3 a4 a5

Mf

a6

b(1,1)B b(2,1)

N1

b(3,1) b(1,c) b(2,c)

Nc

b(3,c)

amn−2 amn−1

Md

amn

b(1,m) b(2,m)

Nm

b(3,m)

−m(t−1) · 1 −m(t−f) · c 0 0 0

Figure 1: 𝐺 for an instance with three agents.

Once the graph 𝐺 = (𝑋 ∪ 𝑌, 𝐸,𝑤) is constructed, we compute a

maximum-weight perfect matching 𝑀∗
and return the allocation

corresponding to 𝑀∗
. We assume that every (non-dummy) item

is valued by someone. This is without loss of generality since, if

an item is not valued by anyone, this can be checked efficiently in

parallel, and the item can be discarded. The formal description of

the algorithm is given in Algorithm 1. We prove that this algorithm

always outputs an EF1 and PO allocation.

Lemma 6.1. Algorithm 1 outputs a PO allocation.

Proof. We show that the resulting maximum-weight matching

saturates the left side of the bipartition. As a result, all items are

allocated to agents that value those items since an edge in the graph

is only present between an item-agent pair when the agent values

that item.

We show this by using Hall’s Marriage Theorem [11]. Hall’s

Theorem characterizes necessary and sufficient conditions for a

bipartite graph to have a perfect matching. Recall Hall’s Theorem:
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Algorithm 1 Parallel Algorithm for Division of Goods with Re-

stricted Additive Values

Input: 𝑛 agents,𝑚 items, 𝑣𝑖 (𝑔) ∈ [0, 𝑣 (𝑔)] ∀𝑖 ∈ N , 𝑔 ∈ M
Output: EF1 + PO Allocation 𝑋

1: Sort the items into buckets by value M1,M2, . . . ,M𝑡

2: Add a set of𝑚𝑛 −𝑚 dummy items M𝑑 to M
3: Create an empty, weighted, undirected graph 𝐺

4: for all 𝑗 ∈ M in parallel do
5: Add a vertex 𝑎 𝑗

6: for all 𝑗 ∈ M, 𝑖 ∈ N in parallel do
7: Add a vertex 𝑏𝑖, 𝑗

8: for all 𝑗 ∈ M, 𝑏𝑖,𝑐 for 𝑖 ∈ N and 𝑐 ∈ [𝑚] in parallel do
9: if (𝑣𝑖, 𝑗 > 0) then
10: Add the edge (𝑎 𝑗 , 𝑏𝑖,𝑐 ) to 𝐺 with weight −𝑚𝑡−𝑓 · 𝑐 if

item 𝑗 ∈ M𝑓

11: if (𝑎 𝑗 ∈ M𝑑 ) then
12: Add the edge (𝑎 𝑗 , 𝑏𝑖,𝑐 ) to 𝐺 with weight 0

13: Compute the Max-Weight Perfect Matching𝑀∗
in 𝐺

14: for all 𝑗 ∈ M, 𝑏𝑖,𝑐 for 𝑖 ∈ N and 𝑐 ∈ [𝑚] in parallel do
15: if ((𝑎 𝑗 , 𝑏𝑖,𝑐 ) ∈ 𝑀∗) then
16: 𝑋𝑖 = 𝑋𝑖 ∪ 𝑗

17: return: 𝑋

Theorem 6.2 (Hall’s Theorem [11]). A bipartite graph𝐺 = (𝐿∪
𝑅, 𝐸) contains an 𝐿-saturating perfect matching if and only if for every

subset𝑊 of 𝐿, its neighborhood, 𝑁𝐺 (𝑊 ), satisfies |𝑁𝐺 (𝑊 ) | ≥ |𝑊 |.

This holds for the graph 𝐺 used in Algorithm 1. Consider any

subset𝑊 of 𝐴. Since𝑊 is comprised of vertices corresponding to

non-dummy items and vertices corresponding to dummy items, it

suffices to show that a vertex of either type has a large enough

neighborhood in 𝐵. Every item 𝑗 ∈ M is associated with a vertex

𝑎 𝑗 ∈ 𝐴. A vertex 𝑎 𝑗 corresponding to the non-dummy item 𝑗 has

at least𝑚 edges coming out of it: an edge to the same agent 𝑖 in

each of the𝑚 blocks. Any vertex corresponding to a dummy item is

connected to all vertices in 𝐵. Thus, any subset𝑊 of𝐴 will result in

a neighborhood of size at least |𝑊 | in 𝐵. So, 𝐺 will always contain

at least one perfect matching that saturates 𝐴. Since our allocation

corresponds to this matching, each item is given to an agent that

values it. In the restricted additive setting, this corresponds to a PO

allocation. □

The next lemma is crucial for showing the EF1 guarantee of

Algorithm 1.

Lemma 6.3. For any two agents 𝑖 and 𝑗 , and 𝑐 ∈ [𝑚 − 1], 𝑖 weakly
prefers the item matched to her in bucket N𝑐 to the item that is

matched to 𝑗 in bucket N𝑐+1.

Proof. Let vertex 𝑗 be matched to 𝑀∗ ( 𝑗) in 𝑀∗
. We want to

show that 𝑣𝑖 (𝑀∗ (𝑏𝑖,𝑐 )) ≥ 𝑣𝑖 (𝑀∗ (𝑏 𝑗,𝑐+1)). Assume that this is not

true. Then, the following holds for matching𝑀∗
. Agent 𝑖 is matched

to item ℓ fromM𝑓 +ℎ for some ℎ ∈ [𝑡 − 𝑓 ] in bucketN𝑐 and agent 𝑗

is matched to item ℓ′ fromM𝑓 in bucketN𝑐+1. However, we know
that agent 𝑖 values item ℓ′. So the edge (𝑎ℓ ′ , 𝑏𝑖,𝑐 ) exists in 𝐺 . We

show that we can augment𝑀∗
and increase its weight, thus proving

that it was not the maximum weight matching in the first place; a

contradiction. Towards this, consider matching item ℓ′ to agent 𝑖
in bucket N𝑐 and matching item ℓ to agent 𝑖 in any bucket N𝑝 for

𝑝 > 𝑐 where 𝑏𝑖,𝑝 is unmatched. We show that the new matching

has a higher total weight.

Notice that besides this item switch, all other edges remain the

same. So, we need to show:

𝑤 (𝑎ℓ ′ , 𝑏𝑖,𝑐 ) +𝑤 (𝑎ℓ , 𝑏𝑖,𝑝 ) > 𝑤 (𝑎ℓ ′ , 𝑏 𝑗,𝑐+1) +𝑤 (𝑎ℓ , 𝑏𝑖,𝑐 ).

Expanding using the weight function, we have:

𝑤 (𝑎ℓ ′ , 𝑏𝑖,𝑐 ) +𝑤 (𝑎ℓ , 𝑏𝑖,𝑝 ) = −𝑐𝑚𝑡−𝑓 − 𝑝𝑚𝑡−(𝑓 +ℎ)

𝑤 (𝑎ℓ ′ , 𝑏 𝑗,𝑐+1) +𝑤 (𝑎ℓ , 𝑏𝑖,𝑐 ) = −(𝑐 + 1)𝑚𝑡−𝑓 − 𝑐𝑚𝑡−(𝑓 +ℎ) .

Subtracting the weight of the old edges from the modified matching

edges, we have:

−𝑐𝑚𝑡−𝑓 − 𝑝𝑚𝑡−(𝑓 +ℎ) + (𝑐 + 1)𝑚𝑡−𝑓 + 𝑐𝑚𝑡−(𝑓 +ℎ)

=𝑚𝑡−𝑓 + (𝑐 − 𝑝)𝑚𝑡−(𝑓 +ℎ) .

Since we know that 𝑐 ≥ 1 and 𝑝 ≤ 𝑚, the smallest value that (𝑐 −𝑝)
can take is (1 −𝑚). So, we get:

𝑚𝑡−𝑓 + (𝑐 − 𝑝)𝑚𝑓 +ℎ ≥ 𝑚𝑡−𝑓 + (1 −𝑚)𝑚𝑡−(𝑓 +ℎ)

> 𝑚𝑡−𝑓 + (−𝑚)𝑚𝑡−(𝑓 +ℎ)

=𝑚𝑡−𝑓 −𝑚 (𝑡−𝑓 −ℎ+1) .

The largest value the second term can take is when ℎ = 1. This

gives us,

𝑚𝑡−𝑓 −𝑚 (𝑡−𝑓 −ℎ+1) ≥ 𝑚𝑡−𝑓 −𝑚𝑡−𝑓 = 0.

Thus, we can strictly increase the weight of the matching; a contra-

diction. □

The repeated application of Lemma 6.3 gives us Lemma 6.4.

Lemma 6.4. Algorithm 1 outputs an EF1 allocation.

Proof. Notice that every vertex in 𝐵 is matched to some item

in 𝐴 (the matched item may be a dummy item of value 0). By

Lemma 6.3, for any two agents 𝑖 and 𝑗 , we have that 𝑣𝑖 (𝑀∗ (𝑏𝑖,𝑐 )) ≥
𝑣𝑖 (𝑀∗ (𝑏 𝑗,𝑐+1)). So, in particular, we have that agent 𝑖 weakly prefers
the item they received in bucket N1 to the item agent 𝑗 receives in

bucket N2. Agent 𝑖 also weakly prefers the item they received in

bucket N2 to the item agent 𝑗 receives in bucket N3 and so on. As

a result, we know that agent 𝑖 has at least the same value for the

set of items she receives in buckets N1 through bucket N𝑚 as that

of the set of items agent 𝑗 receives in buckets N2 through bucket

N𝑚 . Thus, by removing the item agent 𝑗 receives in N1, agent 𝑖

will certainly have no envy for agent 𝑗 . □

Finally, we show that Algorithm 1 runs in randomized poly-

logarithmic time using 𝑓 (𝑚,𝑛) · 𝑂 (𝑚𝑡 ) processors where 𝑓 is a

polynomial (in𝑚 and 𝑛) function.

Lemma 6.5. Algorithm 1 takes𝑂 (log2 (𝑚𝑛)) time using𝑂 (𝑚5.5+𝑡𝑛5.5)
processors.

Combined, Lemmas 6.1, 6.4, and 6.5 give us the following theo-

rem.
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Theorem 6.6. Algorithm 1 is a parallel algorithm that returns an

EF1 and Pareto Optimal allocation of𝑚 indivisible items to 𝑛 agents

with restricted-additive valuations, from a set of 𝑡 different inherent

item-values, in time 𝑂 (log2 (𝑚𝑛)) using 𝑂 (𝑚5.5+𝑡𝑛5.5) processors.

Notice that binary valuations are a special case of restricted

additive valuations (with one inherent item value). Thus, we get an

RNC algorithm for binary valuations.

Corollary 6.7. The problem of finding an EF1 and Pareto Optimal

allocation for 𝑛 additive agents with binary valuations is in RNC.

We note here that for a given instance of restricted additive fair

division, we can reduce the number of inherent item values at the

expense of some loss in the EF1 and PO guarantees. Concretely, if

we round the valuations 𝑣𝑖, 𝑗 to 𝑣 ′
𝑖, 𝑗

such that 𝑣 ′
𝑖, 𝑗

∈ [𝛼 · 𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗 ]
then an EF1 and PO allocation in 𝑣 ′ is an 𝛼-EF1 and 𝛼-PO allocation

with respect to 𝑣 . Assuming the item values are in the range [1,𝑉 ],
one can use such a rounding to create ⌈log 1

𝛼
(𝑉 + 1)⌉ intervals.

Theorem 6.8. For 𝑛 restricted additive agents and𝑚 indivisible

items such that 𝑣 (𝑔) ∈ [1,𝑉 ], an 𝛼-EF1 and 𝛼-PO allocation can

be computed in time 𝑂 (log2 (𝑚𝑛)) using 𝑂 (𝑚5.5+⌈log 1

𝛼
(𝑉+1) ⌉

𝑛5.5)
processors.

Proof. We begin by rounding the valuations 𝑣 to new valua-

tion functions 𝑣 ′ where 𝑣 ′
𝑖, 𝑗

∈ [𝛼 · 𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗 ) for some 𝛼 ∈ [0, 1).
Specifically, all values in the interval [1, 1/𝛼) will be rounded down
to 1, values in the interval [1/𝛼, (1/𝛼)2) will be rounded down to

1/𝛼 , and so on. This creates ⌈log 1

𝛼
(𝑉 + 1)⌉ intervals, and therefore

𝑡 = ⌈log 1

𝛼
(𝑉 + 1)⌉ different inherent item-values in 𝑣 ′. Using Algo-

rithm 1, we can compute an EF1 and PO allocation 𝑋 with respect

to 𝑣 ′. We claim that 𝑋 is an 𝛼-EF1 and 𝛼-PO allocation with respect

to 𝑣 .

First, we show the 𝛼-EF1 guarantee. Since 𝑋 is EF1 with respect

to 𝑣 ′, for every pair of agents 𝑖, 𝑗 , there exists some good 𝑔 in agent

𝑗 ’s bundle such that (1) 𝑣 ′
𝑖
(𝑋𝑖 ) ≥ 𝑣 ′

𝑖
(𝑋 𝑗 \ {𝑔}). Since 𝛼 ∈ [0, 1), we

have that (2) 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣 ′
𝑖
(𝑋𝑖 ). By the construction of 𝑣 ′, we also

have (3) 𝑣 ′
𝑖
(𝑋 𝑗 \ {𝑔}) ≥ 𝛼 · 𝑣𝑖 (𝑋 𝑗 \ {𝑔}). Stitching (1), (2), and (3)

together, we the 𝛼-EF1 guarantee:

𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣 ′𝑖 (𝑋𝑖 ) ≥ 𝑣 ′𝑖 (𝑋 𝑗 \ {𝑔}) ≥ 𝛼 · 𝑣𝑖 (𝑋 𝑗 \ {𝑔}) .
Next, we show the 𝛼-PO guarantee. Consider some other alloca-

tion 𝑋 ′
. Since 𝑋 is PO with respect to 𝑣 ′, we know, for any other

allocation 𝑋 ′
, 𝑋 ′

does not Pareto dominate 𝑋 . That is, there exists

at least one agent 𝑖 such that 𝑣 ′
𝑖
(𝑋 ′

𝑖
) ≤ 𝑣 ′

𝑖
(𝑋𝑖 ). By construction of 𝑣 ′,

we have that, for every subset of items 𝑆 , 𝛼 · 𝑣𝑖 (𝑆) ≤ 𝑣 ′
𝑖
(𝑆) ≤ 𝑣𝑖 (𝑆).

Therefore, we have:

𝛼 · 𝑣𝑖 (𝑋 ′
𝑖 ) ≤ 𝑣 ′𝑖 (𝑋

′
𝑖 ) ≤ 𝑣 ′𝑖 (𝑋𝑖 ) ≤ 𝑣𝑖 (𝑋𝑖 ) .

That is, agent 𝑖’s utility cannot be improved by a factor more than

1/𝛼 , and therefore 𝑋 is 𝛼-PO. □

7 FAIR ALLOCATIONS WITH SUBSIDIES IN
PARALLEL

In this section, we study fair division with subsidies. First, we

show how to adjust the algorithm of [12] and compute an envy-

freeable allocation and corresponding envy-eliminating payment

vector in parallel. Second, we give an efficient parallel algorithm

that computes a payment vector that not only eliminates envy but

additionally satisfies other user-specified constraints (defined later

in this section).

7.1 Envy-Freeable allocations and payments in
NC

We prove that the algorithm of [12], for finding an envy-freeable al-

location and envy-eliminating payment vectors can be parallelized.

Theorem 7.1. The problem of finding an envy-freeable allocation

𝑋 and an envy-eliminating payment vector for𝑋 for 𝑛 additive agents

is in NC.

First, note that the welfare-maximizing allocation, which gives

each item to the agent with the highest value for it, can be shown

to be envy-freeable. Now, given an envy-freeable allocation 𝑋 , the

algorithm of [12] for finding envy-eliminating payments at a high-

level, constructs the envy-graph 𝐺𝑋 , negates all the edge weights

in 𝐺𝑋 , and computes all-pairs-shortest-paths on the modified 𝐺𝑋 .

Then, for each agent, 𝑖 , the algorithm singles out the path with

the lowest overall weight (out of 𝑛 shortest paths) that starts at 𝑖’s

vertex in𝐺𝑋 . One can show that paying agent 𝑖 the sum of the edge

weights along this path results in an envy-eliminating payment.

We show that all these steps can be parallelized efficiently, noting

that one can apply known techniques to solve the all-pairs-shortest-

paths problem in parallel.

7.2 Computing constrained envy-eliminating
payment vectors in NC

In this section, we give a different algorithm for finding an envy-

eliminating payment vector, ®𝑞. A key feature of our algorithm is

that it allows for additional constraints on the final solution.

Formally, we are given an allocation 𝑋 of𝑚 items to 𝑛 additive

agents each with a valuation function 𝑣𝑖 that takes integer values,

and a set 𝐶 of constraints of the form “if agent 𝑖 is paid more than

𝑥 dollars, then agent 𝑗 must be paid more than 𝑦 dollars.” We are

interested in computing a payment vector ®𝑞 that is envy-eliminating

and satisfies all such constraints in𝐶 , or deciding that no such vector

exists. We call this problem Constrained Payments. We assume

that no agent is paid more than𝑚Δ dollars, where Δ = max𝑖, 𝑗 𝑣𝑖, 𝑗 .

This is because, for any meaningful solution, we need not pay any

one agent more than𝑚Δ dollars as this is the maximum value any

agent can have for the entire set of items.

We note that many non-trivial constraints on the payment vector

can be formulated as a set of these smaller individual constraints.

For example, the constraint “agent 1 should not be paid more than

agent 2” can be imposed by adding the constraint “if agent 1 is paid

more than 𝑥 dollars, then agent 2 is paid more than 𝑥 dollars” for

all 𝑥 ∈ [𝑚Δ]. Or, the constraint “agent 1 should not be paid more

than 10 dollars” can be imposed by adding the constraint “if agent

1 is paid more than 10 dollars, then agent 2 is paid more than𝑚Δ
dollars”. When𝐶 is empty, we solve the original problem of finding

an unconstrained envy-eliminating payment vector.

Theorem 7.2. If 𝑣𝑖, 𝑗 is integral for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚],
Constrained Payments can be solved in 𝑂 (log2 (𝑚𝑛Δ)) time using

𝑂 (𝑛3𝑚3Δ3) processors, where Δ = max𝑖, 𝑗 𝑣𝑖, 𝑗 .
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Note that𝐶 is upper-bounded by𝑂 (𝑛2𝑚2Δ2), and hence the size
of 𝐶 does not appear in the bounds of Theorem 7.2. The main chal-

lenge with incorporating constraints into the final payment vector

is that the previous approach of running all-pairs-shortest-paths on

the envy graph does not allow us to isolate specific dollar amounts

for which we want to impose a constraint on. To resolve this, we

construct a larger, modified graph where each vertex corresponds

to an agent coupled with a specific payment amount. We call this

graph the payment rejection graph. Our goal is to select a single

vertex for each agent from the payment rejection graph, which will

define the final payment vector. An edge in the payment rejection

graph will exactly represent the causal relationship defined by a

constraint.

Formally, the payment rejection graph is a directed graph 𝐺𝑝 =

(𝑉 , 𝐸) with a total of 𝑛𝑚Δ vertices. We arrange the 𝑛𝑚Δ vertices on

an 𝑛×𝑚Δ two-dimensional grid. Vertex (𝑖, 𝑗) corresponds to agent 𝑖
being paid ®𝑞𝑖 = 𝑗 dollars. We use the term rejecting a vertex (𝑖, 𝑗) to
denote that ®𝑞𝑖 = 𝑗 will not be in the final payment vector.We use the

term payment row for an agent 𝑖 when referring to the set of vertices

{(𝑖, 𝑗) | 𝑗 ∈ [𝑚Δ]}. An edge from node (𝑖, 𝑗) to (𝑘, ℓ), denoted by

(𝑖, 𝑗) → (𝑘, ℓ), signifies that if we have rejected all vertices (𝑖, 𝑗 ′)
for 𝑗 ′ ≤ 𝑗 , then we also reject all vertices (𝑘, ℓ′) for ℓ′ ≤ ℓ . The

idea of modeling rejections as edges in a directed graph was first

used to find consistent global states in distributed systems [10]. We

adapt this approach to find envy-eliminating payments.

We maintain a “current” payment vector and initialize it to the

all-zero payment vector (i.e we select the vertex (𝑖, 0) for each agent
𝑖). Then, we iteratively increase the agents’ payments by one dollar

until no envy is present. Although this process seems sequential,

we show that we can quickly, in parallel, determine which payment

components are not part of any envy-eliminating payment vector.

To see this, consider two agents 𝑖 and 𝑗 and a current payment

vector ®𝑞. We can compute the envy 𝑖 has for 𝑗 (or, similarly, 𝑗 has

for 𝑖) subject to these two payments by comparing 𝑖’s value for 𝑖’s

bundle and payment (𝑣𝑖 (𝑋𝑖 ) + ®𝑞𝑖 ) to that of 𝑗 ’s (𝑣𝑖 (𝑋 𝑗 ) + ®𝑞 𝑗 ). If it is
the case that 𝑖 envies 𝑗 subject to the payments ®𝑞𝑖 and ®𝑞 𝑗 , we must

increase 𝑖’s payment by one dollar. So, we will increment ®𝑞𝑖 to ®𝑞𝑖 +1.
Now, if there is any other agent 𝑘 that envies 𝑖 subject to the new

payment, we know we will have to increase 𝑘’s payment by one

dollar as well. As a result, we canmake the following inference: if we

pay agent 𝑖 more than ®𝑞𝑖 dollars, we have to pay agent 𝑘 more than

®𝑞𝑘 dollars. So, we can place an edge (𝑖, ®𝑞𝑖 ) → (𝑘, ®𝑞𝑘 ). Notice that
the meaning of these edges holds transitively (i.e if (𝑖, ®𝑞𝑖 ) → ( 𝑗, ®𝑞 𝑗 )
and ( 𝑗, ®𝑞 𝑗 ) → (𝑘, ®𝑞𝑘 ), then (𝑖, ®𝑞𝑖 ) → (𝑘, ®𝑞𝑘 )). Since this observation
does not require us to use any information about other vertices

in the graph besides the set {(𝑖, ®𝑞𝑖 ), (𝑖, ®𝑞𝑖 + 1), (𝑘, ®𝑞𝑘 )}, by using a

separate processor for each pair of vertices, we can place all edges

in the graph simultaneously. An example of a payment rejection

graph for a specific valuation profile can be found in the full version

of the paper [9].

Now, we identify which vertices will not be a part of any envy-

eliminating payment vector initially, and then follow edges from

these vertices. These vertices are of the form (𝑖, 0) where there is
some other vertex ( 𝑗, 0) where 𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋 𝑗 ). Agent 𝑖 must be

paid and so vertex (𝑖, 0) will be rejected. To find all vertices that

are reachable from initially rejected vertices, we take the transitive

closure of𝐺𝑝 , which can be done efficiently in parallel [13]. Vertices

that are reachable from any initially rejected vertex will be marked

as rejected. Then, we find the minimum payment component for

each agent using a parallel reduction operator. If there is no mini-

mum component (i.e all vertices along some agent’s payment row

have been rejected), then we output “No satisfying vector”. If all

agents have a valid payment, we output the envy-eliminating pay-

ment vector ®𝑞. Since edges in𝐺𝑝 correspond exactly to a constraint

in 𝐶 , all constraints can be added to 𝐺𝑝 simultaneously in parallel.

Now, the algorithm identifies the first envy-eliminating payment

vector that respects these constraints.

The algorithm and proof of Theorem 7.2 are in the full version

of the paper [9]. As a direct result, we get an NC algorithm when

Δ is bounded by a polynomial of 𝑛 and𝑚.

Corollary 7.3. The problem of finding an envy-eliminating and

constraint-satisfying payment vector is in NC if Δ = max𝑖, 𝑗 𝑣𝑖, 𝑗 is

polynomial in 𝑛 and𝑚.

8 DISCUSSION
Our results show that many problems in fair division admit efficient

parallel solutions. Our hardness result shows that the traditional

Round Robin allocation cannot be efficiently computed in parallel.

We leave open many interesting research directions. Is the problem

of finding any EF1 allocation CC-Hard? Are any problems in fair

division P-Complete? Can we give deterministic parallel algorithms

for restricted additive fair division?
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