
On Learning Informative Trajectory Embeddings for
Imitation, Classification and Regression
Zichang Ge

∗

Singapore Management University

Singapore

zichang.ge.2023@phdcs.smu.edu.sg

Changyu Chen
∗

Singapore Management University

Singapore

cychen.2020@phdcs.smu.edu.sg

Arunesh Sinha

Rutgers University

New Brunswick, NJ, USA

arunesh.sinha@rutgers.edu

Pradeep Varakantham

Singapore Management University

Singapore

pradeepv@smu.edu.sg

ABSTRACT
In real-world sequential decision making tasks like autonomous

driving, robotics, and healthcare, learning from observed state-

action trajectories is critical for tasks like imitation, classification,

and clustering. For example, self-driving cars must replicate human

driving behaviors, while robots and healthcare systems benefit

from modeling decision sequences, whether or not they come from

expert data. Existing trajectory encoding methods often focus on

specific tasks or rely on reward signals, limiting their ability to

generalize across domains and tasks.

Inspired by the success of embedding models like CLIP and

BERT in static domains, we propose a novel method for embedding

state-action trajectories into a latent space that captures the skills

and competencies in the dynamic underlying decision-making pro-

cesses. This method operates without the need for reward labels,

enabling better generalization across diverse domains and tasks.

Our contributions are threefold: (1) We introduce a trajectory em-

bedding approach that captures multiple abilities from state-action

data. (2) The learned embeddings exhibit strong representational

power across downstream tasks, including imitation, classification,

clustering, and regression. (3) The embeddings demonstrate unique

properties, such as controlling agent behaviors in IQ-Learn and an

additive structure in the latent space. Experimental results confirm

that our method outperforms traditional approaches, offering more

flexible and powerful trajectory representations for various applica-

tions. Our code is available at https://github.com/Erasmo1015/vte.

KEYWORDS
Representation Learning; Sequential Decision Making

ACM Reference Format:
Zichang Ge

∗
, Changyu Chen

∗
, Arunesh Sinha, and Pradeep Varakantham.

2025. On Learning Informative Trajectory Embeddings for Imitation, Clas-

sification and Regression. In Proc. of the 24th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michi-
gan, USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

1 INTRODUCTION
Learning from state-action trajectories is a key requirement in

sequential decision-making tasks, driving applications such as imi-

tation, classification, regression, and clustering. For instance, au-

tonomous vehicles need to mimic human driving behavior in sce-

narios like lane merging, while in robotics, trajectory learning is

essential for replicating complex manipulation tasks. Traditional

representation learning methods, though successful in static fields

like computer vision (e.g., CLIP [40]) and natural language process-

ing (e.g., BERT [13]), often struggle to generalize to these sequential

settings. In dynamic environments where trajectories unfold over

time and reward signals may not always be present, the challenges

of learning effective representations become more pronounced.

This limitation raises a crucial question:

How can we learn informative trajectory embeddings that capture
the dynamic decision-making processes driving these trajectories?
Although prior work, such as goal-conditioned learning [2] has

explored state-action trajectory representation, these methods rely

on external labels such as goals or rewards, limiting their applica-

bility across diverse domains. Most other works of representation

learning in MDP [8, 10, 35, 36, 38, 47, 49, 50] focus on state rep-

resentation learning, losing information of action sequences. A

related topic is the work on skill (or options) extraction [24] from

trajectories; however, skills or options capture information only

about sub-trajectories. We find that a naive average of skills found

in a trajectory does not provide informative embedding of the tra-

jectory and thus cannot reach the return of the demonstrations (see

ablation experiments in Section 5.6).

In this work, we propose a novel approach that learns the infor-

mative embeddings of state-action trajectories. Our approach has

two stages. First, we use a skill extractor designed for sequential

decision making inspired by Jiang et al. [29]. We leverage Hierarchi-

cal State Space Models (HSSM) to extract a probability distribution

of multiple possible skills from the trajectory. Next, this skill dis-

tribution is input into a shallow transformer and trained with a

Variational autoencoder (VAE) [31] loss. This setup outputs a la-

tent ability vector encapsulating the trajectory’s ability level. The

process resembles a VAE, where the trajectory passes through a

bottleneck, retaining key information for the decoder to reconstruct

the trajectory.

*
Equal Contribution.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

858

https://github.com/Erasmo1015/vte
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Our approach provides several key advantages over previous

methods. First, our approach does not require external labels, such

as rewards or goal conditions, which are typically necessary in

works like Zeng et al. [51]. Second, our method encapsulates the

entire trajectory’s information without any extra labels such as

task [24] or rewards [2]. Third, our method can effectively learn

from a dataset of trajectories generated by diverse policies, extract-

ing latent representations that distinguish the trajectories generated

by different policies in the latent space. Last but not least, our la-

tent ability vectors enable a variety of downstream tasks including

conditional imitation learning that recovers the diverse policies that
generated the dataset of trajectories, classification of trajectories,

and regression tasks to predict the return.

Our experimental results highlight several important charac-

teristics of the latent ability vector. Our experiments demonstrate

that previous baselines struggle to generate meaningful representa-

tions from the dataset of trajectories generated by diverse policies,

resulting in poor recovery of the diverse policies that generated

these trajectories. We show similar comparison for classification,

clustering, and regression. Lastly, we demonstrate its strong repre-

sentational power by showing that perturbing different dimensions

of the trajectory embedding vector leads to distinct behavioral

changes in agents.

To summarize, our main contributions include:

• Unsupervised trajectory encoding.Wepresent amethod that

effectively extracts informative embeddings of state-action tra-

jectories without any reward/goal labels. Our approach hinges

on two key design choices: (1) learning trajectory embeddings

through skill abstraction (representation of sub-trajectories),

and (2) leveraging a transformer to capture the temporal nature

of the skill sequence.

• Diverse downstream tasks. Our learned ability vector demon-

strates strong representation across tasks like data generation

(via imitation learning with ability embedding), classification,

clustering, and regression.

• Disentangled representation. Our ability embedding shows

interesting properties such as different dimensions of ability

vectors controlling different behaviors of the agent in the condi-

tional imitation learned policy, and an intuitive distance struc-

ture in the trajectory embedding space.

2 RELATEDWORK
Representation Learning in MDP Representation learning in

Markov Decision Processes (MDPs) is centered on extracting mean-

ingful features from unlabelled trajectories to enhance performance

in downstream tasks. Prior works primarily focus on either learning

state representations [8, 10, 34–36, 38, 47, 49, 50] or constructing

world models [14, 22, 23, 27, 37, 41]. Recent advancements, such as

GCPC [51], expand the focus from sub-trajectory representations

to embeddings in trajectory space. This work leverages sequence

models like GPT and BERT to encode trajectories, with the resulting

trajectory representations utilized to improve subsequent policy

learning in offline reinforcement learning (RL) settings. However,

these approaches still depend on reward (goal) labels, which differ-

entiates them from our proposed method (which does not require

reward/goal labels).

We develop a continuous state-action trajectory embedding in

an unsupervised setting. This approach allows us to learn compact

information representations that holistically capture the inherent

policy behavior patterns present in the trajectories, in a broader

context without the reliance on labeled data.

Trajectory Embedding There are several existing methods that

embed trajectories. Grover et al. [20] proposed learning the tra-

jectory embeddings using constrastive learning; however, their

approach relies on labeled trajectories, whereas ours does not.

Tangkaratt et al. [43] and related methods target learning the expert

policies from the diverse-quality demonstrations but do not involve

learning trajectory-level representations. Other methods focus on

encoding the state trajectory rather than encoding state-action tra-

jectory. Hawke et al. [25] obtains the embeddings through optical

flows and some other sources to improve the model performance in

autonomous driving. Gavenski et al. [17] utilizes the path signatures

to automatically encode the constraints.

Imitation Learning Behavioral cloning (BC) is a basic offline im-

itation learning method that replicates expert actions without lever-

aging dynamics information. Advanced methods include GAIL [26]

and its variants [4, 15, 32], which optimize policies using a GAN-

like [19] framework to learn from expert demonstrations in an

online setting. In addition, offline imitation learning works Val-

ueDICE [33] and its variants [3, 9, 28] focus on dynamics-aware

approaches to minimize KL-divergence and integrate SAC updates.

Imitation Learning (IL) and Inverse Reinforcement Learning (IRL)

techniques often assume optimal demonstrations [1, 11, 18]. The

assumption often fails in many real-world scenarios. Kaiser et al.

[30] analyze five sources of suboptimality, including unnecessary

or incorrect actions and limited demonstration scenarios.

Thus, many works [5–7] have utilized sub-optimal demonstra-

tions to learn an optimal policy. Some [7] utilizes ranking infor-

mation among trajectories as a supervision signal, though this can

be costly and error-prone. Other approaches include pre-labeling

demonstrations as expert or non-expert [45], using crowd-sourced

data with confidence scores [48], and bootstraps from sub-optimal

demonstrations to synthesize optimality-parameterized data [12].

However, a significant gap remains in imitating behaviors across

different levels of optimality, or “ability levels,” whether sub-optimal

or optimal. When dealing with mixtures of demonstrations of vary-

ing quality, the underlying behavior patterns that generated these

demonstrations are often overlooked. Few works like Behavior

Transformer (BeT) [42] learn a multi-modal policy, allowing it to

reconstruct different modes of behaviors. But the policy is parame-

terized by mixture of Gaussian rather than Gaussian prior, without

an informative representation to represent the trajectory. To ad-

dress this, our approach reconstructs behavior patterns at different

ability levels by learning continuous trajectory embeddings in an

unsupervised manner. These embeddings, which capture the ability

levels, facilitate various downstream tasks, including imitation of

diverse policies, trajectory classification, and disentangled repre-

sentation of behaviors.

3 PRELIMINARIES
Problem setting We consider environments represented as a

Markov decision process (MDP), which is defined by a tuple

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

859

SE-Logit

M
LP

Transform
er

M
LP

<latexit sha1_base64="uFxzgzrnBC/Q/giFnCv8gK8qLnE=">AAACDXicbVBLTsMwFHzhW8ovwJJNRIXEqkoQv2UFG5ZFoh+pjSLHcVurjh3ZTkUV9QxcgC3cgB1iyxm4AOfAabOgLSNZHs28pzeaMGFUadf9tlZW19Y3Nktb5e2d3b19++CwqUQqMWlgwYRsh0gRRjlpaKoZaSeSoDhkpBUO73K/NSJSUcEf9Tghfoz6nPYoRtpIgW13Q8EiNY7Nl6FJoAO74lbdKZxl4hWkAgXqgf3TjQROY8I1Zkipjucm2s+Q1BQzMil3U0UShIeoTzqGchQT5WfT5BPn1CiR0xPSPK6dqfp3I0OxysOZyRjpgVr0cvE/r5Pq3o2fUZ6kmnA8O9RLmaOFk9fgRFQSrNnYEIQlNVkdPEASYW3KmrvyNItaNsV4izUsk+Z51buqXj5cVGq3RUUlOIYTOAMPrqEG91CHBmAYwQu8wpv1bL1bH9bnbHTFKnaOYA7W1y/pA5ya</latexit>at

<latexit sha1_base64="eXy37GUhNVwP5Yb048gOxbsesd0=">AAACDXicbVBLTsMwFHTKr5RfgCUbiwqJVZUgfssKNiyLRD9SG0WO47RWHTuynapV1DNwAbZwA3aILWfgApwDp82CtoxkeTTznt5ogoRRpR3n2yqtrW9sbpW3Kzu7e/sH9uFRS4lUYtLEggnZCZAijHLS1FQz0kkkQXHASDsY3ud+e0SkooI/6UlCvBj1OY0oRtpIvm33AsFCNYnNl42nvvbtqlNzZoCrxC1IFRRo+PZPLxQ4jQnXmCGluq6TaC9DUlPMyLTSSxVJEB6iPukaylFMlJfNkk/hmVFCGAlpHtdwpv7dyFCs8nBmMkZ6oJa9XPzP66Y6uvUyypNUE47nh6KUQS1gXgMMqSRYs4khCEtqskI8QBJhbcpauDKeR62YYtzlGlZJ66LmXteuHi+r9buiojI4AafgHLjgBtTBA2iAJsBgBF7AK3iznq1368P6nI+WrGLnGCzA+voFDf+csQ==</latexit>xt

<latexit sha1_base64="L0GRcQWkj5hAS27v2q8sxQSPOhs=">AAACCXicbVBLTsMwFHzhW8qvwJKNRYXEqkoQv2UFG5ZFoh+pDZXjOK1Vx45sB1FFPQEXYAs3YIfYcgouwDlw2i5oy0iWRzPv6Y0mSDjTxnW/naXlldW19cJGcXNre2e3tLff0DJVhNaJ5FK1AqwpZ4LWDTOcthJFcRxw2gwGN7nffKRKMynuzTChfox7gkWMYGOlh04geaiHsf0yOuqWym7FHQMtEm9KyjBFrVv66YSSpDEVhnCsddtzE+NnWBlGOB0VO6mmCSYD3KNtSwWOqfazceoROrZKiCKp7BMGjdW/GxmOdR7NTsbY9PW8l4v/ee3URFd+xkSSGirI5FCUcmQkyitAIVOUGD60BBPFbFZE+lhhYmxRM1eeJlGLthhvvoZF0jiteBeV87uzcvV6WlEBDuEITsCDS6jCLdSgDgQUvMArvDnPzrvz4XxORpec6c4BzMD5+gXOZJuG</latexit>e

<latexit sha1_base64="80jB50WLxSLhAKwpgavDZp/iQOE=">AAACEnicbVBLTsMwFHT4lvILIFZsLCokVlWC+IlVBRuWRepPaqPIcdzWqmNHtoOootyCC7CFG7BDbLkAF+AcOG0WtGUky6OZ9/RGE8SMKu0439bS8srq2nppo7y5tb2za+/tt5RIJCZNLJiQnQApwignTU01I51YEhQFjLSD0V3utx+JVFTwhh7HxIvQgNM+xUgbybcPe4FgoRpH5ktR5qfuTSMr+3bFqToTwEXiFqQCCtR9+6cXCpxEhGvMkFJd14m1lyKpKWYkK/cSRWKER2hAuoZyFBHlpZP4GTwxSgj7QprHNZyofzdSFKk8oZmMkB6qeS8X//O6ie5feynlcaIJx9ND/YRBLWDeBQypJFizsSEIS2qyQjxEEmFtGpu58jSNmhfjztewSFpnVfeyevFwXqndFhWVwBE4BqfABVegBu5BHTQBBil4Aa/gzXq23q0P63M6umQVOwdgBtbXL9p6nhk=</latexit>a1:T

<latexit sha1_base64="rcnnudsigJhWiLst00Fsl5YbLeg=">AAACHHicbVDLSsNAFJ3UV62vqEsXBovgQkoivnBVdOOyQl/QhDKZTNqhkwczN9ISsvQ3/AG3+gfuxK3gD/gdTtoubOuFYQ7n3Ms997gxZxJM81srLC2vrK4V10sbm1vbO/ruXlNGiSC0QSIeibaLJeUspA1gwGk7FhQHLqctd3CX661HKiSLwjqMYuoEuBcynxEMiurqh7YbcU+OAvWlw6ybWjf1zAY6BBGkp1mpq5fNijkuYxFYU1BG06p19R/bi0gS0BAIx1J2LDMGJ8UCGOE0K9mJpDEmA9yjHQVDHFDppONDMuNYMZ7hR0K9EIwx+3cixYHMvarOAENfzms5+Z/WScC/dlIWxgnQkEwW+Qk3IDLyVAyPCUqAjxTARDDl1SB9LDABld3MluHEah6MNR/DImieVazLysXDebl6O42oiA7QETpBFrpCVXSPaqiBCHpCL+gVvWnP2rv2oX1OWgvadGYfzZT29Qt2k6K4</latexit>x1:T , <latexit sha1_base64="BKhdPfjQ8gPUlSnEaAWNapUVeQY=">AAACEnicbVDLSsNAFJ34rPUVFVdugkVwVRLxhauiG5cV+oI2hMlk2g6dR5iZiCXkL/wBt/oH7sStP+AP+B1O2ixs64FhDufcyz2cMKZEadf9tpaWV1bX1ksb5c2t7Z1de2+/pUQiEW4iQYXshFBhSjhuaqIp7sQSQxZS3A5Hd7nffsRSEcEbehxjn8EBJ32CoDZSYB/2QkEjNWbmS1kWpN5NIysHdsWtuhM4i8QrSAUUqAf2Ty8SKGGYa0ShUl3PjbWfQqkJojgr9xKFY4hGcIC7hnLIsPLTSfzMOTFK5PSFNI9rZ6L+3UghU3lCM8mgHqp5Lxf/87qJ7l/7KeFxojFH00P9hDpaOHkXTkQkRpqODYFIEpPVQUMoIdKmsZkrT9OoeTHefA2LpHVW9S6rFw/nldptUVEJHIFjcAo8cAVq4B7UQRMgkIIX8ArerGfr3fqwPqejS1axcwBmYH39Au36niU=</latexit>m1:T
<latexit sha1_base64="3zmpulV+3NCmQ+uNsOwEMQvvpaI=">AAACGXicbVC7TsMwFHV4lvIKMMJgUSExoCpBvMRUwcJYpL6kNkSO47ZWHSeyHUSJsvAb/AAr/AEbYmXiB/gOnDYDbbmS5aNz7tU993gRo1JZ1rcxN7+wuLRcWCmurq1vbJpb2w0ZxgKTOg5ZKFoekoRRTuqKKkZakSAo8BhpeoPrTG/eEyFpyGtqGBEnQD1OuxQjpSnX3Ot4IfPlMNBfQtK75PEIBqmb2Je1tOiaJatsjQrOAjsHJZBX1TV/On6I44BwhRmSsm1bkXISJBTFjKTFTixJhPAA9UhbQ44CIp1kdEUKDzTjw24o9OMKjti/EwkKZGZUdwZI9eW0lpH/ae1YdS+chPIoVoTj8aJuzKAKYRYJ9KkgWLGhBggLqr1C3EcCYaWDm9jyMLaaBWNPxzALGsdl+6x8entSqlzlERXALtgHh8AG56ACbkAV1AEGT+AFvII349l4Nz6Mz3HrnJHP7ICJMr5+ATOSoOw=</latexit>

ez,m
1:T

<latexit sha1_base64="GSitiUjzT8X1pwbPiDwwinRriWE=">AAACGHicbVC7TsMwFHXKq5RXgLFLRIVUlipBvMYKFsYi0YfURJHjuK1Vxw62g6hCB36DH2CFP2BDrGz8AN+B02agLVeyfHTOvbrnniCmRCrb/jYKS8srq2vF9dLG5tb2jrm715I8EQg3EadcdAIoMSUMNxVRFHdigWEUUNwOhleZ3r7HQhLObtUoxl4E+4z0CIJKU75ZvvPdeECqbsBpKEeR/lI8fnQVTI58s2LX7ElZi8DJQQXk1fDNHzfkKIkwU4hCKbuOHSsvhUIRRPG45CYSxxANYR93NWQwwtJLJ0eMrUPNhFaPC/2Ysibs34kURjIzqDsjqAZyXsvI/7RuonoXXkpYnCjM0HRRL6GW4laWiBUSgZGiIw0gEkR7tdAACoiUzm1my8PUakkH48zHsAhaxzXnrHZ6c1KpX+YRFUEZHIAqcMA5qINr0ABNgMATeAGv4M14Nt6ND+Nz2low8pl9MFPG1y9YUaEZ</latexit>

q�(e|⌧)

Encoder Decoder

State, Action, Latent

Traj. embedding

M
LP

<latexit sha1_base64="3OtdJbYXFJgAiwIKO7P55mlfmMI=">AAACEXicbVDLSsNAFJ3UV62vqLhyEyyCq5KIVHFVdOOyQl/QhjCZTNqhk5kwMxFryFf4BW71C9yJW7/AD/A/nLRZ2NYDwxzOuZd7OH5MiVS2/W2UVlbX1jfKm5Wt7Z3dPXP/oCN5IhBuI0656PlQYkoYbiuiKO7FAsPIp7jrj29zv/uAhSSctdQkxm4Eh4yEBEGlJc88GvicBnIS6S99yrzUuW5lFc+s2jV7CmuZOAWpggJNz/wZBBwlEWYKUShl37Fj5aZQKIIoziqDROIYojEc4r6mDEZYuuk0fmadaiWwQi70Y8qaqn83UhjJPKGejKAayUUvF//z+okKr9yUsDhRmKHZoTChluJW3oUVEIGRohNNIBJEZ7XQCAqIlG5s7srjLKruxVlsYZl0zmtOvVa/v6g2boqGyuAYnIAz4IBL0AB3oAnaAIEUvIBX8GY8G+/Gh/E5Gy0Zxc4hmIPx9QtwgJ4j</latexit>z1:T

Figure 1: Illustration of VTE Framework. For the encoder, by exploiting the pretrained SE-Logit from Section 4.1, we extract
the skill variable 𝒛1:𝑇 and the boundary variable 𝒎1:𝑇 . These are then passed through separate MLPs, mapping 𝒛1:𝑇 and 𝒎1:𝑇

to 𝒆𝑧
1:𝑇

and 𝒆𝑚
1:𝑇

, respectively, which are of equal size. At each time step, we concatenate these embeddings, resulting in 𝒆𝑧,𝑚
1:𝑇

,
where 𝒆𝑧,𝑚

𝑖
= Concat(𝒆𝑧

𝑖
, 𝒆𝑚
𝑖
). 𝒆𝑧,𝑚

1:𝑇
is then fed into a transformer to compute the posterior 𝑞𝜙 (𝒆 |𝜏). For the decoder, the action 𝒂𝑡

is predicted from the state 𝒙𝑡 , conditioned on the trajectory embedding.

(X,A, 𝑝0, 𝑃, 𝑟, 𝛾). X,A denote state and action spaces, 𝑝0 and

𝑃 (𝒙′ |𝒙, 𝒂) represent the initial state distribution and the dynamics.

The reward function is 𝑟 (𝒙, 𝒂) ∈ R, and 𝛾 ∈ (0, 1) is the discount
factor. Π denotes the set of all stationary stochastic policies that

map states in X to actions in A.

We assume access to an offline dataset, D = {𝜏𝑖 }𝑁𝑖=1, where each
trajectory consists of a sequence of states 𝒙 ∈ X and actions 𝒂 ∈ A:

𝜏𝑖 = {(𝒙0, 𝒂0), (𝒙1, 𝒂1), (𝒙2, 𝒂2), ...}. The trajectories are assumed to

be generated by a policy that is conditional on an ability level, 𝒆:

𝒙0 ∼ 𝑝0, 𝒆 ∼ 𝑝 (𝒆), 𝒂𝑡 ∼ 𝜋 (𝒂𝑡 |𝒙𝑡 , 𝒆), 𝒙𝑡+1 ∼ 𝑃 (𝒙𝑡+1 |𝒂𝑡 , 𝒙𝑡) (1)

𝒆 is unobserved and it determines the specific policy 𝜋 (·|𝒙, 𝒆) used
to generate the trajectory. Our goal is to learn this latent variable,

𝒆𝜏 , also referred to as trajectory embedding for any given trajectory,

𝜏 . We utilize an offline dataset D of trajectories to train our mecha-

nisms. We further show that such informative representations of

the trajectory enable various downstream tasks, including policy

imitation 𝜋 (·|𝒙, 𝒆), trajectory classification, and regression on the

trajectory’s return.

Variational Autoencoders [31] Our approach that learns the

latent representation of the trajectory is inspired by the well known

Variational AutoEncoder (VAE) framework. VAE has an encoder-

decoder architecture, where the encoder (a neural network with

weights 𝜙) learns a probability distribution on a latent space given

an input data point. During training, the decoder (a neural network

with weights 𝜃) is used to reconstruct the input given the latent

space encoding. The learning happens by maximizing the evidence

lower bound (ELBO) of the intractable log-likelihood log𝑝 (𝜏):

log𝑝 (𝜏) ≥ −𝐷𝐾𝐿 (𝑞𝜙 (𝒆 |𝜏)∥𝑝 (𝒆)) + E𝑞𝜙 (𝒆 |𝜏) [log𝑝𝜃 (𝜏 |𝒆)], (2)

where 𝒆 is a sample in the latent space from the approximate pos-

terior distribution 𝑞𝜙 (𝒆 |𝜏). In the first term, the prior 𝑝 is chosen

as standard Normal distribution. The second term corresponds to

a reconstruction of an observed sample generated with the like-

lihood 𝑝 (𝜏 |𝒆). A common choice for the approximate posterior 𝑞

is a Gaussian distribution, N(𝝁, Σ), where 𝝁 and Σ are outputs of

the encoder 𝑞𝜙 network (as described in [31]). Once trained, we

can draw samples in the latent space and the decoder can generate

samples in the space of observations.

Skill extraction via compression [29] Skill, or options learn-

ing, derives higher-level abstractions from state-action sequences,

which can help compress the entire sequence. The Learning Op-

tions via Compression (LOVE) approach [29] has proven effective

by modeling state-action sequences as a generative process that

relies on specific latent (unobserved) variables at each time step.

In this process, the latent skill variable 𝒛 ∈ Z represents the

skill used at a given time step, where Z is the set of possible skills.

Another latent variable, 𝒎 ∈ {0, 1} indicates whether a new skill

starts (1) or the current skill continues (0). At each step, 𝒎 and 𝒛
influence the hidden state 𝒔, which in turn affects the observed state

𝒙 . Over time, 𝒛 is influenced by the current𝒎 and the previous skill,

while 𝒎 depends on the previous state. For a detailed explanation

of the graphical model, we refer readers to the LOVE paper.

Mathematically, the generative process for the action 𝒂1:𝑇 condi-

tional on the observation 𝒙1:𝑇 is:

𝑝 (𝒛1:𝑇 , 𝒔1:𝑇 ,𝒎1:𝑇 , 𝒂1:𝑇 | 𝒙1:𝑇) = (3)

𝑇∏
𝑡=1

𝑝 (𝒂𝑡 | 𝒔𝑡) 𝑝 (𝒎𝑡 | 𝒔𝑡−1) 𝑝 (𝒔𝑡 | 𝒙𝑡 , 𝒛𝑡) 𝑝 (𝒛𝑡 | 𝒙𝑡 , 𝒛𝑡−1,𝒎𝑡−1)

The skill learning in LOVE is achieved by maximizing the likeli-

hood of the sequences while penalizing the description length of

the skills. Due to intractability of the above likelihood, the authors

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

860

introduce a variational distribution:

𝑞𝜙 (𝒛1:𝑇 , 𝒔1:𝑇 ,𝒎1:𝑇 | 𝒙1:𝑇 , 𝒂1:𝑇) = (4)

𝑇∏
𝑡=1

𝑞𝜙 (𝒎𝑡 | 𝒙1:𝑡) 𝑞𝜙 (𝒛𝑡 | 𝒛𝑡−1,𝒎𝑡 , 𝒙1:𝑇 , 𝒂1:𝑇) 𝑞𝜙 (𝒔𝑡 | 𝒛𝑡 , 𝒙𝑡)

Overall, this yields a model with 3 learned components: 1) A

state abstraction posterior 𝑞𝜙 (𝒔𝑡 |𝒛𝑡 , 𝒙𝑡); 2) A termination policy
𝑞𝜙 (𝒎𝑡 |𝒙1:𝑡) that decides if the previous skill ends; 3) A skill posterior
𝑞𝜙 (𝒛𝑡 |𝒛𝑡−1,𝒎𝑡 , 𝒙1:𝑇 , 𝒂1:𝑇) to determine the current skill 𝒛𝑡 .

LOVE penalizes the description length of the skills to improve

the quality of the learned skills. The description length of the skills

is measured by:

InfoCost(𝜙 ;𝑝𝒛) = −E 𝜏1:𝑇 ,
𝒎1:𝑇 ,
𝒛1:𝑇

[
𝑇∑︁
𝑡=1

log 𝑝𝒛 (𝒛𝑡)𝒎𝑡

]
.

Combining InfoCost with maximal likelihood objective, the au-

thors propose to solve the following optimization problem:

min

𝜙,𝑝𝒛
InfoCost(𝜙 ;𝑝𝒛) s.t. LELBO (𝜙) ≤ 𝐶 , (5)

where LELBO (𝜙) is the negated evidence lower bound of the like-

lihood defined by Eq. (3) (detailed description of LELBO (𝜙) can
be found in Appendix B of Jiang et al. [29]). Once solved, one can

infer the skill variables 𝒛1:𝑇 and boundary variables 𝒎1:𝑇 given the

trajectory of observations 𝒙1:𝑇 . 𝒛1:𝑇 , alone with 𝒎1:𝑇 , provides all

the information about learned skills.

Imitation Learning Imitation learning (IL) aims to learn a policy

for performing a task based solely on expert demonstrations, which

consist of state-action trajectories without any reinforcement sig-

nals [26]. IQ-Learn [16] has been proposed as an efficient and robust

imitation learning algorithm that learns a single Q-function, implic-

itly capturing both reward and policy. The theoretical framework

of IQ-Learn builds on the classic inverse reinforcement learning

(IRL) objective:

max

𝑟 ∈R
min

𝜋∈Π
𝐿(𝜋, 𝑟) = E𝜌𝐸 [𝑟 (𝒔, 𝒂)] − E𝜌𝜋 [𝑟 (𝒔, 𝒂)] − 𝐻 (𝜋) −𝜓 (𝑟),

where 𝜌𝐸 and 𝜌𝜋 denote the occupancy measures of the expert

policy and the learned policy, respectively, 𝑟 represents a learnable

reward function, 𝐻 (𝜋) refers to the entropy of policy 𝜋 , and𝜓 is a

convex reward regularizer.

The authors showed that this objective can be achieved by only

maximizing the 𝑄 function in the following objective:

J (𝜋,𝑄) = E𝜌𝐸
[
𝑓

(
𝑄 − 𝛾E𝒔′∼𝑃 (· |𝒔,𝒂)𝑉

𝜋 (
𝒔′
))]

− (1 − 𝛾)E𝒔0∼𝜌0
[
𝑉 𝜋 (𝒔0)

]
,

𝑉 𝜋 (𝒔) = E𝒂∼𝜋 (· |𝒔) [𝑄 (𝒔, 𝒂) − log𝜋 (𝒂 |𝒔)] ,

where 𝑓 is a concave function associated with the choice of the

reward regularizer 𝜓 , and 𝜌0 represents the initial state distri-

bution. For a fixed 𝑄 , the soft actor-critic (SAC) [21] update:

max𝜋 E𝒔∼𝛽,𝒂∼𝜋 (· |𝒔) [𝑄 (𝒔, 𝒂) − log𝜋 (𝒂 |𝒔)], brings 𝜋 closer to 𝜋𝑄 .

Here, 𝛽 refers to the distribution of previously sampled states.

Although imitation learning algorithms such as IQ-Learn are

typically used to learn a policy from the expert demonstrations,

in Section 4, we discuss how these methods can, in principle, learn

from demonstrations of varying quality, including non-expert data.

Empirically, we show that IQ-Learn can be applied to a mixture of

expert and non-expert data using the trajectory embedding inferred

by our approach.

4 METHODOLOGY
Our approach has two stages, as illustrated in Figure 1: Section 4.1

covers skill extraction and Section 4.2 explains transformer usage

and VAE style learning.

4.1 Learning Skills via Compression
Our main idea is based on the assumption that skills (which are

temporal abstractions of the trajectory) naturally combine detailed,

step-by-step information and capture the patterns within segments

of the trajectory. This suggests that learning an embedding for the

entire trajectory by focusing on the skill space (i.e., the space of

these higher-level skills) would be easier than trying to learn it

directly from the raw state-action space. To achieve this, we utilize

the skill learning technique called LOVE, as introduced in the work

by Jiang et al. [29].

By solving the optimization problem of Eq. (5), we can readily

acquire the latent variable values, 𝒛1:𝑇 , skill change variable values,
𝒎1:𝑇 , the learned termination policy, 𝑞𝜙 (𝒎𝑡 |𝒙1:𝑡), and skill pos-

terior, 𝑞𝜙 (𝒛𝑡 |𝒛𝑡−1,𝒎𝑡 , 𝒙1:𝑇 , 𝒂1:𝑇) (refer to Eq. (4)). For brevity, we

denote this process by 𝒛1:𝑇 ,𝒎1:𝑇 = SE𝜙 (𝒙1:𝑇 , 𝒂1:𝑇), where SE𝜙 is

named skill extractor.

However, we noticed that the skills we sampled were not pro-

viding enough useful information to recover the trajectories. To

address this and make the most of the skill knowledge without

losing any detail, we capture the full information about the distri-

butions of 𝒛𝑡 (the skill) and 𝒎𝑡 (the indicator for whether a new

skill starts). In the LOVE model, 𝒛𝑡 is sampled from a categorical

distribution, and 𝒎𝑡 is sampled from a Bernoulli distribution.

Instead of just working with these samples, we aim to capture

more detail by using the logit vectors that describe the underlying

distributions. Specifically, we represent 𝒛𝑡 as a vector in R𝑙 (real-
valued space of length l) and 𝒎𝑡 as a vector in R2

. This approach,

with a slight abuse of notation, allows us to work with the full

distributions rather than just the samples. We denote this process as

𝒛1:𝑇 ,𝒎1:𝑇 = SE-Logit𝜙 (𝒙1:𝑇 , 𝒂1:𝑇), meaning the logits are derived

from the input state and action sequences.

4.2 Variational Trajectory Encoding
One naive way of producing trajectory embeddings is to apply the

mean pooling operation on 𝒛1:𝑇 :

𝒆 =
1

𝑇

𝑇∑︁
𝑖=1

𝒛𝑖 . (6)

However, we find this embedding cannot capture information at

the trajectory level as it only contains information about the skills

that are present in the trajectory. Thus, we propose to learn a more

informative embedding by combining not just skills but also the

ordering of those skills in the trajectory. We employ a VAE to

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

861

compute this embedding. Starting from Eq. (2), we show how to

construct the required terms in the VAE loss. We first describe how

to obtain the encoding part of VAE, i.e., computing 𝑞𝜙 (𝒆 |𝜏), which
is represented using a normal distribution, N(𝝁, Σ).
• Obtain 𝒛1:𝑇 ,𝒎1:𝑇 = SE-Logit𝜙 (𝒙1:𝑇 , 𝒂1:𝑇)
• Perform 𝒆𝑧

1:𝑇
= MLP(𝒛1:𝑇) and 𝒆𝑚

1:𝑇
= MLP(𝒎1:𝑇). The multi-

layer perceptron (MLP) converts 𝒛 and 𝒎 to the same size.

• Concatenate for each time step, obtaining 𝒆𝑧,𝑚
1:𝑇

, where 𝒆𝑧,𝑚
𝑖

=

Concat(𝒆𝑧
𝑖
, 𝒆𝑚
𝑖
)

• Process 𝒆𝑧,𝑚
1:𝑇

via a shallow transformer, and obtain a mean pool-

ing of its output.

• Obtain mean 𝝁 and standard deviation Σ by mapping the trans-

former’s output via a fully connected neural layer.

Next, we describe the decoding part and how to optimize the

reconstruction loss term E𝑞𝜙 (𝒆 |𝜏) [log𝑝𝜃 (𝜏 |𝒆)]. As a trajectory is a

sequence of states and actions, we obtain the following result:

Proposition 1. For any given environment,
argmax𝜃 log𝑝𝜃 (𝜏 |𝒆) = argmax𝜃

∑
𝑡 log𝑝𝜃 (𝒂𝑡 |𝒙𝑡 , 𝒆).

Proof. The proof readily follows from the fact that 𝑝𝜃 (𝜏 |𝒆) =
𝑝 (𝒙0)𝑝𝜃 (𝒂0 |𝒙0, 𝒆)𝑝 (𝒙1 |𝒙0, 𝒂0)𝑝𝜃 (𝒂1 |𝒙1, 𝒆) Applying the log,

the product becomes a sum and only the 𝑝𝜃 (𝒂𝑡 |𝒙𝑡 , 𝒆) terms de-

pend on 𝜃 . □

With this result above, optimizing the reconstruction loss is

exactly the same as behavioral cloning [39]. Thus, we use a neu-

ral network to parameterize the policy 𝑝𝜃 (𝑎𝑡 |𝑥𝑡 , 𝒆), and optimize∑
𝑡 E𝑞𝜙 (𝒆 |𝜏) [log 𝑝𝜃 (𝑎𝑡 |𝑥𝑡 , 𝒆)] for both 𝜙 and 𝜃 . This term is opti-

mized for 𝜙 using the standard reparameterization trick from VAEs.

We refer to our approach as Variational Trajectory Encoding

(VTE). Compared with the embedding from the mean pooling of the

skill embeddings in Eq. (6), our approach shows better performance

(see Section 5.6). Furthermore, we analyze the differences between

trajectory embeddings produced by mean pooling and our method

in the Appendix
∗
.

4.3 Trajectory Embedding for Downstream
Tasks

In this section, we utilize the trajectory embedding obtained from

VTE to address different downstream tasks: (1) Imitating trajectories

from different expertise level policies (e.g., Expert, Good, Bad);

(2) Classifying expertise level of the trajectory; and (3) Predicting

return from a trajectory, without a reward label.

4.3.1 Imitating Trajectories of Varying Abilities. In this task, we

consider an offline dataset D consisting of trajectories collected

from a mixture of expert and non-expert policies. Recall the trajec-

tory generation process described by Eq. (1), where 𝒆 captures the
intrinsic ability level of the policy that generated this trajectory. We

define this ability level more concretely (in Section 5.1) as a range

of returns of the policy that generated this trajectory. Our goal is

to learn these policies 𝜋 (·|𝒙, 𝒆) that generate the trajectories.
To learn 𝜋 (·|𝒙, 𝒆), we utilize the recent IQ-Learn framework [16]

and modify it to a conditional version. The IQ-Learn approach

*
Please refer to the Appendix available at https://arxiv.org/abs/2501.09327.

maintains an actor 𝜋 and critic 𝑄 neural network. We make the

conditional version by introducing conditions into the actor and

critic neural network.We have conditional actor, 𝜋 (·|𝒙, 𝒆), and critic,
𝑄 (𝒙, 𝒂 |𝒆). Details are provided in Algorithm 1 in the Appendix.

4.3.2 Classification and Regression. For classification task, we train
a classifier based on multi-layer perceptron (MLP) to predict the

ability level with the same dataset used in imitation learning task

(see Section 4.3.1), i.e. we learn a mapping 𝑓CLS : R𝑑 → {1, ..., 𝑀}
from the trajectory embedding to its ability level, where 𝑑 is the

dimension of the trajectory embedding and 𝑀 is the number of

ability levels. For regression task, we train an MLP 𝑓REG : R𝑑 → R
to predict the return of the trajectory.

Note that the labels (ability level and return) are inaccessible to

our trajectory encoding algorithm; we include them here solely to

evaluate embedding quality. The classifier achieves high accuracy

only if our method learns high-quality trajectory embeddings, but

it will fail when the embeddings are of low quality. In the worst

scenario, all embeddings are identical, and the classifier has to make

random guesses. The same rationale applies to the regression task.

5 EXPERIMENTS
In this section, we answer the following questions through experi-

ments: (1) Is the learned trajectory embedding well-structured? (2)

How effective is the trajectory embedding on downstream tasks?

(3) Does the trajectory embedding exhibit specific properties? (4)

How does a simple mean polling of skill embedding perform?

We answer question (1) in Section 5.2 and question (2) in Sec-

tions 5.3 and 5.4. Question (3) is extensively analyzed in Section 5.5,

and finally an ablation experiment is done in Section 5.6 for an-

swering question (4).

5.1 Experiment Setup
All experiments were run on NVIDIA Quadro RTX 6000 GPUs,

CUDA 11.0 with Python version 3.7.12 in Pytorch 1.8.0. Hyperpa-

rameter settings are in the Appendix.

Ability Level As mentioned in Section 4.3.1, our downstream

tasks are trained on a dataset with varying ability levels. We define

the ability level of a policy by the average return of its collected

trajectories. For instance, a low-ability policy generates trajecto-

ries with returns being (400 ± 100), while an expert-ability policy

generates trajectories with returns being (2000 ± 100).
Dataset Due to lack of a public dataset for our tasks, we gener-

ated the dataset ourselves. We selected three environments from

MuJoCo [44], Hopper, Walker2D, and Half-Cheetah. For each en-

vironment, we trained an RL agent using Soft Actor Critic (SAC) to

the expert level, and saved checkpoints throughout the training. We

then took three checkpoints to generate trajectories, corresponding

to low,medium, and expert ability levels, with 300 trajectories gener-
ated per ability level. The return information is provided in Table 1.

Baselines GCPC [51] is the closest work to ours, which utilizes

the encoder-decoder transformer to encode trajectories. However,

it is designed for offline RL and thus relies on rewards in the dataset.

We evaluate two versions of GCPC: the original, which includes

rewards, referred to asGCPC, and an adapted version that removes

rewards from the input, referred to as GCPC-NR (No Reward). We

also modify our VTE framework by replacing the skill extractor

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

862

https://arxiv.org/abs/2501.09327

Figure 2: tSNE Clustering Analysis

Table 1: Dataset returns across different ability levels for each
environment

Environment Low Medium Expert

Hopper 409.0±4.9 885.3±49.2 3206.8±18.1
Walker2D 3064.2±43.3 4359.6±51.1 5912.2±25.3

Half Cheetah 2402.9±21.2 4197.6±54.0 6321.9±61.3

SE-Logit with an MLP, referred to as VTE-MLP (see Section 4).

Additionally, we introduce a strong baseline where the downstream

task has access to the ability levels. For the imitation learning task,

we consider this baseline an upper bound, which we call Known-
Abl (Known Ability).

Evaluation Metrics For classification, we use accuracy as the

performance metric. For other downstream tasks, we measure per-

formance by calculating the relative L2 norm of the difference be-

tween the learned and dataset returns. This is done by averaging the

L2 norm difference for each learned return and its corresponding

target return, and then normalizing by the target return.

5.2 VTE Generates Well-Structured Embeddings
We perform clustering analysis using tSNE [46] on the latent tra-

jectory embeddings to verify whether different ability levels can be

distinguished. As shown in Figure 2, three distinct clusters emerge

in each environment, corresponding to the low, medium, and ex-

pert ability levels, confirming that our method successfully learns

the latent vectors that separate ability levels. We also provide the

clustering results using Principal Component Analysis (PCA) in

the appendix.

5.3 VTE Enables Ability-Conditioned Imitating
We assess the imitation performance of our method across three

environments: Hopper, Walker2D, and Half-Cheetah, each with

three skill levels: low, medium, and expert. We extract the latent

trajectory embeddings using our approach and then learn a policy

conditioned on these vectors using conditional IQ-Learn. The ob-

jective is to match the target return of that trajectory as observed

in data, rather than learning the optimal policy.

Table 2 summarizes the results against the baselines using the

relative L2 norm loss between the average evaluation return of the

policy conditioned on a trajectory embedding and the return of that

trajectory in the dataset, where a lower value is better. We have

bolded the best results and underlined the second-best results for

each environment, with all results expressed as percentages. Our

method consistently outperforms both baselines in the imitation

task, achieving performance comparable to the upper bound set

by Known-Abl. Despite the fact that Known-Abl and GCPC uti-

lize additional reward information, our method surpasses GCPC

across all environments and demonstrates lower error rates than

Known-Abl in the Hopper environment. This demonstrates that

our trajectory embedding significantly enhances imitation learning

when the dataset consists of mixed ability levels.

Figure 3 also presents the evaluation of returns on Hopper. For

each ability level, our method facilitates learning conditioned on

the latent trajectory embeddings, achieving results close to the

upper-bound of the Known-Abl. In contrast, the VTE-MLP shows

instability during training.

5.4 VTE Facilitates Trajectory Classification and
Regression

We present the classification results in Table 3 and the regression

of rewards in Table 4. It is evident that VTE-MLP and VTE achieves

100% classification accuracy within 80 epochs. For the regression

task, the different methods appear to achieve similar results.

5.5 Property of Trajectory Embedding
Perturbed Conditions. Figure 4 visually compares behaviors in

the Walker2D and Hopper environments, highlighting the distinct

behaviors generated when specific dimensions of the trajectory em-

beddings are perturbed in opposing directions. Perturbing different

dimensions produces varied behaviors. The figure highlights results

for two dimensions in each environment. The left and right columns

display results from the Walker2D and Hopper environments. In

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

863

Table 2: Relative L2 norm difference between the learned Returns and the target Returns.

Environment Known-Abl VTE-MLP GCPC GCPC-NR VTE

Hopper 9.2±16.7 24.6±20.5 21.3±25.9 27.6±22.5 0.9±2.8
Walker2D 7.7±14.8 45.3±23.1 27.8±18.3 46.2±23.4 13.1±20.3

Half Cheetah 1.3±1.1 19.1±7.0 28.7±20.0 47.3±24.9 1.5±1.2

0 100k 200k 300k
Training step

0

500

1000

1500

Re
wa

rd
s

Low

0 100k 200k 300k
Training step

0

1000

2000

3000

Re
wa

rd
s

Medium

Known-Abl VTE-MLP GCPC GCPC-NR VTE

0 100k 200k 300k
Training step

0

2000

4000

Re
wa

rd
s

Expert

Figure 3: Evaluation curve of returns on Hopper for different ability levels.

Figure 4: Overall visual comparison of change in behavior in Walker2D environment, presented in the left column, and Hopper
environment presented in the right column, when a dimension of the trajectory embedding is changed. Each of the four boxes
is a perturbation result on one of the 10 vector dimensions of the trajectory embedding. Inside each box there are three different
rows showing a sequence of frames. First Row: The value of the dimension is decreased. Second Row: The value is not perturbed
as a control group. Third Row: The value of the dimension is increased (see more description in text).

Table 3: Classification Accuracy on Ability Levels(%).

Environment GCPC-NR VTE-MLP VTE

Hopper 34.2 100.0 100.0

Walker2D 34.2 100.0 100.0

Half Cheetah 32.9 100.0 100.0

each box, we present the results of perturbing one dimension: the

middle row represents the control group without perturbation,

while the first and third rows show the effects of decreasing and

increasing the value of that dimension, respectively.

Table 4: Relative Regression Error on Rewards(%).

Environment GCPC-NR VTE-MLP VTE

Hopper 3.8 2.7 3.1

Walker2D 0.7 0.8 0.7

Half Cheetah 0.9 0.7 0.8

In the top-left box, the Walker2D agent leans forward during

walking when the value decreases and falls backward when it in-

creases. In the bottom-left box, the agent walks leisurely with a

decreased value but sprints with larger body movements when the

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

864

Figure 5: Heatmap of Wasserstein distance (see definition in text) between distribution of trajectory embeddings for different
ability levels.

Table 5: Range of the evaluation returns onWalker2D shown
across ability levels for the returns seen in dataset, and for
the conditional policies learned from embeddings of mean
skill pooling and our VTE approach.

Method Low Medium Expert

In Dataset 3064.2±43.3 4359.6±51.1 5912.2±25.3
Skill Pooling 1058.3±752.3 776.0±438.5 796.9±561.7

VTE 2045.9±1101.9 3782.9±1043.5 5053.0±1834.4

value is increased. In the top-right box, the Hopper agent bends

its leg with a reduced value but keeps it rigid when the value is

increased. In the bottom-right box, the agent eagerly hops forward

with a decreased value but remains still with an increased value.

These results clearly demonstrate that perturbing a single di-

mension in the latent trajectory embedding produces contrasting

behaviors, illustrating the high degree of disentanglement in our

learned representations.

Measure Distance Between Polices. We compute Wasserstein dis-

tances between policies at different ability levels, as shown in Fig-

ure 5. The Wasserstein distance quantifies the minimum "cost" to

transform one probability distribution into another. For each envi-

ronment, we collect 10 trajectory embeddings to form an empirical

distribution, representing the policy’s ability level. We then calcu-

late the Wasserstein distance between the distributions from dif-

ferent ability levels. For each policy, we also compare distributions

within the same corresponding ability level to assess intra-level

variability. The results demonstrate that distances within the same

ability level are relatively small, while most distances between

different ability levels are significantly larger. This indicates that

the learned trajectory embeddings effectively distinguish between

policies of different ability levels.

5.6 Ablation Experiment
As mentioned in Section 4.2, just a mean pooling of skills does

not produce desired results. Here we present a result that shows

the variation in returns (from imitating) based on mean pooled

skill embedding and our VTE embeddings. The result in Table 5 on

Walker2D show that the mean pooled skill embedding shows less

variation in returns (across ability levels), thereby not able to learn

the returns of low, medium, and expert ability levels.

6 CONCLUSION
In conclusion, this work introduces a novel unsupervised approach

for encoding state-action trajectories into informative embeddings

without the need for external reward or goal labels. The method

leverages hierarchical skill abstraction and a transformer and VAE-

based architecture to capture the temporal dynamics of trajectory

skills. The resulting informative trajectory embedding demonstrates

strong representation capabilities across various downstream tasks,

including imitation learning, classification, clustering, and regres-

sion. Moreover, the disentangled nature of the learned embedding

allows for intuitive control of agent behaviors and meaningful dif-

ferentiation in the trajectory embedding space.

7 ACKNOWLEDGEMENT
This research/project is supported by the National Research Foun-

dation Singapore and DSO National Laboratories under the AI

Singapore Programme (AISG Award No: AISG2-RP-2020-017) and

the grant W911NF-24-1-0038 from the US Army Research Office.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first international conference
on Machine learning. 1.

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and

Pulkit Agrawal. 2022. Is conditional generative modeling all you need for decision-

making? arXiv preprint arXiv:2211.15657 (2022).

[3] Oleg Arenz and Gerhard Neumann. 2020. Non-adversarial imitation learning and

its connections to adversarial methods. arXiv preprint arXiv:2008.03525 (2020).
[4] Nir Baram, Oron Anschel, and Shie Mannor. 2016. Model-based adversarial

imitation learning. arXiv preprint arXiv:1612.02179 (2016).
[5] Daniel Brown,Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. 2019. Extrap-

olating beyond suboptimal demonstrations via inverse reinforcement learning

from observations. In International conference on machine learning. PMLR, 783–

792.

[6] Daniel S Brown, Wonjoon Goo, and Scott Niekum. 2020. Better-than-

demonstrator imitation learning via automatically-ranked demonstrations. In

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

865

Conference on robot learning. PMLR, 330–359.

[7] Benjamin Burchfiel, Carlo Tomasi, and Ronald Parr. 2016. Distance minimization

for reward learning from scored trajectories. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 30.

[8] Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David

Bignell, Stephanie Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan,

et al. 2022. Uni [mask]: Unified inference in sequential decision problems. Ad-
vances in neural information processing systems 35 (2022), 35365–35378.

[9] Alex J Chan and Mihaela van der Schaar. 2021. Scalable bayesian inverse rein-

forcement learning. arXiv preprint arXiv:2102.06483 (2021).
[10] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,

Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Decision transformer:

Reinforcement learning via sequence modeling. Advances in neural information
processing systems 34 (2021), 15084–15097.

[11] Letian Chen, Rohan Paleja, Muyleng Ghuy, and Matthew Gombolay. 2020. Joint

goal and strategy inference across heterogeneous demonstrators via reward

network distillation. In Proceedings of the 2020 ACM/IEEE international conference
on human-robot interaction. 659–668.

[12] Letian Chen, Rohan Paleja, and Matthew Gombolay. 2021. Learning from sub-

optimal demonstration via self-supervised reward regression. In Conference on
robot learning. PMLR, 1262–1277.

[13] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 (2018).
[14] Yiming Ding, Ignasi Clavera, and Pieter Abbeel. 2020. Mutual information maxi-

mization for robust plannable representations. arXiv preprint arXiv:2005.08114
(2020).

[15] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning robust rewards with ad-

versarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248 (2017).
[16] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano

Ermon. 2021. Iq-learn: Inverse soft-q learning for imitation. Advances in Neural
Information Processing Systems 34 (2021), 4028–4039.

[17] Nathan Gavenski, Juarez Monteiro, Felipe Meneguzzi, Michael Luck, and Odi-

naldo Rodrigues. 2024. Explorative imitation learning: A path signature approach

for continuous environments. In ECAI 2024. IOS Press, 1551–1558.
[18] Matthew Gombolay, Reed Jensen, Jessica Stigile, Sung-Hyun Son, and Julie Shah.

2016. Apprenticeship scheduling: Learning to schedule from human experts.

AAAI Press/international joint conferences on artificial intelligence.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. Advances in neural information processing systems 27 (2014).
[20] Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison

Edwards. 2018. Learning policy representations in multiagent systems. In Inter-
national conference on machine learning. PMLR, 1802–1811.

[21] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In International conference on machine learning. PMLR, 1861–

1870.

[22] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. 2020.

Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193
(2020).

[23] Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Ar-

avind Rajeswaran. 2022. Modem: Accelerating visual model-based reinforcement

learning with demonstrations. arXiv preprint arXiv:2212.05698 (2022).
[24] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin

Riedmiller. 2018. Learning an embedding space for transferable robot skills. In

International Conference on Learning Representations.
[25] Jeffrey Hawke, Richard Shen, Corina Gurau, Siddharth Sharma, Daniele Reda,

Nikolay Nikolov, PrzemysławMazur, Sean Micklethwaite, Nicolas Griffiths, Amar

Shah, et al. 2020. Urban driving with conditional imitation learning. In 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 251–257.

[26] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.

Advances in neural information processing systems 29 (2016), 4565–4573.
[27] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Offline reinforcement

learning as one big sequence modeling problem. Advances in neural information
processing systems 34 (2021), 1273–1286.

[28] Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar. 2020. Strictly batch

imitation learning by energy-based distribution matching. Advances in Neural
Information Processing Systems 33 (2020), 7354–7365.

[29] Yiding Jiang, Evan Liu, Benjamin Eysenbach, J Zico Kolter, and Chelsea Finn. 2022.

Learning options via compression. Advances in Neural Information Processing
Systems 35 (2022), 21184–21199.

[30] Michael Kaiser, Holger Friedrich, and Rudiger Dillmann. 1995. Obtaining good

performance from a bad teacher. In Programming by Demonstration vs. Learning
from Examples Workshop at ML, Vol. 95. Citeseer.

[31] Diederik P Kingma. 2013. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013).

[32] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and

Jonathan Tompson. 2018. Discriminator-Actor-Critic: Addressing Sample In-

efficiency and Reward Bias in Adversarial Imitation Learning. In International
Conference on Learning Representations.

[33] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. 2019. Imitation Learning

via Off-Policy Distribution Matching. In International Conference on Learning
Representations.

[34] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. 2020. Curl: Contrastive un-

supervised representations for reinforcement learning. In International conference
on machine learning. PMLR, 5639–5650.

[35] Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. 2022. Masked au-

toencoding for scalable and generalizable decision making. Advances in Neural
Information Processing Systems 35 (2022), 12608–12618.

[36] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav

Gupta. 2022. R3m: A universal visual representation for robot manipulation.

arXiv preprint arXiv:2203.12601 (2022).
[37] Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. 2021. Tem-

poral predictive coding for model-based planning in latent space. In International
Conference on Machine Learning. PMLR, 8130–8139.

[38] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta.

2022. The unsurprising effectiveness of pre-trained vision models for control. In

international conference on machine learning. PMLR, 17359–17371.

[39] Dean A Pomerleau. 1988. Alvinn: An autonomous land vehicle in a neural

network. Advances in neural information processing systems 1 (1988).
[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. 2021. Learning transferable visual models from natural language supervision.

In International conference on machine learning. PMLR, 8748–8763.

[41] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee,

and Pieter Abbeel. 2023. Masked world models for visual control. In Conference
on Robot Learning. PMLR, 1332–1344.

[42] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel

Pinto. 2022. Behavior transformers: Cloning 𝑘 modes with one stone. Advances
in neural information processing systems 35 (2022), 22955–22968.

[43] Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi Sugiyama.

2020. Variational imitation learning with diverse-quality demonstrations. In

International Conference on Machine Learning. PMLR, 9407–9417.

[44] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine

for model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 5026–5033.

[45] Michal Valko, Mohammad Ghavamzadeh, and Alessandro Lazaric. 2013. Semi-

supervised apprenticeship learning. In European workshop on reinforcement learn-
ing. PMLR, 131–142.

[46] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, 11 (2008).

[47] Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter

Abbeel, and Aravind Rajeswaran. 2023. Masked trajectory models for prediction,

representation, and control. In International Conference on Machine Learning.
PMLR, 37607–37623.

[48] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and

Masashi Sugiyama. 2019. Imitation learning from imperfect demonstration.

In International Conference on Machine Learning. PMLR, 6818–6827.

[49] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. 2022. Masked

visual pre-training for motor control. arXiv preprint arXiv:2203.06173 (2022).
[50] Mengjiao Yang and Ofir Nachum. 2021. Representation matters: Offline pre-

training for sequential decision making. In International Conference on Machine
Learning. PMLR, 11784–11794.

[51] Zilai Zeng, Ce Zhang, Shijie Wang, and Chen Sun. 2024. Goal-conditioned pre-

dictive coding for offline reinforcement learning. Advances in Neural Information
Processing Systems 36 (2024).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

866

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Methodology
	4.1 Learning Skills via Compression
	4.2 Variational Trajectory Encoding
	4.3 Trajectory Embedding for Downstream Tasks

	5 Experiments
	5.1 Experiment Setup
	5.2 VTE Generates Well-Structured Embeddings
	5.3 VTE Enables Ability-Conditioned Imitating
	5.4 VTE Facilitates Trajectory Classification and Regression
	5.5 Property of Trajectory Embedding
	5.6 Ablation Experiment

	6 Conclusion
	7 Acknowledgement
	References

