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ABSTRACT
We study the Freeze-Tag Problem (FTP), introduced by Arkin et

al. (SODA’02), where the goal is to wake up a group of 𝑛 robots,

starting from a single active robot. Our focus is on the geometric

version of the problem, where robots are positioned in R𝑑 , and once
activated, a robot can move at a constant speed to wake up others.

The objective is to minimize the time it takes to activate the last

robot, also known as the makespan.

We present new upper bounds for the 𝑙1 and 𝑙2 norms in R2
and

R3
. For (R2, 𝑙2), we achieve a makespan of at most 5.4162𝑟 , improv-

ing on the previous bound of 7.07𝑟 by Bonichon et al. (DISC’24).

In (R3, 𝑙1), we establish an upper bound of 13𝑟 , which leads to a

bound of 22.52𝑟 for (R3, 𝑙2). Here, 𝑟 denotes the maximum distance

of a robot from the initially active robot under the given norm. To

the best of our knowledge, these are the first known bounds for the

makespan in R3
under these norms.

We also explore the FTP in (R3, 𝑙2) for specific instances where
robots are positioned on a boundary, providing further insights

into practical scenarios.
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1 INTRODUCTION
The Freeze-Tag Problem (FTP), introduced by Arkin et al. [5], in-

volves one active robot and 𝑛 inactive robots in a metric space.

Active robots can move at a constant speed, while inactive robots

can only be activated when reached by an active one. The goal is

to minimize the makespan, the total time needed to wake up all

inactive robots.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

FTP has several applications in robotics. Related algorithmic

problems have been studied for controlling swarms of robots to

perform tasks such as environment exploration [2, 3, 9, 11, 12, 18,

19], robot formation [16, 17], and searching [18], as well as multi-

robot formation in continuous and grid environments [10, 16, 17].

FTP also has applications in network design, including broadcast

and IP multicast problems [4, 6, 14].

FTP is NP-Hard in high-dimensional metrics like centroid met-

rics [4] (based on weighted star 𝑛-vertex graphs) and unweighted

graphmetrics with a robot per node [6]. Subsequent research has ex-

tended this hardness result to constant-dimensional metric spaces,

including Euclidean ones. A series of papers [1, 13, 15] proves that

FTP is NP-Hard in (R3, 𝑙𝑝 ) for all 𝑝 ≥ 1, meaning it is NP-Hard

in 3D with any 𝑙𝑝 -norm. In 2D, FTP is known to be NP-Hard for

(R2, 𝑙2), though the complexity for other norms remains open [1].

It is believed that FTP is also NP-Hard for (R2, 𝑙1) [4].
In a geometric Freeze-Tag Problem (FTP) instance, the input

consists of the positions of 𝑛 inactive (asleep) robots and one active

robot in R𝑑 , along with the distance norm 𝑙𝑝 . The output is the

makespan, a real number representing the minimum time needed

to wake up all robots. Each active robot moves at a constant speed.

In R𝑑 with a norm 𝜂, the unit 𝜂-ball is the set of all points within

a distance of one from the origin, where distance is measured by 𝜂,

i.e., ∥𝑣 −𝑢∥𝜂 for points 𝑢 and 𝑣 . For the 𝑙𝑝 norm, we write ∥𝑢 − 𝑣 ∥𝑝 ,
with ∥𝑢 − 𝑣 ∥2 representing the Euclidean distance, or the length of

the line segment 𝑢𝑣 . In the case of robots in (R𝑑 , 𝑙𝑝 ), we assume all

robots are inside the 𝑙𝑝 -unit ball in R𝑑 , with the distance measured

using the 𝑙𝑝 norm and the initial active robot positioned at the

origin. For simplicity, in R2
, we refer to the region as the unit 𝜂-

disk. For example, the unit 𝑙2-disk is a regular disk, while the unit

𝑙1-disk is a square rotated by 45 degrees. In R3
, the unit 𝑙2-ball is

the region enclosed by a sphere, while the unit 𝑙1-ball is shown in

Figure 1.

According to Arkin et al. [5], FTP can be reformulated as finding a

rooted spanning tree on a set of points that minimizes the weighted

depth. The root (representing the awake robot) has one child, and all

other nodes (representing the 𝑛 sleeping robots) can have up to two

children (see Figure 2). Each edge represents the distance between

two points in the metric space. This tree is called a wake-up tree,

and its weighted depth is the wake-up time.

We define 𝛾𝑛 (R𝑑 , 𝜂) as the worst-case optimal wake-up time

of a wake-up tree for any set of 𝑛 sleeping robots located in the

unit 𝜂-ball, rooted at the origin in R𝑑 . In other words, 𝛾𝑛 (R𝑑 , 𝜂)
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Figure 1: Representation of the unit 𝑙1-ball in R3
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Figure 2: An FTP instance and its wake-up tree. The left di-
agram shows the positions and movements of the robots
inside the 𝑙2-disk, while the right diagram displays the corre-
sponding wake-up tree. Red arrows indicate the path from
the root to a leaf.

represents the best possible upper bound for the makespan of 𝑛

sleeping robots, with the awake robot placed at the origin in the

unit 𝜂-ball ofR𝑑 . The wake-up ratio w.r.t the 𝜂-norm is then defined

as: 𝛾 (R𝑑 ,𝜂 ) = max𝑛∈N 𝛾𝑛 (R𝑑 , 𝜂) .
Despite extensive research on the complexity of FTP, few results

address the wake-up ratio. For (R2, 𝑙1), Bonichon et al. proved that

the wake-up ratio is at most 5 and provided an example with a

makespan of 5 [7]. This gives an upper bound of 5

√
2 for the wake-

up ratio in (R2, 𝑙2), improving the previous upper bound of 10.06

found in [20].

For any set of points, if the awake robot is at most distance 𝑟 from

all sleeping robots and we have an upper bound 𝑐 for the makespan,

scaling the unit ball with these positions allows constructing a

wake-up tree with a makespan of at most 𝑟 × 𝑐 . This gives a 𝑐-

approximation factor algorithm for FTP, since 𝑟 is a trivial lower

bound on the makespan.

2 OUR RESULTS
In this paper, we begin by focusing on FTP within the unit 𝑙2-disk

and introduce two new wake-up strategies. Our main result is

an improved makespan, reducing the previous bound from 7.07

to 5.4162, as established in [7]. Formally, we state the following

theorem:

Theorem 2.1. A robot at the origin can wake up any set of 𝑛 asleep
robots in the unit 𝑙2-disk with a makespan of at most 5.4162.

The proof of this theorem is provided in Section 3.1. Also, con-

currently with our work, [8] reported a ratio of 4.63𝑟 for (R2, 𝑙2).
Our first strategy is similar to their strategy; however, our second

strategy is completely different. Next, we examine FTP in R3
and

propose a new strategy for (R3, 𝑙1). We establish an upper bound of

13 for (R3, 𝑙1), which leads to an upper bound of 13

√
3 for (R3, 𝑙2).

To our knowledge, no previous bounds for the makespan in R3

have been provided. Formally, we state the following theorem:

Theorem 2.2. A robot at the origin can wake up any set of 𝑛 asleep
robots in the unit 𝑙1-ball in R3 with a makespan of at most 13.

The proof of this theorem is presented in Section 4. Our ap-

proaches for R2
and R3

are fundamentally different. In R2
, we start

at the origin and initially awaken robots within a disk of radius

zero, since only the origin robot is awake. In each step, we expand

the radius of this disk, waking up the robots that are closer to the

origin, until the radius reaches 1. By the end, all robots inside the

disk are awake. However, this method cannot be extended to R3
.

Therefore, we employ a different strategy for R3
.

ForR3
, when the number of robots is small, we solve the problem

directly in a proper time. For larger numbers of robots, we divide

the unit ball into smaller partitions and apply a recursive approach

to solve the problem within each partition. This strategy allows us

to handle a larger number of robots effectively.

Finally, we examine a version of FTP in (R3, 𝑙2), where the asleep
robots are located on the boundary of the unit 𝑙2-ball. Using our

approach for (R2, 𝑙2), we show that FTP in (R3, 𝑙2) for asleep robots
on the boundary can be solved with a makespan of at most 12.37.

Formally, we have:

Theorem 2.3. A robot at the origin can wake up any set of 𝑛 asleep
robots on the boundary of the unit 𝑙2-ball in R3 with a makespan of
at most 12.37.

The proof of this theorem is deferred to Section 5.2. Our approach

involves mapping the points on the boundary of the unit 𝑙2-ball in

R3
to a 𝑙2-disk in R2

. By solving the problem in R2
, we obtain a

wake-up strategy for R3
. One motivation for tackling the problem

in this setting is our conjecture that the maximum makespan for 𝑛

points is reached when the points lie on the boundary of the unit

𝜂-ball.

A similar wake-up strategy allows us to tackle another variant

of FTP, which we call surface-FTP. In this version, the points are

positioned on the boundary of a unit 𝑙2-ball in R3
, with the active

robot also on the surface. The distance between two points 𝑣 and

𝑢 is defined as the geodesic distance, or the length of the shortest

arc connecting them on the surface. This problem has practical

applications in areas like communication and transportation on

Earth’s surface, where geodesic distance between points is impor-

tant. Formally, we have:

Theorem 2.4. Given an instance of surface-FTP, the makespan is
at most 11.65.

This theorem is proven in Section 5.3.
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3 FTP IN (R2, 𝑙2)
3.1 The wake-up ratio is at most 5.4162 in (R2, 𝑙2)
This section establishes an upper bound of 5.4162 for 𝛾 (R2,𝑙2 ) . We

present two key strategies for computing a wake-up tree and com-

bine them to achieve an improved makespan.

3.1.1 Arc-Strategy. We introduce the Arc-Strategy as our initial

approach. For an instance of FTP in (R2, 𝑙2), the Arc-Strategy is

described as follows.

• The awake robot, 𝑝0, starts at the center of a unit 𝑙2-disk and

moves to the position of the nearest asleep robot, 𝑝1, located

at point 𝐴. At this stage, both 𝑝0 and 𝑝1 are active.

• Next, divide the disk into two halves by drawing a line

through the center and point𝐴. Each of the two active robots

is responsible for waking up the asleep robots in one half of

the disk. Their strategy is as follows: in a parallel step, 𝑝0
activates the nearest asleep robot to the center in its half,

denoted as 𝑝2, while 𝑝1 activates the nearest asleep robot to

the center in its half, denoted as 𝑝3.

• Now, 𝑝0 and 𝑝2 divide their half of the disk into two quarters.

𝑝0 handles its quarter by activating the nearest robot to

the center in its region, while 𝑝2 does the same in its own

quarter. Similarly, 𝑝1 and 𝑝3 each take responsibility for

their respective quarters, activating the nearest robots to the

center within their areas.

• In each step, when a robot 𝑝𝑖 activates another robot 𝑝 𝑗 ,

where 𝑝 𝑗 is the nearest robot to the center within 𝑝𝑖 ’s as-

signed portion, 𝑝𝑖 and 𝑝 𝑗 divide their region into two halves.

Each robot then takes responsibility for its own half. If 𝑝𝑖
is the only robot remaining in its portion, it stops and does

nothing in subsequent rounds.

When the Arc-Strategy terminates, all the robots are awake. The

following lemma provides the wake-up time for the Arc-Strategy.

Lemma 3.1. The Arc-Strategy provides an upper bound of 7.9651
for the wake-up ratio in (R2, 𝑙2).

Proof. At the end of the Arc-Strategy, all robots are awake. To

determine the wake-up time of the Arc-Strategy, we need to calcu-

late the time it takes to wake up all the robots. The Arc-Strategy

produces a wake-up tree, and the wake-up time is the length of the

longest path from the center to the leaves of this tree.

Without loss of generality, consider a path 𝑝0, . . . , 𝑝𝑘 , which

starts at the root, 𝑝0, and ends at a leaf, 𝑝𝑘 , in the wake-up tree. We

now define the following variables: (see Figure 3).

𝑑𝑖 = ∥𝑝𝑖−1 − 𝑝𝑖 ∥2
𝑟𝑖 = ∥𝑝𝑖 −𝑂 ∥2, where 𝑂 is the center of unit 𝑙2-disk

𝐶 (𝑂, 𝑟𝑖 ) = the circle with center 𝑂 and radius 𝑟𝑖

𝑐𝑖 = cross point of 𝑝𝑖𝑂 and 𝐶 (𝑂, 𝑟𝑖−1)
𝑎𝑖 = ∥𝑝𝑖 − 𝑐𝑖 ∥2
𝑏𝑖 = ∥𝑝𝑖−1 − 𝑐𝑖 ∥2
𝛼𝑖 = The angle between 𝑂𝑝𝑖 and 𝑂𝑝𝑖+1
𝛽𝑖 = The angle between 𝑝𝑖+1 and 𝑐𝑖+1 and 𝑝𝑖

The total length of the path is expressed as:

𝑘∑︁
𝑖=1

𝑑𝑖 = 𝑑1 + 𝑑2 + 𝑑3 +
𝑘∑︁
𝑖=4

√︃
𝑏2
𝑖
+ 𝑎2

𝑖
− 2𝑎𝑖𝑏𝑖 cos 𝛽𝑖−1

Since 𝛽𝑖 =
𝜋
2
+ 𝛼𝑖

2
, the path length simplifies to

𝑘∑︁
𝑖=1

𝑑𝑖 = 𝑑1 + 𝑑2 + 𝑑3 +
𝑘∑︁
𝑖=4

√︂
𝑏2
𝑖
+ 𝑎2

𝑖
+ 2𝑎𝑖𝑏𝑖 sin

𝛼𝑖−1
2

Given 𝑏𝑖+1 = 2𝑟𝑖 sin
𝛼𝑖
2
, the total path length becomes:

𝑘∑︁
𝑖=1

𝑑𝑖 = 𝑑1 + 𝑑2 + 𝑑3+
𝑘∑︁
𝑖=4

√︂
𝑎2
𝑖
+ 4𝑟2

𝑖−1 (sin
𝛼𝑖−1
2

)2 + 4𝑎𝑖𝑟𝑖−1 (sin
𝛼𝑖−1
2

)2

We have,

𝑘∑︁
𝑖=4

√︂
𝑎2
𝑖
+ 4𝑟2

𝑖−1 (sin
𝛼𝑖−1
2

)2 + 4𝑎𝑖𝑟𝑖−1 (sin
𝛼𝑖−1
2

)2

≤
𝑘∑︁
𝑖=4

√︂
𝑎2
𝑖
+ 4𝑟2

𝑖−1 (sin
𝛼𝑖−1
2

)2 + 4𝑎𝑖𝑟𝑖−1 sin
𝛼𝑖−1
2

=

𝑘∑︁
𝑖=4

√︂
(𝑎𝑖 + 2𝑟𝑖−1 sin

𝛼𝑖−1
2

)2 =
𝑘∑︁
𝑖=4

𝑎𝑖 + 2𝑟𝑖−1 sin
𝛼𝑖−1
2

Now, we have the following inequality:

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 𝑑1 + 𝑑2 + 𝑑3 +
𝑘∑︁
𝑖=4

𝑎𝑖 + 2

𝑘∑︁
𝑖=4

𝑟𝑖−1 sin
𝛼𝑖−1
2

Note that

∑𝑘
𝑖=4 𝑎𝑖 = 1 − 𝑟3 and 𝑑1 = 𝑟1 and 𝑑2 ≤ 𝑟1 + 𝑟2 and

𝑑3 ≤ 𝑟2 + 𝑟3 using triangle inequality so by replacing them and

considering all 𝑟𝑖 ≤ 1 we have:

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 𝑟1 + 𝑟1 + 𝑟2 + 𝑟2 + 𝑟3 + 1 − 𝑟3 + 2

𝑘∑︁
𝑖=3

sin

𝛼𝑖

2

Given that 𝛼𝑖 ≤ 𝜋
2
𝑖−2 for 𝑖 > 1, we can write:

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 1 + 2𝑟1 + 2𝑟2 + 2

(
sin

𝜋

4

+ sin

𝜋

8

+ . . .

)
Using the fact that for 𝑥 ≥ 0, sin𝑥 ≤ 𝑥 , we have:

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 1 + 2𝑟1 + 2𝑟2 + 2

(
sin

𝜋

4

+ sin

𝜋

8

)
+ 2𝜋

(
1

16

+ · · · + 1

2
𝑛

)
𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 1 + 2

(√
2

2

+ 0.3827

)
+ 2𝜋

(
1

16

+ . . .

)
+ 2𝑟1 + 2𝑟2

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 1 + (0.7654 + 1.4143) + 𝜋

4

+ 2𝑟1 + 2𝑟2

𝑘∑︁
𝑖=1

𝑑𝑖 < 3.9651 + 2𝑟1 + 2𝑟2 ≤ 7.9651

□
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Figure 3: A path in the Arc-Strategy

Thus, using the Arc-Strategy, FTP in (R2, 𝑙2) can be solved in at

most 7.9651𝑟 time units, where 𝑟 is the radius of the disk containing

all the asleep robots, and the active robot is at the center.

The Arc-Strategy cannot be extended to R3
. In R2

, the strategy

works by reducing the arc size each active robot covers, minimizing

the distance 𝑑𝑖 each robot travels to activate sleeping robots. This

sum of distances converges efficiently in R2
, but does not converge

in R3
. Thus, in the next section, we propose a different approach

for R3
.

3.1.2 Ring-Strategy. We now introduce the Ring-Strategy. For a

given center point, a ring is defined by its inner radius 𝑟1 and

outer radius 𝑟2, consisting of all points at a distance 𝑟 , where 𝑟1 ≤
𝑟 ≤ 𝑟2, from the center. Suppose two awake robots, 𝑝0 and 𝑝

′
0
, are

positioned at distance 𝑟1 from the center. We focus on a ring with

inner radius 𝑟1 and outer radius 1, and outline a strategy to wake up

the robots within the ring between 𝑟1 and 𝑟2 = 1. The Ring-Strategy

is described as follows:

• Each of the two awake robots is responsible for waking up

one half of the ring. The ring is split into two equal halves

by drawing a diameter through𝐶 (𝑂, 𝑟1) that passes through
𝑝0. Next, we explain the strategy for 𝑝0.

• Consider the projections of the points in 𝑝0’s half of the ring

onto the circle 𝐶 (𝑂, 𝑟1). The projection of a point 𝑝 𝑗 onto

the circle 𝐶 (𝑂, 𝑟 ) is the intersection of 𝑂𝑝 𝑗 with the circle

𝐶 (𝑂, 𝑟 ). Let 𝑝1 be the point whose projection is closest to 𝑝0.

Then, 𝑝0 activates 𝑝1.

• In the next step, 𝑝0 and 𝑝1 divide their half of the ring into

two smaller half-rings using the circle 𝐶 (𝑂, 𝑟1+1
2

). This cre-
ates one half-ring with an inner radius of 𝑟1 and an outer

radius of
𝑟1+1
2

, and another with an inner radius of
𝑟1+1
2

and

an outer radius of 1. Now, each of 𝑝0 and 𝑝1 is responsible

for activating robots in their respective half-rings.

• As before, 𝑝0 activates the point in its half-ring whose pro-

jection onto 𝐶 (𝑂, 𝑟1) is closest to it, while 𝑝1 activates the

point in its half-ring whose projection onto 𝐶 (𝑂, 𝑟1+1
2

) is
closest to 𝑝1.

• In each subsequent step, the active point 𝑝𝑙 in a half-ring

with inner radius 𝑟𝑖 and outer radius 𝑟 𝑗 identifies the point

in its half-ring whose projection onto 𝐶 (𝑂, 𝑟𝑖 ) is closest and
activates it. The half-ring is then split into two smaller half-

rings: one with inner radius 𝑟𝑖 and outer radius

𝑟𝑖+𝑟 𝑗
2

, and

the other with inner radius

𝑟𝑖+𝑟 𝑗
2

and outer radius 𝑟 𝑗 . At

each step, the thickness of the half-ring is halved, with each

robot responsible for waking up the robots in their respective

half-ring.

• Meanwhile, similar to 𝑝0, 𝑝
′
0
activates the robots in its half

of the ring. By the end of this process, all robots within the

ring are activated.

We now calculate the wake-up time for this strategy, specifically

the time required to activate all the robots in a half-ring when the

active robot is 𝑝0. Since there are two awake robots at the same

initial position, 𝑝′
0
activates the robots in its own half in parallel.

Therefore, the upper bound on the wake-up time is the same for

both halves, and all robots will be awake within this time.

Let 𝑝0, 𝑝1, . . . , 𝑝𝑘 represent a path in the wake-up tree of the

Ring-Strategy, with the root at 𝑝0. We now define the following

variables (see Figure 4):

𝑑𝑖 = ∥𝑝𝑖−1 − 𝑝𝑖 ∥2
(𝑟𝑖 , 𝛼𝑖 ) = polar coordinates of the location of 𝑝𝑖

𝑎𝑖 = the distance between (𝑟𝑖−1, 𝛼𝑖−1) and (𝑟𝑖−1, 𝛼𝑖 )
i.e the distance between 𝑝𝑖 and image of

𝑝𝑖+1 on 𝐶 (𝑂, 𝑟𝑖 )
𝑏𝑖 = the distance between (𝑟𝑖−1, 𝛼𝑖 ) and (𝑟𝑖 , 𝛼𝑖 )

i.e the distance between 𝑝𝑖 and image of

𝑝𝑖 on 𝐶 (𝑂, 𝑟𝑖−1)

The total length of the path 𝑝0, 𝑝1, . . . 𝑝𝑘 is given by:

𝑘∑︁
𝑖=1

𝑑𝑖 ≤
𝑘∑︁
𝑖=1

𝑎𝑖 +
𝑘∑︁
𝑖=1

𝑏𝑖 .

Since we split the half-ring associated with each active point at

each step, we have 𝑏𝑖+1 ≤ 1−𝑟1
2
(𝑖−1) for 𝑖 ≥ 1 and

∑𝑘
𝑖=1 𝑎𝑖 ≤ 𝜋 . Thus,

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 𝜋 + 𝑏1 +
𝑘∑︁
𝑖=2

1 − 𝑟1

2
(𝑖−2)

≤ 𝜋 + 1 − 𝑟1 + 2(1 − 𝑟1) = 𝜋 + 3(1 − 𝑟1)

Thus, we arrive at the following lemma.

Lemma 3.2. If in an instance of FTP all the robots are inside a ring
with inner radius 𝑟1 and outer radius of 1, and we have two awake
robots in the boundary of 𝐶 (𝑂, 𝑟1), then Ring-Strategy activates all
robots in 𝜋 + 3 − 3𝑟1 time units.

3.1.3 Our combined strategy for FTP in (R2, 𝑙2). We now propose

a combined wake-up strategy based on the Arc-Strategy and Ring-

Strategy. Given an instance of FTP in (R2, 𝑙2) with an active robot

at the center, let 𝑟1 represent the distance from the center to the

nearest asleep robot.
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Figure 4: A path in the Ring-Strategy.

In the first step, 𝑝0 moves toward 𝑝1, and nowwe have two awake

robots. Divide the disk into two halves by drawing the diameter

that passes through 𝑂𝑝1. Now we have two active robots in the

location of 𝑝1 and each robot is responsible for one half.

Now, assume we want to wake the right half using 𝑝0. Let 𝑝2
be the second nearest point to the center in the right half of the

ring and 𝑟2 represent its distance from the center. If 𝑟2 ≤ 0.3627,

then using the Arc-Strategy, this half can be activated in 2𝑟1 +
2𝑟2 + 3.9651 ≤ 4𝑟2 + 3.9651 ≤ 5.4162 time units, see the proof of

Lemma 3.1. Otherwise, using the Ring-Strategy, 𝑝0 moves 𝑟2 − 𝑟1

units in the direction of

−−→
𝑂𝑝1. The half-ring on the right now has

an inner radius of 𝑟2 and an outer radius of 1. So, we can activate

the robots in this half-ring in 𝑟1 + (𝑟2 − 𝑟1) + 3 + 𝜋 − 3𝑟2 < 6.1416−
2 × 0.3627 = 5.4162 time units, see the proof of Lemma 3.2.

Similarly, let 𝑝2′ be the second nearest point to the center in the

left half of the disk. Again, based on the length of 𝑟2′ , we choose

the best strategy for activating the robots in this half, which takes

at most 5.4162 time units. Thus, the proof is complete.

3.2 Some examples
We show that for certain values of 𝑛, the wake-up ratio for 𝑛 points

is not achieved when the points are equally distributed on the

unit circle by presenting specific instances and computing their

makespan. Our first instance is a set of 5 asleep robots, themakespan

of this instance is 3.530, see Figure 5. When five points are equally

distributed on the cycle then the makespan is 3.351. Our second

example is a set of 7 asleep robots, the makespan of this instance

is 3.498, see Figure 5. When seven points are equally distributed

on the cycle then the makespan is 3.431. The makespans of these

instances are computed using a computer program by brute force

search. Our code is publicly available online
1
.

Furthermore, we generated over 10
5
random instances for dif-

ferent values of 𝑛 and computed their makespans, leading to the

following conjecture:

Conjecture 3.3. The maximum makespan of 𝑛 points is attained
when they are on the boundary of the unit 𝑙2-disk.

4 FTP IN (R3, 𝑙1)
In this section, we study FTP in (R3, 𝑙1). The unit 𝑙1-ball in R3

,

known as a cross-polytope, has all points on its surface exactly one

1
Makespan Calculator Code

Point 𝜃 x y

𝑝1 31.52 0.852 0.522

𝑝2 101.98 −0.207 0.978

𝑝3 148.90 −0.856 0.516

𝑝4 195.69 −0.962 −0.270

𝑝5 225.69 −0.698 −0.715

𝑝6 271.63 0.028 −0.999

𝑝7 327.87 0.846 −0.531

Point 𝜃 x y

𝑝1 17.37 0.954 0.298

𝑝2 96.22 −0.108 0.994

𝑝3 174.42 −0.995 0.097

𝑝4 219.75 −0.768 −0.639

𝑝5 299.27 0.488 −0.872

Figure 5: Two instances of FTP in (R2, 𝑙2) showing that the
wake-up ratio is not attained for points equally distributed
on the unit circle where 𝜃 is the angle from the positive 𝑥-axis
in degree.

unit from the center, giving it a radius of 1. A cross-polytope with

radius 𝑟 is simply the unit ball scaled by 𝑟 . Its diameter is 𝑑 = 2𝑟 ,

meaning any two points within it are at most 𝑑 units apart, and the

distance from the center to any point is at most 𝑟 = 𝑑
2
.

In the FTP, the awake active robot starts at the center point

𝑝0 = (0, 0, 0). There are 𝑛 asleep robots, each within at most one

unit from 𝑝0 in the 𝑙1 norm. We begin by stating three lemmas.

Lemma 4.1. An awake robot at the center of a cross-polytope with
radius 𝑟 can wake any set of 𝑛 ≤ 127 asleep robots in 13𝑟 time units.

Proof. The initially awake robot, starting at the center of the

cross-polytope, can reach any of the 𝑛 sleeping robots in 𝑟 time

units. Once the first robot is awakened, both robots can each wake

another sleeping robot in 𝑑 = 2𝑟 time units. This doubling process

continues, with the number of awake robots doubling every 𝑑 time

units. After 6𝑑 = 12𝑟 time units, there will be at least 2 × 2
6 = 128

awake robots. Thus, using this strategy, up to 127 robots can be

awakened in 13𝑟 time units.

□

Lemma 4.2. Given an awake robot at the center of a cross-polytope
with radius 𝑟 and 𝑛 ≥ 128 sleeping robots, seven of those robots can
be awakened in 3𝑟 time units.

Proof. To prove this lemma, we first divide the cross-polytope

with diameter 𝑑 into six smaller cross-polytopes and eight pyramids

(see Figure 6a). Each smaller cross-polytope has a diameter of 𝑑′ =
𝑑
2
= 𝑟 and a radius of 𝑟 ′ = 𝑟

2
. Their centers are located at ( 1

2
, 0, 0),

(− 1

2
, 0, 0), (0, 1

2
, 0), (0,− 1

2
, 0), (0, 0, 1

2
), and (0, 0,− 1

2
). The pyramids

also have a diameter 𝑑′′ = 𝑑
2
= 𝑟 , and three of their faces are shared

with adjacent cross-polytopes, making each pyramid unique. As

an example, the vertices of the pyramid in Figure 6b are (0, 0, 0),
( 1
2
, 1
2
, 0), ( 1

2
, 0, 1

2
), and (0, 1

2
, 1
2
). Since the pyramid is convex, its

diameter equals the maximum distance between its vertices, 𝑑′′ =
𝑑
2
, which applies to all the pyramids.

With 𝑛 ≥ 128 sleeping robots and the cross-polytope divided

into 14 regions, at least one region will have at least

⌈
128

14

⌉
= 10

asleep robots. The initially awake robot at the center can wake

one robot in this region in 𝑟 time units. These two robots can each

wake another in 𝑑′ = 𝑑
2
time units, doubling the number of awake
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d

𝑑
2

(a) Six smaller cross-polytopes with diameter 𝑑
2
inside a

cross-polytope of diameter 𝑑 .

(b) Eight pyramids with diameter 𝑑
2

inside a cross-
polytope with diameter 𝑑 .

Figure 6: A cross-polytope partitioned into eight pyramids
and six cross-polytopes with diameter 𝑑′ = 𝑑

2
.

robots every 𝑑′. Repeating this twice results in eight robots awake

in 𝑟 + 2𝑑′ = 3𝑟 time units. □

Lemma 4.3. A cross-polytope with diameter 𝑑 can be fully covered
by six smaller cross-polytopes, each with a diameter of 2𝑑

3
.

Proof. Consider a cross-polytope with diameter 𝑑 and radius

𝑟 = 𝑑
2
, centered at the origin. Now, take six smaller cross-polytopes,

each with diameter 𝑑′ = 2𝑑
3
and radius 𝑟 ′ = 2𝑟

3
, centered at ( 𝑟

3
, 0, 0),

(− 𝑟
3
, 0, 0), (0, 𝑟

3
, 0), (0,− 𝑟

3
, 0), (0, 0, 𝑟

3
), and (0, 0,− 𝑟

3
). See Figure 7.

Let 𝑝 = (𝑥,𝑦, 𝑧) be any point inside the larger cross-polytope,

where |𝑥 | + |𝑦 | + |𝑧 | ≤ 𝑟 . We need to show that the distance from 𝑝 to

the center of one of the smaller cross-polytopes is at most 𝑟 ′ = 2𝑟
3

in 𝑙1 norm.

Without loss of generality, assume |𝑥 | ≥ |𝑦 | and |𝑥 | ≥ |𝑧 |. We

claim that if 𝑥 ≥ 0, 𝑝 lies within the cross-polytope centered at

𝑐1 =
(
𝑟
3
, 0, 0

)
, and if 𝑥 < 0, it lies within the one centered at 𝑐2 =(

− 𝑟
3
, 0, 0

)
. Assume 𝑥 ≥ 0. If 𝑥 ≤ 𝑟

3
, then |𝑦 | ≤ |𝑥 | ≤ 𝑟

3
and |𝑧 | ≤

|𝑥 | ≤ 𝑟
3
, and the distance is: ∥𝑝 − 𝑐1∥1 =

�� 𝑟
3
− 𝑥

�� + |𝑦 | + |𝑧 | ≤
𝑟
3
− 𝑥 + 2|𝑥 | ≤ 2𝑟

3
. If 𝑥 > 𝑟

3
, ∥𝑝 − 𝑐1∥1 = 𝑥 − 𝑟

3
+ |𝑦 | + |𝑧 |. Since

|𝑦 | + |𝑧 | ≤ 𝑟 − 𝑥 , it follows that ∥𝑝 − 𝑐1∥1 ≤ 𝑥 − 𝑟
3
+ 𝑟 − 𝑥 = 2𝑟

3
.

Similarly, if 𝑥 < 0, we can show ∥𝑝 − 𝑐2∥1 ≤ 2𝑟
3
. Thus, any point

𝑝 inside the larger cross-polytope is contained in at least one of the

six smaller cross-polytopes. □

4.1 Our strategy for FTP in (R3, 𝑙1)
Given a set of 𝑛 asleep robots, our wake-up strategy is as follows: If

𝑛 ≤ 127, the awake robot at the origin can activate all robots within

13𝑟 time units, as shown in Lemma 4.1. If 𝑛 > 127, by Lemma 4.2,

we first wake up 7 robots in 3𝑟 time units. Then, we divide the

cross-polytope into six smaller overlapping cross-polytopes, each

with a diameter of
2𝑑
3
, as described in Lemma 4.3. With eight robots

awake, we assign six of them to one of the smaller cross-polytopes.

Each robot reaches the center of its assigned cross-polytope in

Figure 7: The cross-polytope with diameter 𝑑 is covered by
six overlapping cross-polytopes, each with a diameter of 2𝑑

3
,

fully covering all points of the larger cross-polytope.

at most
2𝑑
3
time units. Then, each robot wakes up the remaining

robots in its section, taking at most 𝑓

(
2𝑑
3

)
time units, where 𝑓 (𝑑)

is the time needed to wake all robots in a region of diameter 𝑑 . If a

robot belongs to multiple cross-polytopes, it can be assigned to any

one of them. If a cross-polytope has fewer than 128 asleep robots,

they can be woken up in
13𝑑
4

time units as per Lemma 4.1. Thus,

the recursive formula for computing 𝑓 (𝑑) is:

𝑓 (𝑑) ≤ 3𝑑

2

+ 2𝑑

3

+ 𝑓

(
2𝑑

3

)
=

13𝑑

6

+ 𝑓

(
2𝑑

3

)
Which yields: 𝑓 (𝑑) ≤ 13𝑑

6
×

(
1 + 2

3
+ 4

9
+ . . .

)
= 13𝑑

2
. For the unit

𝑙1-ball where 𝑑 = 2, the upper bound for the total time is 13 units.

5 WAKE-UP RATIO FOR ROBOTS ON THE
BOUNDARY OF THE UNIT 𝑙2-BALL IN R3

In this section, we study FTP in (R3, 𝑙2) for a special case where
the asleep robots are on the boundary of the unit 𝑙2-ball.

We believe this version of FTP is significant, as we hypothesize

the maximal makespan occurs when all asleep robots are on the

boundary. This hypothesis is based on our observation that, in

numerous random instances for various values of 𝑛 in (R3, 𝑙1) and
(R3, 𝑙2), the maximum makespan was achieved when the asleep

robots were on the boundary.

This scenario is also relevant to real-world applications like

communication and transportation, where, similar to the unit ball

in (R3, 𝑙2), key locations on Earth are often on its surface. This

leads us to a variant called surface-FTP, where all robots, including

the initially active one, are located on the surface of the 𝑙2-ball in

R3
, and distances are measured using the geodesic (shortest arc)

distance.

Our approach for these FTP versions is to project the points on

the boundary of the unit 𝑙2-ball in R3
onto an 𝑙2-disk with radius

𝜋
2
, ensuring the Euclidean distance between projected points is less

than their original Euclidean distances on the boundary of 𝑙2-ball.

5.1 Mapping
We begin by cutting the unit 𝑙2-ball in R3

into two hemispheres

and mapping one hemisphere to a disk. For this disk, we generate a

wake-up tree using the method from Section 3.1. The wake-up tree
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𝑥

𝑦

𝑧

𝜃

𝛿

𝑇

𝑝

𝛿 𝑝′

𝑟 = 𝜋
2

𝜃

𝑥

𝑦

Figure 8: Every point on the surface of a unit hemisphere
can be represented by 𝛿 and 𝜃 . The point 𝑝 = (0.433, 0.75, 0.5)
is represented by 𝜃 = −30◦ = 330

◦ and 𝛿 = 1.047. The mapping
of 𝑝 onto the unit 𝑙2-disk results in 𝑝′ with coordinates (𝛿, 𝜃 )
in polar coordinates.

is then extended to coordinate the wake-up process for the robots

on the boundary. We explain our mapping in the following.

Consider the upper hemisphere of a unit 𝑙2-ball with𝑇 = (0, 0, 1).
Any point 𝑝 = (𝑥,𝑦, 𝑧) on the surface of the hemisphere can be

uniquely represented by the pair (𝛿, 𝜃 ), where 𝛿 = arccos(𝑧) is
the geodesic distance from 𝑇 to 𝑝 (the shortest path along the

hemisphere), and 𝜃 is the angle of 𝑝’s projection onto the 𝑥𝑦-plane

relative to the positive 𝑥-axis. This is illustrated in Figure 8.

MappingM:We define a mappingM that maps each point 𝑝

with pair (𝛿, 𝜃 ) on the hemisphere to a point 𝑝′ = (𝛿, 𝜃 ) in a disk

with radius
𝜋
2
using polar coordinates. In this mapping,𝑇 = (0, 0, 1)

is mapped to (0, 0) in the 𝑙2-disk, with 𝜃 ∈ [0, 2𝜋) and 𝛿 ∈ [0, 𝜋
2
].

The boundary of the hemisphere is mapped to a disk of radius
𝜋
2
,

as shown in Figure 8.

We now prove that for any two points 𝑝1 and 𝑝2 on the hemi-

sphere, the Euclidean distance between them is less than or equal to

the Euclidean distance between their mapped points 𝑝′
1
= M(𝑝1)

and 𝑝′
2
= M(𝑝2). This is formally stated in the following lemma.

Lemma 5.1. The mappingM ensures that for any two points 𝑝1
and 𝑝2 on the hemisphere, mapped to 𝑝′

1
= M(𝑝1) and 𝑝′

2
= M(𝑝2)

on the disk, ∥𝑝1 − 𝑝2∥2 ≤ ∥𝑝′
1
− 𝑝′

2
∥2.

Proof. We have three cases for 𝑝1 = (𝜃1, 𝛿1) and 𝑝2 = (𝜃2, 𝛿2).

Case 1: 𝜃1 = 𝜃2 = 𝜃 , (see Figure 9a). In this case, the geodesic

distance between 𝑝1 and 𝑝2 is given by |𝛿1−𝛿2 |, and ∥𝑝′
1
−𝑝′

2
∥2 is also

equal to |𝛿1−𝛿2 |. Since 𝑝1 and 𝑝2 lie on the samemeridian, ∥𝑝1−𝑝2∥2
is equal to 2 sin

(
|𝛿1−𝛿2 |

2

)
. Using the inequality 𝑥 ≤ sin(𝑥) for

𝑥 ∈
[
0, 𝜋

2

)
, we get ∥𝑝1 − 𝑝2∥2 ≤ ∥𝑝′

1
− 𝑝′

2
∥2.

Case 2: 𝛿1 = 𝛿2 = 𝛿 , (see Figure 9b). Consider the circle passing
through 𝑝1 and 𝑝2 that is parallel to the 𝑥𝑦-plane, with its center

on the 𝑧-axis. The angle between 𝑝1, the center of the circle, and 𝑝2
is |𝜃1 − 𝜃2 |, and the radius of the circle is sin(𝛿). Consequently, the
geodesic distance between 𝑝1 and 𝑝2 is |𝜃1 −𝜃2 | sin(𝛿), while ∥𝑝1 −
𝑝2∥2 is 2 sin

(
|𝜃1−𝜃2 |

2

)
sin(𝛿), and ∥𝑝′

1
− 𝑝′

2
∥2 is 2 sin

(
|𝜃1−𝜃2 |

2

)
𝛿 .

Therefore, we have ∥𝑝1 − 𝑝2∥2 ≤ ∥𝑝′
1
− 𝑝′

2
∥2.

𝑥

𝑦

𝑧

𝜃
𝛿2

𝛿1

𝑝2

𝑝1

𝑇

(a) In this case, 𝜃1 = 𝜃2 = 𝜃 , and 𝛿1 and 𝛿2 represent the geodesic distances
of 𝑝1 and 𝑝2 from the point𝑇 = (0, 0, 1) .

𝑥

𝑦

𝑧

𝜃2 − 𝜃1

𝛿

𝑝1

𝛿

𝑝2

𝑇

(b) Case 2: In this case, 𝛿1 = 𝛿2 = 𝛿 , where 𝛿 is the geodesic distance of
both 𝑝1 and 𝑝2 from𝑇 = (0, 0, 1) .

𝑥

𝑦

𝑧

𝑝1

𝑞1

𝑞2

𝑝2

𝑇

(c) Case 3: In this case, 𝜃1 ≠ 𝜃2 and 𝛿1 ≠ 𝛿2. The geodesic distance of 𝑝1
and 𝑞2 from𝑇 = (0, 0, 0) is the same, and the geodesic distance of 𝑞1 and
𝑝2 from𝑇 is also the same. A plane passes through the points 𝑝1, 𝑝2, 𝑞1,
and 𝑞2, forming a trapezoid. The Euclidean distance between 𝑝1 and 𝑝2

is the length of the diameter of this trapezoid.
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Case 3: 𝜃1 ≠ 𝜃2 and 𝛿1 ≠ 𝛿2, (see Figure 9c). Let 𝑞1 = (𝛿1, 𝜃2)
and 𝑞2 = (𝛿2, 𝜃1). Along with 𝑝1 and 𝑝2, these four points form an

isosceles trapezoid. And the lenght of the diagonal of this isosceles

trapezoid is equal to ∥𝑝1 −𝑝2∥2. The first case implies, ∥𝑝1 −𝑞2∥2 =
∥𝑝2−𝑞1∥2 = 2 sin( |𝛿2−𝛿1 |

2
) and the second case implies ∥𝑝1−𝑞1∥2 =

2 sin(𝛿1) sin( |𝜃1−𝜃2 |
2

) and ∥𝑝2−𝑞2∥2 = 2 sin(𝛿2) sin( |𝜃1−𝜃2 |
2

). Thus,

∥𝑝1−𝑝2∥2 =
√︂
4 sin

2 ( |𝛿1 − 𝛿2 |
2

) + 4 sin(𝛿1) sin(𝛿2) sin2 (
|𝜃1 − 𝜃2 |

2

).

On the other hand,

∥𝑝′
1
− 𝑝′

2
∥2 =

√︃
𝛿1

2 + 𝛿2
2 − 2𝛿1𝛿2 cos( |𝜃1 − 𝜃2 |).

Now, we show that ∥𝑝1 − 𝑝2∥2 ≤ ∥𝑝′
1
− 𝑝′

2
∥2. Consequently we

need to show,

sin
2 ( |𝛿1 − 𝛿2 |

2

) + sin(𝛿1) sin(𝛿2) sin2 (
|𝜃1 − 𝜃2 |

2

) ≤

( 𝛿1
2

− 𝛿2

2

)2 + 𝛿1𝛿2

2

− 𝛿1𝛿2
cos( |𝜃1 − 𝜃2 |)

2

sin(𝑥) ≤ 𝑥 implies that sin
2 ( |𝛿1−𝛿2 |

2
) ≤ ( 𝛿1

2
− 𝛿2

2
)2. It remains to

prove that:

sin(𝛿1) sin(𝛿2) sin2 (
|𝜃1 − 𝜃2 |

2

) ≤ (𝛿1𝛿2) (
1

2

− cos( |𝜃1 − 𝜃2 |)
2

) .

Since sin(𝛿1) sin(𝛿2) ≤ 𝛿1𝛿2 and using the identity 2 sin
2 (𝜃 ) =

1 − cos(2𝜃 ), the inequality holds, completing the proof.

□

5.2 Our strategy, when asleep robots are on the
boundary on the unit 𝑙2-ball

For an instance of FTP in (R3, 𝑙2), where the asleep robots are on

the boundary and the initially active robot is at the center of the

ball, we propose the following strategy. We split the sphere into two

hemispheres. Without loss of generality, assume 𝑇 = 𝑝1 = (0, 0, 1),
and that the hemisphere containing 𝑝1 has 𝑛1 ≥ 𝑛

2
robots. We move

𝑝0 toward 𝑝1 in 1 time unit. Then, using themappingM, wemap the

robots on the boundary of the hemisphere containing 𝑝1 onto an 𝑙2-

disk with radius
𝜋
2
. We have 𝑛1 asleep robots and one awake robot

at the origin of the disk. Using the Arc-Strategy from Lemma 3.1,

we can wake all the robots in the disk in
𝜋
2
× 3.9651+ 2𝑟1 + 2𝑟2 time

units, where 𝑟1 is the distance of the nearest point to the origin and

𝑟2 depends on the path and we have 𝑟2 ≤ 1

. Since both 𝑝0 and 𝑝1 are at the origin, 𝑟1 = 0, and all robots on

the disk can be woken in
𝜋
2
× 5.9651 time units.

Thus, by Lemma 5.1 and the Arc-Strategy, after 1 time unit (for

moving 𝑝0 toward 𝑝1) plus
𝜋
2
× 5.9651 time units, all robots in the

upper hemisphere are awake, giving us 𝑛1 + 1 awake robots. Since

𝑛1 ≥ 𝑛
2
, each awake robot on the boundary can wake a robot in the

lower hemisphere within 2 time units. Therefore, all robots can be

woken in 3 + 𝜋
2
× 5.9651 ≃ 12.37 time units.

5.3 Our strategy for surface-FTP
We apply the mapping approach to solve the surface-FTP. Points on

the hemisphere’s boundary are mapped onto a disk with radius
𝜋
2

using the mappingM. In Lemma 5.1, we proved that the Euclidean

distance between two points 𝑝1 and 𝑝2 on the hemisphere is:

∥𝑝1 − 𝑝2∥2 =
√︂
4 sin

2 ( |𝛿1 − 𝛿2 |
2

) + 4 sin(𝛿1) sin(𝛿2) sin2 (
|𝜃1 − 𝜃2 |

2

) .

So, the geodesic distance between them is:

2 arcsin(
√︂
sin

2 ( |𝛿1 − 𝛿2 |
2

) + sin(𝛿1) sin(𝛿2) sin2 (
|𝜃1 − 𝜃2 |

2

))

On the other hand, the Euclidean distance between their mapping

M(𝑝1) = 𝑝′
1
and M(𝑝2) = 𝑝′

2
is:

∥𝑝′
1
− 𝑝′

2
∥2 =

√︃
𝛿1

2 + 𝛿2
2 − 2𝛿1𝛿2 cos( |𝜃1 − 𝜃2 |).

We claim that the geodesic distance between points 𝑝1 and 𝑝2 is

less than or equal to the Euclidean distance between the correspond-

ing points 𝑝′
1
and 𝑝′

2
. To support this, we conducted a computational

analysis, calculating distances for all combinations of 𝛿1 =
𝜋
2
𝜖 × 𝑖 ,

𝛿2 = 𝜋
2
𝜖 × 𝑗 , and 𝜃1 − 𝜃2 = 𝜋𝜖 × 𝑘 , with 𝑖, 𝑗, 𝑘 ranging from 0 to

1

𝜖 . The code, available online
2
, was run with 𝜖 = 0.001, and in all

cases, the geodesic distance between 𝑝1 and 𝑝2 was less than or

equal to ∥𝑝′
1
− 𝑝′

2
∥2 3

Thus, the wake-up time for robots on the

hemisphere is less than or equal to the wake-up time for robots on

the disk. This means that a wake-up tree for robots on the disk also

works for robots on the hemisphere, with a makespan that is no

greater.

Now we focus on surface-FTP. Initially, we have an awake robot,

𝑝0, on the surface of a sphere, and this robot must wake 𝑛 asleep

robots. The distances between them are geodesic distances on the

surface. We divide the sphere into two halves, with 𝑝0 located at

the top of the upper half.

• We move 𝑝0 to the nearest point, 𝑝1, in 𝜌1 time units, where

𝜌1 is the geodesic distance between 𝑝0 and 𝑝1. Now, with two

awake robots, 𝑝1 handles robots in the upper hemisphere,

while 𝑝0 handles the robots in the lower hemisphere.

• The strategy for waking up the robots in the upper hemi-

sphere: Using the mapping M, we map the points on the

upper hemisphere onto a disk with radius
𝜋
2
, placing the

awake robot at 𝑝1 = (𝜌1, 𝜃1). We then move 𝑝1 to the center

of the disk. The remaining robots on the disk can be awak-

ened in
𝜋
2
× 5.4162 time units using Theorem 2.1. Therefore,

all robots on the upper hemisphere are awakened in at most

2𝜌1 + 𝜋
2
× 5.4162 time units. Since 𝜌1 ≤ 𝜋

2
, the makespan for

the upper hemisphere is at most 11.65 time units.

• The strategy for waking up the robots in the lower hemi-

sphere: First, 𝑝0 moves to 𝑝1 in 𝜌1 time units, then to 𝑝′
1
in

𝜋 − 𝜌1 − 𝜌′
1
time units, where 𝑝′

1
is the nearest point to the

lowest point in the hemisphere. Using the mapping M, we

map the lower hemisphere onto a disk with radius
𝜋
2
. Now,

with two awake robots, 𝑝0 and 𝑝′
1
, within 𝜌′

1
of the disk’s

center, the remaining robots can be awakened in
𝜋
2
× 5.4162

time units using Theorem 2.1. The total makespan for the

lower hemisphere is 𝜋 − 𝜌′
1
+ 𝜋

2
× 5.4162 ≤ 11.65

Thus, the wake-up ratio for surface-FTP is at most 11.65.

2
Geodesic to Euclidean Distance Ratio Calculator Code

3
A detailed computation of the derivatives of the distance functions can be found in

our code.
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https://github.com/sahroush/Geometric-Freeze-Tag-Problem/blob/main/Calculations/GeodesicToEucledeanRatioCalculator.ipynb
https://github.com/sahroush/Geometric-Freeze-Tag-Problem/blob/main/Calculations/MakespanCalculator.cpp
https://github.com/sahroush/Geometric-Freeze-Tag-Problem/blob/main/Calculations/MakespanCalculator.cpp
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