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ABSTRACT

We study the problem of maximizing Nash social welfare, which is

the geometric mean of agents’ utilities, in two well-known mod-

els. The first model involves one-sided preferences, where a set of

indivisible items is allocated among a group of agents (commonly

studied in fair division). The second model deals with two-sided
preferences, where a set of workers and firms, each having nu-

merical valuations for the other side, are matched with each other

(commonly studied in matching-under-preferences literature). We

study these models under capacity constraints, which restrict the

number of items (respectively, workers) that an agent (respectively,

a firm) can receive. We contribute constant-factor approximation

algorithms for both problems under a broad class of valuations.

Specifically, our main results are the following: (a) For any 𝜀 > 0, a

(6 + 𝜀)-approximation algorithm for the one-sided problem when

agents have submodular valuations, and (b) a 1.33-approximation

algorithm for the two-sided problem when the firms have subaddi-
tive valuations. The former result provides the first constant-factor

approximation algorithm for Nash welfare in the one-sided problem

with submodular valuations and capacities, while the latter result

significantly improves upon an existing

√
OPT-approximation algo-

rithm for additive valuations. Our result for the two-sided setting

also establishes a computational separation between the Nash and

utilitarian welfare objectives. We also complement our algorithms

with hardness-of-approximation results.

KEYWORDS

Nash SocialWelfare;ApproximationAlgorithms;Capacity Constraints;Fair

Division;Matching Under Preferences

ACM Reference Format:

Salil Gokhale, Harshul Sagar, Rohit Vaish, and Jatin Yadav. 2025. Approxi-

mating One-Sided and Two-Sided Nash Social Welfare With Capacities. In

Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

1 INTRODUCTION

Fairness and efficiency are quintessential requirements in many

resource allocation problems, such as distributing a set of items

among agents and assigning job applicants to positions. These ob-

jectives are often represented as opposite ends of the “collective

utility” scale [33]: On one end, there is Bentham’s utilitarian wel-

fare, which maximizes the sum of individual utilities and represents

a purely efficient outcome. On the other end, there is Rawls’ egali-
tarian welfare (and its leximin refinement), which captures perfect

fairness by maximizing the worst-off individual’s utility.

The Nash social welfare [27, 34], defined as the geometric mean

of agents’ utilities, strikes a remarkable balance between fairness

and efficiency. It provides a “sweet spot” between these seemingly

incompatible objectives and satisfies several desirable properties

such as scale invariance, Pigou-Dalton principle, (approximate)

envy-freeness, and Pareto optimality [10, 33]. Due to its strong

axiomatic appeal, the computational aspects of Nash welfare have

received significant attention [1, 6, 10, 14, 16, 21, 22, 26, 30, 35].

In this work, we focus on the problem of maximizing Nash social

welfare in two well-studied models of resource allocation:

• One-sided preferences: In this model, a set of indivisible items is

allocated among a set of agents. Each agent has combinatorial

preferences over the items, while each item can be assigned to

exactly one agent. This setting is commonly explored in the

literature on fair division with indivisible items [2, 9, 32].

• Two-sided preferences: In this model, a set of workers is matched

with a set of firms. Each firm can be matched with multiple work-

ers and has combinatorial preferences over them. Each worker

has cardinal valuations over the firms and can only be assigned

to one firm. This model is frequently studied in the matching-

under-preferences literature [9, 25, 29, 31, 38].

An important feature distinguishing our work from much of

the prior work is the consideration of capacity constraints. In the

context of the one-sided problem, this means restricting the number

of items that an agent can receive, while in the two-sided setting,

each firm is restricted to be matched with at most a certain number

of workers. We allow different agents to have different capacities.

Capacity constraints naturally capture some of the practical

limitations in resource allocation problems. For example, when dis-

tributing pieces of artwork among museums, the space limitation of

eachmuseum restricts the number of items it can accommodate [39].

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

914

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Similarly, the hiring capacity of a firm is often limited by its finan-

cial budget. In such scenarios, it is natural to aim for outcomes that

maximize welfare while adhering to capacity constraints.

It is known that maximizing Nash welfare is hard to approximate

(specifically, it is APX-hard) in the one-sided problem even when

there are no capacity constraints [30, 35]. In the two-sided model,

the problem of maximizing Nash welfare is known to be NP-hard
even when each firm has a constant capacity [26]. Since the un-

capacitated setting is a special case of the capacitated model, the

latter problem is computationally more challenging. Therefore, it is

important to develop approximation algorithms for these problems.

Our Contributions

We present constant-factor approximation algorithms for maximiz-

ing Nash welfare in the one-sided and two-sided models under

capacity constraints for a broad class of valuations. Our results are

summarized below (also see Table 1). Throughout, we will use 𝜀 > 0

to denote an arbitrary constant.

• One-sided model: In Section 3, we provide a (6+𝜀)-approximation

algorithm for maximizing Nash welfare under capacity con-

straints when the agents have monotone submodular valuations
over the items. In the same setting without capacity constraints,

a local search-based (4 + 𝜀)-approximation algorithm was re-

cently proposed by Garg et al. [21]. Although their algorithm

does not automatically handle capacity constraints, we show that

with some necessary modifications (such as allowing two-way ex-

change of items instead of only one-way transfers), the algorithm

can be adapted to themore general problemwith capacities, albeit

with a slight loss in approximation quality. On the hardness front,

Garg et al. [22] have shown that, unless P = NP, no algorithm

that makes a polynomial number of value queries can provide

a better approximation of Nash welfare than
𝑒

𝑒−1
≈ 1.58. This

intractability holds even for a constant number of agents with

submodular valuations and even without capacity constraints

and, therefore, extends to the capacitated setting.

• Two-sided model: In Section 4, we present a 1.33-approximation

algorithm for maximizing Nash welfare when the firms have ca-

pacity constraints and monotone subadditive valuations over the
workers, and the workers have cardinal valuations over individ-

ual firms. Prior to our work, a

√
OPT-approximation for positive

additive valuations was known, where OPT denotes the optimal

Nash welfare [26]. Thus, our result presents a significant im-

provement over the current algorithm in both approximation

quality and the generality of preferences. Notably, our result also

establishes that in the two-sided setting, Nash welfare is com-

putationally easier than utilitarian welfare for which a hardness

result of
𝑒

𝑒−1
− 𝜀 is known [28]. Our algorithm and its analysis

are simple and use a single minimum cost flow computation. We

also show that the same algorithm can be used to provide a PTAS
when the number of firms is constant.

• Hardness results: In Section 5, we show that maximizing Nash wel-

fare in the two-sided problem is APX-hard; specifically, it is NP-
hard to approximate Nash welfare within a factor of 1.0000759

even without capacity constraints. This observation strengthens

an existing intractability result which only showsNP-hardness [26].

In light of the aforementioned PTAS, it follows that our APX-
hardness result cannot be extended to the case of a constant

number of firms unless P = NP.

All missing proofs and other technical details can be found in

the full version [24].

Related Work

We will now review some of the relevant literature on one-sided

and two-sided Nash welfare. Due to space constraints, the detailed

coverage of related work is deferred to the full version [24].

One-sided preferences. In the one-sided model without capacity

constraints, it is known that maximizing Nash social welfare is APX-
hard even under additive valuations [18, 20, 30, 35]. A substantial

body of work has studied the design of exact and approximation

algorithms for Nash welfare over various classes of valuations,

including additive [1, 6, 7, 13, 14], budget-additive [19], separable
piecewise-linear concave [3, 11], matroid rank [4, 8, 40], submod-
ular [21, 22], and subadditive [5, 12, 15]. These valuation classes

have been extensively studied in algorithmic game theory [36] and

computational social choice [9]. In particular, additive valuations

are attractive from an elicitation perspective, while submodular

valuations capture the idea of diminishing marginal returns.

For submodular valuations, Garg et al. [21] have shown a (4+ 𝜀)-
approximation algorithm in the value query model (see Section 2

for the definition). In the same setting, it is known that any al-

gorithm that makes a polynomial number of value queries fails

to provide better than
𝑒

𝑒−1
≈ 1.58 approximation [22]. For the

case of a constant number of agents, Garg et al. [22] provide an

𝑒
𝑒−1

-approximation algorithm, matching the hardness threshold.

Two-sided preferences. Jain and Vaish [26] recently initiated the

study of Nash welfare in the two-sided setting. They examined

the computational complexity of maximizing Nash welfare when

firms have additive valuations over the workers and are limited

by capacity constraints, while workers have cardinal valuations

for the individual firms. They proved that the problem is NP-hard
even when each firm’s capacity is at most 2. However, when each

firm’s capacity is 1, a simple matching computation is sufficient.

The authors also presented a

√
OPT-approximation algorithm for the

two-sided Nash welfare under positive additive valuations, where

OPT represents the optimal objective value for the given input.

2 PRELIMINARIES

For any 𝑟 ∈ N, let [𝑟 ] := {1, 2, . . . , 𝑟 }. For any set 𝑅 and a singleton

{ 𝑗}, we use 𝑅 + 𝑗 to denote 𝑅 ∪ { 𝑗} and 𝑅 − 𝑗 to denote 𝑅 \ { 𝑗}.

One-Sided Model

Problem instance. An instance of the one-sided problem is defined

by a tuple ⟨𝑁,𝑀,V,𝐶⟩, where 𝑁 is a set of 𝑛 agents,𝑀 is a set of

𝑚 items (or goods),V = {𝑣1, . . . , 𝑣𝑛} is a set of valuation functions
and𝐶 = (𝑐1, . . . , 𝑐𝑛) is a vector of capacities. The valuation function

𝑣𝑖 : 2
𝑀 → Q≥0 specifies agent 𝑖’s value 𝑣𝑖 (𝑆) for any subset 𝑆 ⊆ 𝑀

of items. Note that we assume the valuations to be nonnegative

rational numbers. The capacity 𝑐𝑖 ∈ Z>0 is a positive integer that

represents the maximum number of items that agent 𝑖 can receive.

We will write 𝑣𝑖 ( 𝑗) instead of 𝑣𝑖 { 𝑗}) for a singleton { 𝑗}.
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One-sided

Nash Utilitarian

Hardness Algorithm Hardness Algorithm

Without
𝑒

𝑒−1
− 𝜀 4 + 𝜀 𝑒

𝑒−1
− 𝜀 𝑒

𝑒−1

Capacities [22, 28] [21] [28] [41]

With
𝑒

𝑒−1
− 𝜀 6 + 𝜀 𝑒

𝑒−1
− 𝜀 𝑒

𝑒−1

Capacities [22, 28] (Theorem 3.1) [28] [41]

Two-sided

Nash Utilitarian

Hardness Algorithm Hardness Algorithm

Without 1.0000759 1.33 (subadd.)
𝑒

𝑒−1
− 𝜀 𝑒

𝑒−1

Capacities (Theorem 5.1) (Theorem 4.1) [28] [41]

With 1.0000759 1.33 (subadd.)
𝑒

𝑒−1
− 𝜀 𝑒

𝑒−1

Capacities (Theorem 5.1) (Theorem 4.1) [28] [41]

Table 1: Summary of results on maximizing Nash social welfare for the one-sided (left) and two-sided (right) problems under

submodular valuations. The rows specify whether or not capacities are considered. The columns specify the best-known

approximation algorithms and hardness results (assuming P ≠ NP) for Nash and utilitarian welfare. Our contributions are

highlighted in shaded boxes. Note that our 1.33-approximation algorithm for the two-sided problem applies to the more general

domain of subadditive valuations.

Allocation. A partial allocation 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) refers to
an 𝑛-subpartition of the set of items 𝑀 such that, for all 𝑖 ≠ 𝑗 ,

𝐴𝑖 ∩ 𝐴 𝑗 = ∅ and ∪𝑛
𝑖=1

𝐴𝑖 ⊆ 𝑀 . Here, 𝐴𝑖 represents the subset

of items or the bundle assigned to agent 𝑖 . A partial allocation is

called complete if ∪𝑛
𝑖=1

𝐴𝑖 = 𝑀 . We will use the term “allocation” to

denote a complete allocation, and explicitly write “partial allocation”

otherwise. We will call a partial allocation feasible if, for each agent

𝑖 ∈ 𝑁 , we have |𝐴𝑖 | ≤ 𝑐𝑖 . Given a partial allocation 𝐴, we will call

𝑣𝑖 (𝐴𝑖 ) the utility (or value) derived by agent 𝑖 under 𝐴.

Nash social welfare. The Nash Social Welfare of a partial allo-

cation 𝐴 is defined as the geometric mean of the agents’ utilities,

i.e., NSW(𝐴) := (∏𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ))1/𝑛 . The Nash social welfare, or

NSW for short, is known to be scale-free, which means that an

allocation that maximizes Nash social welfare continues to do so

even if agent 𝑖’s valuation function 𝑣𝑖 (·) is scaled by a factor 𝛼𝑖 ≥ 0.

The computational problem associated with maximizing Nash

social welfare, which we call Capacitated One-Sided NSW, is

defined below. We will call a partial allocation Nash optimal if
it maximizes the Nash social welfare among all feasible partial

allocations for a given instance.

Capacitated One-Sided NSW

Input: An instance I = ⟨𝑁,𝑀,V,𝐶 ⟩ where 𝑁 is the set of agents,

𝑀 is the set of items, V is the set of valuation functions, and

𝐶 is a vector representing capacity of agents.

Goal: Compute a feasible Nash optimal partial allocation 𝐴.

A special case of Capacitated One-Sided NSW is when there

are no capacity constraints; equivalently, each agent’s capacity is

equal to the number of items. We call this problem Uncapacitated

One-Sided NSW.

Valuation classes. A valuation function 𝑣𝑖 : 2
𝑀 → Q≥0 is said to

be monotone if, for any pair of subsets 𝑆,𝑇 ⊆ 𝑀 such that 𝑆 ⊆ 𝑇 ,

we have 𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (𝑇 ), and normalized if 𝑣𝑖 (∅) = 0. We will assume

throughout that the valuations are monotone and normalized.

Various subclasses of monotone valuations will be of interest to

us. Formally, a valuation function 𝑣𝑖 is said to be:

• additive if, for any subset 𝑆 ⊆ 𝑀 , we have 𝑣𝑖 (𝑆) =
∑

𝑗∈𝑆 𝑣𝑖 ( 𝑗),

• submodular if, for any subsets 𝑆,𝑇 ⊆ 𝑀 such that 𝑆 ⊆ 𝑇 and any

𝑗 ∉ 𝑇 , we have that 𝑣 (𝑆 ∪ { 𝑗}) − 𝑣 (𝑆) ≥ 𝑣 (𝑇 ∪ { 𝑗}) − 𝑣 (𝑇 ), and
• subadditive if, for any pair of subsets 𝑆,𝑇 ⊆ 𝑀 , we have 𝑣𝑖 (𝑆 ∪
𝑇 ) ≤ 𝑣𝑖 (𝑆) + 𝑣𝑖 (𝑇 ).

Observe that the containment relations among these classes of

valuations are additive ⊆ submodular ⊆ subadditive.

Query model. Note that we allow for combinatorial valuations,

which can have an exponential-sized representation in terms of

the number of items. Therefore, when analyzing algorithms, it is

natural to assume an oracle access to the valuations. We will focus

on value queries in our work. Given as input a bundle 𝑆 and an

index 𝑖 , a value query returns agent 𝑖’s value for the bundle 𝑣𝑖 (𝑆).
We will write poly(𝑛,𝑚) to denote a polynomial function in 𝑛

and𝑚. We will be interested in designing algorithms that make

poly(𝑛,𝑚) number of value queries and have poly(𝑛,𝑚) running
time.

𝛼-approximation algorithm. Given an instance I, let ALG(I) de-
note the allocation returned by a given algorithm ALG, and let

OPT(I) denote a Nash optimal allocation for I. We say that ALG
is 𝛼-approximate if, for all problem instances I, we have that

NSW(OPT(I) )
NSW(ALG(I) ) ≤ 𝛼 . Notice that 𝛼 ≥ 1.

Two-Sided Model

Problem instance. An instance of the two-sided problem is de-

fined by a tuple ⟨𝐹,𝑊 ,V,W,𝐶⟩, where 𝐹 is a set of 𝑛 firms,𝑊 is a

set of𝑚 workers,V = {𝑣1, . . . , 𝑣𝑛} is a set of firms’ valuation func-

tions,W = {𝑤1, . . . ,𝑤𝑚} is a set of workers’ valuation functions,

and𝐶 = (𝑐1, . . . , 𝑐𝑛) is a vector of capacities. The valuation function
𝑣𝑖 : 2

𝑊 → Q≥0 specifies firm 𝑖’s value 𝑣𝑖 (𝑆) for any subset 𝑆 ⊆𝑊
of workers. The capacity 𝑐𝑖 ∈ Z>0 is a positive integer that repre-

sents the maximum number of workers that firm 𝑖 can be matched

with. Every worker 𝑗 ∈𝑊 has a valuation function𝑤 𝑗 : 𝐹 → Q≥0,

and𝑤 𝑗 (𝑖) represents the value that worker 𝑗 associates with firm 𝑖 .

Many-to-one matching. Given an instance I = ⟨𝐹,𝑊 ,V,W,𝐶⟩,
a many-to-one matching for I, denoted by 𝜇 : 𝐹 ×𝑊 → {0, 1}, is
a function that assigns each worker-firm pair a weight of either 0

or 1 such that for every worker 𝑗 ∈ 𝑊 ,

∑
𝑖∈𝐹 𝜇 (𝑖, 𝑗) ≤ 1, and for

every firm 𝑖 ∈ 𝐹 , ∑𝑗∈𝑊 𝜇 (𝑖, 𝑗) ≤ 𝑐𝑖 . Further, we define 𝜇𝑖 := { 𝑗 ∈
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𝑊 : 𝜇 (𝑖, 𝑗) = 1} and 𝜇 𝑗 := {𝑖 ∈ 𝐹 : 𝜇 (𝑖, 𝑗) = 1} as the set of workers
and firms matched with firm 𝑖 and worker 𝑗 , respectively.

Nash social welfare. The Nash Social Welfare of a many-to-one

matching 𝜇 is defined as the geometric mean of the utilities of the

firms and workers under 𝜇, i.e.,

NSW(𝜇) =
(∏

𝑖∈𝐹 𝑣𝑖 (𝜇𝑖 )
∏

𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 )
) 1

𝑚+𝑛
.

Note that similar to the one-sided model, the two-sided Nash social

welfare is also scale-free.
The computational problem associated with maximizing the two-

sided Nash Social Welfare, which we call Capacitated Two-Sided

NSW, is defined below. We will call a many-to-one matching Nash
optimal if it maximizes the Nash social welfare among all feasible

many-to-one matchings for a given instance.

Capacitated Two-Sided NSW

Input: An instance I = ⟨𝐹,𝑊 ,V,W,𝐶 ⟩ where 𝐹 is the set of

firms,𝑊 is the set of workers,V is the set of firms’ valuation

functions,W is the set of workers’ valuation functions and

𝐶 is a vector representing capacity of firms.

Goal: Compute a feasible Nash optimal many-to-one matching 𝜇.

A special case of Capacitated Two-Sided NSW is when there

are no capacity constraints on the firms; equivalently, each firm’s ca-

pacity is equal to the number of workers.We call this problemUnca-

pacitated Two-Sided NSW. The concepts of an 𝛼-approximation

algorithm, query model, and valuation classes for the two-sided

model are defined analogously to the one-sided setting. In the two-

sided case, value queries can be made for both workers and firms.

The case of zero Nash welfare and inadequate capacities. In the

Capacitated Two-Sided NSW problem, we will assume that the

capacities are adequate, that is,

∑
𝑐𝑖 ≥ 𝑚. Note that there can be

situations, in both the Capacitated One-Sided NSW and Capac-

itated Two-Sided NSW problems, where the optimal solution

has zero Nash welfare. In this case however, an arbitrary feasible

solution satisfies the required approximation ratio. Therefore, we

will assume in the rest of the paper that the optimal solution has a

nonzero Nash welfare.

3 APPROXIMATION ALGORITHM FOR THE

ONE-SIDED MODEL

In this section, we will show that given any 𝜀 > 0, there is a (6 + 𝜀)-
approximation algorithm for Capacitated One-Sided NSW un-

der submodular valuations. Our algorithm and its analysis are ob-

tained by modifying the algorithm of Garg et al. [21] that gives a

(4 + 𝜀)-approximation under submodular valuations for the Un-

capacitated One-Sided NSW problem, i.e., the one-sided Nash

welfare maximization problem without capacity constraints.

Before discussing our algorithm, it is relevant to discuss some

natural approaches that do not work.

Limitations of natural approaches. The algorithm of Garg et al.

[21] is not designed to handle capacities and may return infeasible

allocations. Additionally, it is possible to design a family of instances

in which the optimal Nash welfare under capacities is arbitrarily

smaller than the optimal Nash welfare without capacities. In such

instances, a (4 + 𝜀)-approximation algorithm for the unconstrained

problem would decidedly return an infeasible allocation.

Another common approach for handling constraints is by modi-
fying the valuation functions. For example, an instancewith additive
valuations and capacity constraints can be converted to an uncon-

strained instance with submodular valuations via the following

transformation: For any set 𝑆 of items, define agent 𝑖’s value 𝑣𝑖 (𝑆)
as the sum of values of the min{𝑐𝑖 , |𝑆 |} most valuable items in 𝑆 ,

where 𝑐𝑖 is the capacity for agent 𝑖 . The resulting valuation func-

tion 𝑣𝑖 (·) can be observed to be submodular. Consequently, the

algorithm of Garg et al. [21], which gives a (4 + 𝜀) approximation

in the unconstrained instance, gives a similar approximation for

the original additive valuations instance with capacity constraints.

Unfortunately, when the given instance has submodular valuations
with capacity constraints, such a transformation may not result

in an unconstrained submodular instance, as demonstrated by the

following example.

Example 1. Let 𝑣 be a submodular valuation function of an agent
with capacity 𝑐 . Let us define a new valuation function 𝑣 ′ such that
𝑣 ′ (𝑆) := max𝑆 ′⊆𝑆 : |𝑆 ′ | ≤𝑐 𝑣 (𝑆 ′). Then, 𝑣 ′ can fail to be submodular.
Consider a set of four items 𝑀 = {𝑤1,𝑤2,𝑤3,𝑤4} and say 𝑐 = 2.
Suppose the agent’s values under 𝑣 (·) are:

• 𝑣 (∅) = 0,
• 𝑣 ({𝑤2,𝑤4}) = 4 and 𝑣 ({𝑤1,𝑤3,𝑤4}) = 3, and
• for all other subsets 𝑆 ⊆ 𝑀 , 𝑣 (𝑆) = min{4, |𝑆 | + 1}.

It can be observed that 𝑣 (·) is submodular and monotone.
Note that 𝑣 ′ ({𝑤1,𝑤3}) = 3 and 𝑣 ′ ({𝑤1,𝑤3,𝑤4}) = 3, implying a

marginal increase of 0 upon adding𝑤4. Similarly, 𝑣 ′ ({𝑤1,𝑤2,𝑤3}) =
3 and 𝑣 ′ ({𝑤1,𝑤2,𝑤3,𝑤4}) = 4, which gives a marginal increase of 1

upon adding𝑤4. Since adding𝑤4 to a smaller set results in a smaller
marginal, we get that 𝑣 ′ (·) is not submodular. □

Having motivated the challenge of approximating Nash welfare

in the capacitated setting, let us now formally state our main result.

Theorem 3.1. For any 𝜀 > 0, there exists a (6 + 𝜀)-approximation
algorithm for Capacitated One-Sided NSW under submodular val-
uations that runs in poly(𝑛,𝑚) time and makes a poly(𝑛,𝑚) number
of value queries.

Remark (Approximate fairness). In the unconstrained setting under

additive valuations, it is known that any Nash optimal allocation,

say 𝐴, is envy-free up to one item (EF1) [10]. This property entails

that for any pair of agents 𝑖, 𝑘 , there exists some item 𝑔 ∈ 𝐴 𝑗

such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴𝑘 \ {𝑔}). However, this implication breaks

down under capacity constraints. Recently, Wu et al. [42] studied

budget constraints in the one-sided problem, of which capacity

constraints are a special case. They showed that under subadditive

valuations, any budget-feasible 𝛼-approximate allocation for Nash

welfare satisfies
1

4𝛼 -EF1. In the presence of capacity constraints,

this property requires that for any pair of agents 𝑖, 𝑘 and any subset

𝑆 ⊆ 𝐴𝑘 such that |𝑆 | ≤ 𝑐𝑖 , there exists some item 𝑔 ∈ 𝑆 such

that 𝑣𝑖 (𝐴𝑖 ) ≥ 1

4𝛼 𝑣𝑖 (𝑆 \ {𝑔}). By combining their result with the

guarantee in Theorem 3.1, we obtain that the allocation returned

by our algorithm additionally satisfies
1

(24+4𝜀 ) -EF1. □
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Towards proving Theorem 3.1, we will solve a related problem,

Exact Capacitated One-Sided NSW, in which each agent is as-

signed exactly as many items as its capacity. Formally, an allocation

𝐴 = (𝐴𝑖 )𝑖∈𝑁 is feasible for a given instance of Exact Capacitated

One-Sided NSW if, for every 𝑖 ∈ 𝑁 , we have |𝐴𝑖 | = 𝑐𝑖 . It is easy to

construct an approximation-preserving reduction between the two

problems by adding dummy items that do not affect the value of

any subset of the original items. Thus, Theorem 3.1 follows from

Lemma 3.2 below. Due to space limitations, we will defer some of

the proofs to the supplementary material.

Lemma 3.2. For any 𝜀 > 0, there exists a (6 + 𝜀) approximation
algorithm for Exact Capacitated One-Sided NSW under submod-
ular valuations that runs in poly(𝑛,𝑚) time and makes poly(𝑛,𝑚)
number of value queries.

The algorithm in Lemma 3.2 is a modification of that of Garg et al.

[21] and works in three phases. The first phase involves computing

a one-to-one maximum weight matching 𝜏 of the agents and items.

We denote the set of itemsmatched in this phase by𝐻 . Let 𝐽 := 𝑀\𝐻
be the set of remaining items. In the second phase, the items in

𝐽 are allocated through local search. Crucially, we only allow for

two-way transfers (or swaps) between pairs of agents to ensure that

the capacity constraints are not violated during the course of the

local search. In the final phase, the items in 𝐻 are rematched to the

agents. Note that the first and the third phases of our algorithm

are identical to that of Garg et al. [21]. In the second phase, the

algorithm of Garg et al. [21] performs local search via one-way
transfer of items, whereas our algorithm uses two-way exchanges

to maintain the capacity constraints.

In the following, we will define some terminology that will be

used in describing our algorithm for Exact Capacitated One-

Sided NSW.

Endowed valuation functions. In the local search phase of the

algorithm, we do not use the actual valuation functions of the

agents; instead, we use the endowed valuation functions. Let 𝑁 :=

{𝑖 ∈ 𝑁 : 𝑣𝑖 (𝐽 ) > 0} be the set of agents that assign a positive

value to the set 𝐽 . For every agent 𝑖 ∈ 𝑁 , we define the endowed

valuation function 𝑣𝑖 as 𝑣𝑖 (𝑆) := 𝑣𝑖 (𝑆) + 𝑣𝑖 (ℓ (𝑖)) for any subset

𝑆 ⊆ 𝑀 , where ℓ (𝑖) is the favourite item of agent 𝑖 in 𝐽 . Note that if

𝑣𝑖 is submodular, then 𝑣𝑖 is also submodular.

Accuracy parameter. Our local search subroutine will use the

parameter 𝜀 = −1+ (1+𝜀)1/𝑚 such that the minimummultiplicative

increase in NSW required to perform a swap is 1 + 𝜀.

Swaps in local search. Our local search phase uses swaps (or

item exchanges) between agents whenever the swap provides a

large enough increase in NSW. Note that two-way swaps maintain

capacity constraints. Specifically, we will consider the following

two kinds of swaps.

• Full Swap: Let R = (𝑅𝑖 )𝑖∈𝑁 be a partial allocation of the items in

𝐽 among the agents in 𝑁 . A Full Swap is said to exist if there is

an item 𝑗 ∈ 𝑅𝑖 allocated to an agent 𝑖 ∈ 𝑁 and an item𝑘 ∈ 𝑅𝑖′ allo-

cated to an agent 𝑖′ ∈ 𝑁 such that

(
𝑣𝑖 (𝑅𝑖− 𝑗+𝑘 )𝑣𝑖′ (𝑅𝑖′−𝑘+𝑗 )

𝑣𝑖 (𝑅𝑖 )𝑣𝑖′ (𝑅𝑖′ )

)1/𝑛
>

1 + 𝜀. The algorithm performs this swap by allocating 𝑗 to 𝑖′ and
𝑘 to 𝑖 .

• Partial Swap: Let R = (𝑅𝑖 )𝑖∈𝑁 be a partial allocation of the

items in 𝐽 among the agents in 𝑁 . A Partial Swap is said to

exist if there is an unallocated item 𝑘 ∈ 𝐽 and an item 𝑗 ∈ 𝑅𝑖

allocated to an agent 𝑖 ∈ 𝑁 such that

(
𝑣𝑖 (𝑅𝑖− 𝑗+𝑘 )

𝑣𝑖 (𝑅𝑖 )

)1/𝑛
> 1+ 𝜀. We

perform this swap by allocating 𝑘 to 𝑖 and 𝑗 is left unallocated.

𝜀-local optimum. A partial allocation R = (𝑅𝑖 )𝑖∈𝑁 of 𝐽 to 𝑁 is

an 𝜀-local optimum with respect to the endowed valuations 𝑣𝑖 if

there is no Full Swap or Partial Swap possible.

With the terminology in place, we formally describe our algo-

rithm in Algorithm 1 and the local search subroutine in Algorithm 2.

Algorithm 1: Approximating Exact Capacitated One-

Sided NSW for submodular valuations

Input: An instance ⟨𝑁,𝑀,V,𝐶⟩ of Exact Capacitated

One-Sided NSW.

Output: A partial allocation 𝐴 = (𝐴𝑖 )𝑖∈𝑁 .

/* Phase 1: Find a maximum weight one-to-one matching */

1 Compute a one-to-one matching 𝜏 : 𝑁 → 𝑀 that maximizes∏
𝑖∈𝑁 𝑣𝑖 (𝜏 (𝑖)).

/* 𝐻 and 𝐽 are the allocated and unallocated items

respectively. */

2 Set 𝐻 := {𝜏 (𝑖) : 𝑖 ∈ 𝑁 } and 𝐽 := 𝑀 \ 𝐻 .

/* Phase 2: Local search using the unallocated items */

3 Compute the allocation R :=LocalSearch(⟨𝑁, 𝐽 ,V,𝐶⟩).
/* Phase 3: Rematching the previously allocated items in 𝐻 */

4 Find a matching 𝛿 : 𝑁 → 𝐻 maximizing

∏
𝑖∈𝑁 𝑣𝑖 (𝑅𝑖 + 𝛿 (𝑖)).

return 𝐴 = (𝑅𝑖 + 𝛿 (𝑖))𝑖∈𝑁

Algorithm 2: LocalSearch

Input: An instance ⟨𝑁, 𝐽 ,V,𝐶⟩.
Output: A partial allocation R := (𝑅𝑖 )𝑖∈𝑁 .

/* The set of agents which have positive utility for 𝐽 . */

1 𝑁 ← {𝑖 ∈ 𝑁 : 𝑣𝑖 (𝐽 ) > 0}
/* ℓ (𝑖 ) is the favourite item of 𝑖 in 𝐽 */

2 ℓ (𝑖) ← arg max{𝑣𝑖 (ℓ) : ℓ ∈ 𝐽 } for 𝑖 ∈ 𝑁
3 Define the endowed valuations by 𝑣𝑖 (𝑆) := 𝑣𝑖 (ℓ (𝑖)) + 𝑣𝑖 (𝑆)

for all 𝑖 ∈ 𝑁, 𝑆 ⊆ 𝑀 .

4 Pick an arbitrary partial allocation R of items in 𝐽 to agents

in 𝑁 such that |𝑅𝑖 | = 𝑐𝑖 − 1 for every agent 𝑖 ∈ 𝑁 . Keep all

other items in 𝐽 unallocated.

5 while there exists a Full Swap or Partial Swap with respect
to 𝑣 (·) do

6 perform the corresponding swap

7 Extend the partial allocation R to all the agents in 𝑁 by

arbitrarily allocating the unallocated items to agents in

𝑁 \ 𝑁 such that |𝑅𝑖 | = 𝑐𝑖 − 1 for every agent 𝑖 ∈ 𝑁 \ 𝑁 .

8 return R := (𝑅𝑖 )𝑖∈𝑁

Our next lemma shows that the local search subroutine (corre-

sponding to Phase 2 in Algorithm 1) converges to a feasible 𝜀-local

optimum in polynomial time.
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Lemma 3.3 (Local search converges efficiently). For any given in-
stance ⟨𝑁, 𝐽 ,V,𝐶⟩, Algorithm 2 terminates in O

(
𝑚
𝜀 log𝑚

)
iterations

and returns a partial allocation (𝑅𝑖 )𝑖∈𝑁 that satisfies |𝑅𝑖 | = 𝑐𝑖 − 1

for all 𝑖 ∈ 𝑁 . Moreover, the partial allocation (𝑅𝑖 )𝑖∈𝑁 computed just
before Line 7 is an 𝜀-local optimum.

Next, we will analyze Phase 3 of Algorithm 1. Given a matching

𝜌 : 𝑁 → 𝐻 ∪ {∅}, we will define (R, 𝜌) as a partial allocation

in which every agent receives the set 𝑅𝑖 ∪ 𝜌 (𝑖). The NSW of this

allocation will be:

NSW(R, 𝜌) :=
∏

𝑖∈𝑁 𝑣𝑖 (𝑅𝑖 + 𝜌 (𝑖))
1

𝑛 .

Recall that, in Phase 3, our algorithm computes a matching 𝛿

such that NSW(R, 𝛿) is maximized. If we prove that there exists

a matching 𝜎 : 𝑁 → 𝐻 ∪ {∅} such that NSW(R, 𝜎) ≥ NSW(OPT)
6(1+𝜀 ) ,

then we will be done. To prove the existence of such a matching 𝜎 ,

we first define a mapping T : 𝑁 → 2
𝑀
, which may not correspond

to a valid partial allocation. However, this mapping is defined only

for the purpose of the analysis, and since each agent is mapped

under T to a bundle, we can nevertheless define NSW of T . We will

show that NSW(T ) ≥ NSW(OPT)
6(1+𝜀 ) , and then prove that a matching

𝜎 satisfying NSW(R, 𝜎) ≥ NSW(T ) ≥ NSW(OPT)
6(1+𝜀 ) exists.

Consider an optimal partial allocation OPT of the given Capac-

itated One-Sided NSW instance. Further, let 𝑆𝑖 := OPT𝑖 ∩ 𝐽 and
𝐻𝑖 := OPT𝑖 ∩𝐻 . For every agent 𝑖 ∈ 𝑁 , define 𝑔(𝑖) to be the item in

𝐻𝑖 which provides the maximum marginal gain when added to 𝑆𝑖 .

Formally, 𝑔(𝑖) := arg max𝑗∈𝐻𝑖
𝑣𝑖 (𝑆𝑖 + 𝑗). If 𝐻𝑖 is empty, we define

𝑔(𝑖) := ∅.
Consider the following partitioning of the set of agents 𝑁 :

• 𝑁𝑔 := {𝑖 ∈ 𝑁 : 𝑣𝑖 (𝑔(𝑖)) ≥ max {𝑣𝑖 (𝑅𝑖 ), 𝑣𝑖 (ℓ (𝑖))}}
• 𝑁𝑅 :=

{
𝑖 ∈ 𝑁 \ 𝑁𝑔 : 𝑣𝑖 (𝑅𝑖 ) ≥ max {𝑣𝑖 (𝑔(𝑖)), 𝑣𝑖 (ℓ (𝑖))}

}
• 𝑁ℓ := 𝑁 \ (𝑁𝑔 ∪ 𝑁𝑅).

The intermediate mapping T = (𝑇𝑖 )𝑖∈𝑁 is defined as follows:

𝑇𝑖 :=


{𝑔(𝑖)} , if 𝑖 ∈ 𝑁𝑔 ,

𝑅𝑖 , if 𝑖 ∈ 𝑁𝑅 ,

{ℓ (𝑖)} , if 𝑖 ∈ 𝑁ℓ .

Note that themappingT may not induce a feasible partial allocation

because the item ℓ (𝑖) may not be unique for each agent and may

even be contained in some 𝑅𝑖′ .

Lemma 3.4. The mapping T satisfies NSW(T ) ≥ NSW(OPT)
6(1+𝜀 ) .

Using Lemma 3.4, we can show the existence of the required

matching 𝜎 .

Lemma 3.5 (Existence of 𝜎). There exists a matching 𝜎 : 𝑁 →
𝐻 ∪ {∅} such that NSW(R, 𝜎) ≥ NSW(OPT)

6(1+𝜀 ) .

We can now present the proof of Lemma 3.2.

Proof. (of Lemma 3.2) We first prove that Algorithm 1 termi-

nates in polynomial time and makes a polynomial number of value

queries. The first phase can be computed in polynomial time by

finding a max-weight matching of the bipartite graph whose vertex

sets are the set of agents 𝑁 and the set of items𝑀 . The edge (𝑖, 𝑗)
between agent 𝑖 and item 𝑗 has weight log(𝑣𝑖 ( 𝑗)). This construction
clearly requires only a polynomial number of value queries. The

second phase terminates in polynomial time with a polynomial

number of value queries as shown in Lemma 3.3. Finally, the third

phase also requires polynomial time and a polynomial number of

value queries because we can create a bipartite graph as in the first

phase where the weight of edge (𝑖, 𝑗) for an agent 𝑖 ∈ 𝑁 and an

item 𝑗 ∈ 𝐻 is log(𝑣𝑖 (𝑅𝑖 + 𝑗)).
The algorithm returns a feasible partial allocation because |𝑅𝑖 |

is guaranteed to be 𝑐𝑖 − 1, and we allocate one more item to each

agent in the final phase. Since our algorithm finds a matching

that maximizes NSW(R, 𝛿), we get NSW(ALG) ≥ NSW(OPT)
6(1+𝜀 ) using

Lemma 3.5. To get the factor of (6 + 𝜀), we can scale down 𝜀 by a

factor of 6. □

4 APPROXIMATION ALGORITHMS FOR THE

TWO-SIDED MODEL

We will now present our algorithmic results for two-sided Nash

welfare. Our main result is a 1.33-approximation algorithm for

Capacitated Two-Sided NSW under subadditive valuations (The-

orem 4.1). This result significantly improves upon an existing

√
OPT-

approximation algorithm for positive additive valuations [26].

A corollary of our main result is that when the number of firms

is constant, we obtain a polynomial-time (and polynomial-query)

approximation scheme (PTAS) for the two-sided problem under

subadditive valuations (Corollary 4.3). This result improves upon a

quasipolynomial-time approximation scheme (QPTAS) for a con-
stant number of firms under polynomially bounded additive valua-

tions [26]. We will start by proving our main result in Theorem 4.1.

Theorem 4.1. There exists a 1.33-approximation algorithm for
Capacitated Two-Sided NSW under subadditive valuations. The
algorithm runs in poly(𝑛,𝑚) time and makes poly(𝑛,𝑚) number of
value queries.

Towards proving Theorem 4.1, we will first state a lemma that

provides an upper bound on the Nash welfare of any many-to-one

matching. The bound is in terms of the firms’ values for only their

favorite matched worker.

Lemma 4.2. Let I = ⟨𝐹,𝑊 ,V,W,𝐶⟩ be an instance of Capaci-

tated Two-Sided NSW with subadditive valuations and let 𝜇 be
any feasible many-to-one matching for I. Let 𝑗𝑖 ∈ arg max𝑗∈𝜇𝑖 𝑣𝑖 ( 𝑗)
be firm 𝑖’s favourite worker in 𝜇𝑖 . Then,

NSW(𝜇) ≤ 1.33

(∏
𝑖∈𝐹 𝑣𝑖 ( 𝑗𝑖 )

∏
𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 )

) 1

𝑚+𝑛
.

Proof. (of Lemma 4.2) We know that among the workers in 𝜇𝑖 ,

firm 𝑖 assigns the highest value to theworker 𝑗𝑖 . By the subadditivity

of 𝑣𝑖 , we get that 𝑣𝑖 (𝜇𝑖 ) ≤ |𝜇𝑖 |𝑣𝑖 ( 𝑗𝑖 ).
Substituting this inequality in the expression of NSW(𝜇) gives:

NSW(𝜇) ≤
(∏

𝑖∈𝐹 |𝜇𝑖 |
∏

𝑖∈𝐹 𝑣𝑖 ( 𝑗𝑖 )
∏

𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 )
) 1

𝑚+𝑛
. (1)

Since

∑
𝑖∈𝐹 |𝜇𝑖 | ≤ 𝑚, usingAM-GM inequality, we have

∏
𝑖∈𝐹 |𝜇𝑖 | ≤(

𝑚
𝑛

)𝑛
. Hence, (∏𝑖∈𝐹 |𝜇𝑖 |)

1/𝑚+𝑛 ≤
(
𝑚
𝑛

)𝑛/𝑚+𝑛
= 𝑥

1/1+𝑥
, where 𝑥 =

𝑚/𝑛. The function 𝑥
1/1+𝑥

is upper bounded by 1.3211 for all 𝑥 > 0 .

Substituting this bound in Equation (1) completes the proof. □

With this bound on NSW in place, we will now create a Min-

Cost-Flow instance. Recall that in theMin-Cost-Flow problem,
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Figure 1: Min-Cost-Flow network used in the proof of The-

orem 4.1. The edge labels show the cost per unit flow and the

lower and upper bounds on the flow.

we are given a flow network where each edge has a lower as well as

an upper bound on the flow that can pass through it, and a cost per

unit flow associated with it. The objective is to find a feasible flow

with the minimum total cost. The problem is known to be solvable

in polynomial time [37].

Proof. (of Theorem 4.1) Let I = ⟨𝐹,𝑊 ,V,W,𝐶⟩ be the given
instance of Capacitated Two-Sided NSW. For an edge 𝑒 in a flow

network, we will use 𝐿(𝑒) and 𝑈 (𝑒) to denote the lower and the

upper bounds on the flow through 𝑒 , respectively, and will write

cost(𝑒) to denote the cost per unit flow through 𝑒 . Also, we will

use 𝑓 (𝑒) to denote the flow through the edge 𝑒 . The flow network

is constructed as follows (see Figure 1):

• Create𝑚 vertices 𝑥1, . . . , 𝑥𝑚 corresponding to the𝑚 workers.

• Create 2𝑛 vertices 𝑦1

1
, . . . , 𝑦1

𝑛 and 𝑦2

1
, . . . , 𝑦2

𝑛 corresponding to the

𝑛 firms. We call 𝑦1

𝑖
the main copy and 𝑦2

𝑖
the secondary copy of

firm 𝑖 .

• Create a source vertex 𝑠 . For each worker 𝑗 , add an edge from 𝑠

to 𝑥 𝑗 with 𝐿(𝑠 → 𝑥 𝑗 ) = 1,𝑈 (𝑠 → 𝑥 𝑗 ) = 1, and cost(𝑠 → 𝑥 𝑗 ) = 0.

• Create a sink vertex 𝑡 . For each firm 𝑖 , add an edge from 𝑦1

𝑖
to 𝑡

with 𝐿(𝑦1

𝑖
→ 𝑡) = 1,𝑈 (𝑦1

𝑖
→ 𝑡) = 1 and cost(𝑦1

𝑖
→ 𝑡) = 0. Also,

add an edge from 𝑦2

𝑖
to 𝑡 with 𝐿(𝑦2

𝑖
→ 𝑡) = 0,𝑈 (𝑦2

𝑖
→ 𝑡) = 𝑐𝑖 − 1

and cost(𝑦2

𝑖
→ 𝑡) = 0.

• For all 𝑗 ∈𝑊 and 𝑖 ∈ 𝐹 , such that 𝑣𝑖 ( 𝑗) ≠ 0 and 𝑤 𝑗 (𝑖) ≠ 0, add

an edge from 𝑥 𝑗 to 𝑦
1

𝑖
with 𝐿(𝑥 𝑗 → 𝑦1

𝑖
) = 0,𝑈 (𝑥 𝑗 → 𝑦1

𝑖
) = 1 and

cost(𝑥 𝑗 → 𝑦1

𝑖
) = − log(𝑣𝑖 ( 𝑗)𝑤 𝑗 (𝑖)).

• For all 𝑗 ∈ 𝑊 and 𝑖 ∈ 𝐹 such that 𝑤 𝑗 (𝑖) ≠ 0, add an edge

from 𝑥 𝑗 to 𝑦2

𝑖
with 𝐿(𝑥 𝑗 → 𝑦2

𝑖
) = 0,𝑈 (𝑥 𝑗 → 𝑦2

𝑖
) = 1 and

cost(𝑥 𝑗 → 𝑦2

𝑖
) = − log(𝑤 𝑗 (𝑖)).

Let 𝜇★ be a Nash optimal many-to-one matching of I. We will

assume that, under 𝜇★, every firm is assigned at least one worker for

whom it has a nonzero value. Likewise, each worker is matched to a

firm that it values positively. Indeed, if this were not the case, then

the optimal Nash welfare would be zero, making every possible

feasible assignment compliant with the approximation value. For a

firm 𝑖 , let 𝑗★
𝑖
denote its favorite assigned worker under 𝜇★. Notice

that the following flow vector 𝑓 is feasible in the above network:

• 𝑓 (𝑠 → 𝑥 𝑗 ) = 1 for all the workers 𝑗 .

• 𝑓 (𝑦1

𝑖
→ 𝑡) = 1 for all firms 𝑖 .

• 𝑓 (𝑥 𝑗★
𝑖
→ 𝑦1

𝑖
) = 1 for all firms 𝑖 .

• 𝑓 (𝑥 𝑗 → 𝑦2

𝑖
) = 1 for all 𝑗 ∈ 𝜇★

𝑖
\ { 𝑗★

𝑖
}

• 𝑓 (𝑦2

𝑖
→ 𝑡) = |𝜇★

𝑖
| − 1 for all firms 𝑖 .

For all other edges 𝑒 in the network, we set 𝑓 (𝑒) = 0. Clearly,

the cost of 𝑓 is:

cost(𝑓 ) = −
∑︁
𝑖∈𝐹

log(𝑣𝑖 ( 𝑗★𝑖 )) −
∑︁
𝑗∈𝑊

log(𝑤 𝑗 (𝜇★𝑗 )) . (2)

Our algorithm finds the minimum-cost flow, say 𝑓 ★, in the net-

work. Note that any feasible flow from 𝑠 has the same value as the

maximum flow. Furthermore, since the upper and lower bounds

on the flow are integral, we have that the resulting flow is integral.

Thus, the flow 𝑓 ★ induces a valid many-to-one matching, say 𝜇, of

workers to firms. Under 𝜇, each worker 𝑗 is assigned to a unique

firm 𝑖 (i.e., 𝜇 𝑗 := 𝑖) such that 𝑓 ★(𝑥 𝑗 → 𝑦1

𝑖
) = 1 or 𝑓 ★(𝑥 𝑗 → 𝑦2

𝑖
) = 1.

For each firm 𝑖 , let 𝜇𝑖 be the the set of workers assigned to the firm

𝑖 , and let 𝑗𝑖 be the unique worker 𝑗 for which 𝑓 ★(𝑥 𝑗 → 𝑦1

𝑖
) = 1.

Therefore, the cost of 𝑓 ★ is:

cost(𝑓 ★) = −
∑︁
𝑖∈𝐹

log(𝑣𝑖 ( 𝑗𝑖 )) −
∑︁
𝑗∈𝑊

log(𝑤 𝑗 (𝜇 𝑗 )) . (3)

Using the cost optimality of 𝑓 ★ along with Equations (2) and (3),∏
𝑖∈𝐹 𝑣𝑖 ( 𝑗𝑖 )

∏
𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 ) ≥

∏
𝑖∈𝐹 𝑣𝑖 ( 𝑗★𝑖 )

∏
𝑗∈𝑊 𝑤 𝑗 (𝜇★𝑗 ) . (4)

Therefore, the Nash welfare of our assignment is at least:

NSW(𝜇) =
(∏

𝑖∈𝐹 𝑣𝑖 (𝜇𝑖 )
∏

𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 )
) 1

𝑚+𝑛

≥
(∏

𝑖∈𝐹 𝑣𝑖 ( 𝑗𝑖 )
∏

𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 )
) 1

𝑚+𝑛

≥
(∏

𝑖∈𝐹 𝑣𝑖 ( 𝑗★𝑖 )
∏

𝑗∈𝑊 𝑤 𝑗 (𝜇★𝑗 )
) 1

𝑚+𝑛

≥ NSW(𝜇★)
1.33

,

where the second-last inequality follow from Equation (4) and the

last inequality follows from Lemma 4.2. This finishes the proof of

Theorem 4.1. □

We will now show that when the number of firms is constant,

the algorithm in the proof of Theorem 4.1 can be used to obtain a

polynomial-time approximation scheme (PTAS) for the two-sided
problem under subadditive valuations.

Corollary 4.3 (PTAS for constant number of firms). For any 𝜀 > 0

and a constant number of firms, there exists a (1 + 𝜀)-approximation
algorithm for Capacitated Two-Sided NSW under subadditive
valuations. The algorithm makes poly(𝑚) number of value queries
and runs in poly(𝑚) time.

Proof. (of Corollary 4.3) If 𝜀 ≥ 0.33, the algorithm in Theo-

rem 4.1 is already a (1 + 𝜀)− approximate algorithm. Hence, we

assume 𝜀 < 0.33. Our algorithm runs the Min-Cost-Flow algo-

rithm of Theorem 4.1 if𝑚 ≥ 𝑛
𝜀2
, and otherwise solves the problem

exactly by iterating over all the 𝑂 (𝑛𝑚) many-to-one matchings.

The running time of our algorithm is 𝑂

(
𝑛
𝑛/𝜀2 · poly(𝑛,𝑚)

)
.

The approximation ratio of our algorithm, as derived from the

proof of Lemma 4.2, equals 𝑟 = 𝑥
1/1+𝑥

, where 𝑥 = 𝑚
𝑛 > 1

𝜀2
>

1

0.33
2
> 9. It can be verified that

log(𝑥 )
1+𝑥 < 1

𝑥0.75
for all 𝑥 > 9, and
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that 𝜀1.5 < log(1 + 𝜀) for all 𝜀 < 0.33. Therefore, log(𝑟 ) = log(𝑥 )
1+𝑥 <

1

𝑥0.75
< 𝜀1.5 < log(1+𝜀), as desired for the (1+𝜀)-approximation. □

5 HARDNESS RESULTS

In this section, we will show that the problem of maximizing two-

sided Nash social welfare is APX-hard; specifically, the problem is

NP-hard to approximate within a factor of 1.0000759. This result

holds even in the absence of capacity constraints and even under ad-

ditive valuations. Prior to our result, only NP-hardness was known
for this problem [26].

Theorem 5.1 (Hardness for two-sided Nash welfare). Un-
less P = NP, no polynomial-time algorithm can approximate Unca-
pacitated Two-Sided NSW to within a factor of 1.0000759 even
under additive valuations.

To prove Theorem 5.1, we will use Lemma 5.2, as stated below.

This lemma is based on a result of Garg and Murhekar [23], who

showed APX-hardness of Uncapacitated One-Sided NSW under

additive valuations. The key property from their reduction, needed

in Lemma 5.2, is that the number of items in the reduced instance

is at most a constant (specifically, 1.5) times the number of agents.

Lemma 5.2 (modified from [23]). Unless P = NP, no polynomial-
time algorithm can approximate Uncapacitated One-Sided NSW

with additive valuations to a factor smaller than 1.00019, even when
the number of items is at most 1.5 times the number of agents (i.e.,
𝑚 ≤ 1.5𝑛).

We will now prove the APX-hardness of two-sided Nash welfare

even in the absence of capacity constraints.

Proof. (of Theorem 5.1) Consider an instance of Uncapaci-

tated One-Sided NSW instance denoted by I1 = ⟨𝑁,𝑀,V1,𝐶⟩,
where the number of items𝑚 = |𝑀 | is at most 1.5 times the number

of agents 𝑛 = |𝑁 |, and the valuations are additive.

We will create an instance of Uncapacitated Two-Sided NSW,

denoted by I2 = ⟨𝐹,𝑊 ,V2,W,𝐶⟩, as follows: The set of firms

(respectively, workers) corresponds to the set of agents (respectively,

items) in the one-sided instance I1, i.e., 𝐹 = 𝑁 and𝑊 = 𝑀 . A firm’s

valuations for the workers as well as its capacity are identical to

the corresponding agent’s valuations for the items and capacity,

respectively; thus, V2 = V1. Finally, the workers have uniform

valuations over the firms, i.e., for each worker 𝑗 ∈𝑊 and each firm

𝑖 ∈ 𝐹 ,𝑤 𝑗 (𝑖) = 1.

Note that, any allocation𝐴I1 of the items to the agents in the one-

sided instance I1 corresponds naturally to a many-to-one matching

𝜇I2 in the instance I2 and vice-versa. Here, the set of workers 𝜇
I2
𝑖

assigned to firm 𝑖 under 𝜇I2 equals𝐴I1
𝑖
, the set of items allocated to

agent 𝑖 in the allocation 𝐴I1 . Now, since all the worker valuations
are uniformly equal to 1, we have:

NSW(𝐴I1 ) =
(
NSW(𝜇I2 )

)𝑚+𝑛
𝑛

=

(
NSW(𝜇I2 )

)
1+𝑚

𝑛
.

Hence, any 𝛾-approximate solution for I2 yields a

(
𝛾1+𝑚/𝑛

)
- ap-

proximate solution for I1. Therefore, using Lemma 5.2, we have

that unless P = NP, no polynomial-time algorithm can approxi-

mates Uncapacitated Two-Sided NSW to a factor smaller than

(1.00019)1/1+1.5 > 1.0000759. □

Remark. It follows from the proof of Theorem 5.1 that any reduction

showing that Uncapacitated One-Sided NSW is hard to approxi-

mate within a factor of 𝛼 under additive valuations, for instances

where 𝑚 ≤ 𝑐𝑛 for some constant 𝑐 , yields a 𝛼
1/1+𝑐

hardness-of-

approximation ratio for Uncapacitated Two-Sided NSW.

6 CONCLUDING REMARKS

We studied algorithmic aspects of maximizing Nash social welfare

for one-sided and two-sided preferences under capacity constraints.

We developed constant-factor approximation algorithms for both

settings, complementing the APX-hardness results. Our algorithm
for the one-sided problem provides the first constant-factor approx-

imation algorithm for Nash welfare under submodular valuations

and capacity constraints, while our result for the two-sided problem

applies to subadditive valuations and significantly improves upon

the existing

√
OPT-approximation for additive valuations.

Our work opens up several directions for future work. Firstly, it

would be interesting to obtain tight bounds for the approximations

mentioned in Table 1. In particular, our hardness reduction uni-

formly assigns a valuation of 1 to all workers, thereby essentially

leveraging the hardness of the one-sided problem. An important

question to address is whether stronger hardness-of-approximation

results are attainable when workers’ valuations are not uniform.

Secondly, exploring extensions to more general constraints than

capacities, such as matroid constraints, would be a fruitful direc-

tion for further investigation. Lastly, it would also be of interest to

study weighted Nash welfare in the two-sided setting, wherein each

agent 𝑖 (worker or firm) is associated with a nonnegative weight

𝛼𝑖 , and the objective function is defined as:

NSW(𝜇) = ∏
𝑖∈𝐹 𝑣𝑖 (𝜇𝑖 )𝛼𝑖 ·

∏
𝑗∈𝑊 𝑤 𝑗 (𝜇 𝑗 )𝛼 𝑗 .

The weights are normalized so that

∑
𝑖∈𝐹 𝛼𝑖 +

∑
𝑗∈𝑊 𝛼 𝑗 = 1. This

family of welfare measures includes several natural proposals for

measuring welfare in the two-sided setting. When all weights are

equal to 1/𝑚+𝑛, we recover the objective studied in our work. Addi-

tionally, when 𝛼𝑖 = 1/2𝑛 for all 𝑖 ∈ 𝐹 and 𝛼 𝑗 = 1/2𝑚 for all 𝑗 ∈𝑊 , we

obtain a “separable” objective that multiplies the geometric mean

of the workers with the geometric mean of the firms. There exist

approximation algorithms for weighted Nash welfare in the one-

sided problem [17, 21], and it would be useful to develop similar

results for the two-sided problem.
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