
On the Power of Temporal Locality on Online Routing Problems
Swapnil Guragain
Kent State University

Kent, Ohio, USA
sguragai@kent.edu

Gokarna Sharma
Kent State University

Kent, Ohio, USA
gsharma2@kent.edu

ABSTRACT
We consider the online variants of two fundamental routing prob-
lems, traveling salesman (TSP) and dial-a-ride (DRP), which have
a variety of relevant applications in logistics and robotics. These
problems concern with e�ciently serving a sequence of requests
presented in an on-line fashion located at points of a metric space
by servers (salesmen/repairmen/vehicles/robots). In this paper, we
propose the temporal locality model that provides in advance the
time interval between the release of subsequent request(s). We
study the usefulness of this advanced information on achieving
the improved competitive ratios for both the problems with : � 1
servers. We show the surprising impact: shorter locality is useful
for arbitrary metric but for line metric larger locality.

KEYWORDS
Online algorithms; traveling salesman; dial-a-ride; makespan; arbi-
trary and line metric; competitive analysis; temporal locality
ACM Reference Format:
Swapnil Guragain and Gokarna Sharma. 2025. On the Power of Temporal
Locality on Online Routing Problems. In Proc. of the 24th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025),
Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 11 pages.

1 INTRODUCTION
We consider the online variants of two fundamental problems, trav-
eling salesman (T��) and dial-a-ride (D���), which we denote as
�T�� and �D���. We solve these problems in line and arbitrary
metric that satisfy triangle inequality. These problems concern with
e�ciently serving a sequence of requests presented in an on-line
fashion located at points of a metric space. These problems have a
variety of relevant applications in logistics and robotics. Consider
for an example a set of salesmen/repairmen/vehicles/robots that
have to serve locations on its workspace (e.g., Euclidean plane) and
of many other routing and scheduling problems on a transportation
network modeled with a graph. In this paper, we refer to as servers
the salesmen/repairmen/vehicles/robots. As the input to the servers
is communicated in an online fashion, the scheduled routes will
have to be updated also in an online fashion during the trips of
the servers. Since online execution is unaware of future requests,
designing an optimal schedule is generally not possible.

In the literature, the o�ine variants were studied heavily for
both the problems. Since complete input is known beforehand,
the o�ine schedules are relatively easier to design. However, the

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), A. El Fallah Seghrouchni, Y. Vorobeychik, S. Das, A. Nowe (eds.), May 19
– 23, 2025, Detroit, Michigan, USA. © 2025 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org).

Model Characteristic
Original Requests arriving at time C8 are known at C8
Lookahead [1] Requests arriving upto C8 are known at C8 � 0
Disclosure [11] Requests arriving upto C8 + 0 are known at C8
Temporal locality (this paper) Subsequent request arrival interval �

Table 1: Comparing online routing models.

o�ine variants cannot capture the real-world situation in which the
complete input may not be available to the algorithm a priori. An
online algorithm makes a decision on what to do based on the input
(or requests) known so far without knowledge on future requests.
A standard technique to evaluate the quality of a solution provided
by an online algorithm is competitive analysis: An online algorithm
$! is 2-competitive if for any request sequence f it holds that the
cost of the online algorithm$!(f)  2 ·$%) (f), where$%) is an
optimal o�ine algorithm for f knowing f completely a priori.

In �D���, there are< ride requests between points of the metric
space arriving over time. Each ride request consists of the corre-
sponding source and destination points. A ride request is served
if a server� rst reaches to the source and then to the destination.
There are : � 1 servers initially positioned at a distinguished ori-
gin, a point in the metric space. Each server travels with speed at
most one, meaning that it traverses unit distance in unit time if on
maximum speed. We consider the uncapacitated variant of �D���
meaning that a server can serve simultaneously all the requests
(source and destination pairs) enroute. This is in contrast to the
capacitated variant in which there is a limit on how many requests
a server can serve simultaneously at any time.

�T�� is similar to �D���with the only di�erence that the source
and destination points of requests coincide, i.e., reaching to source
point serves the request. In certain situations, the server(s) need
to return to the distinguished origin after serving all the requests.
If such a requirement, we refer as homing (or closed), nomadic (or
open) otherwise.

The execution starts at time C = 0. Suppose a request A8 arrives
(releases) at time C8 � 0 and served by a server at time C 08 � C8 . Time
C 08 denotes the completion time of A8 . The goal is to minimize the
maximum completion time de�ned as max<8=1 C

0
8 for all< requests

in f (note that< is not known a priori).
In the original (online) model, it is assumed that a request A8

arrived (released) at time C8 is only known at C8 . Therefore, the
completion time C 08 for A8 cannot be smaller than C8 , i.e., C 08 � C8 .
Notice that if a request arrived at C8 can be served at C 08 = C8 , then that
algorithm would be best possible (i.e., 1-competitive). For nomadic
�T��, the best previously known results obtained lower bound of
2.04 [7] and upper bound of 1 +

p
2 = 2.41 [13] in arbitrary metric.

For nomadic �D���, the lower bound is 2.0585 and upper bound is
2.457 [4]. The following question naturally arises: Can providing
an algorithm with limited clairvoyance, i.e., the capability to foresee
some limited future, help in achieving a better competitive ratio? In

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

941

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

other words, is limited clairvoyance helpful in reducing the gap
between competitive ratio upper and lower bounds?

The clairvoyance can come in many forms and they might have
exhibit di�erent power on how much they could help in obtaining
the better competitive ratios. In the literature, Jaillet and Wagner
[11] proposed the disclosure model in which request A8 with release
time C8 is known to the online algorithm $! at time C80 = C8 � 0 for
some constant 0 > 0. That is, A8 becomes known to $! before its
release time C8 , that is, at C80 $! knows A8 will be released at time C8 .
Knowing at C80 < C8 may help$! to plan such that A8 can be served
in time C 08 � C8 that is not much larger than C8 , possibly improving
the competitive ratios. Allulli et al. [1] proposed the lookahead
model in which $! knows at any time C � 0 all the requests with
release time C + ⇥ (with ⇥ the lookahead time). Despite naming
di�erently, these models resemble the same concept of making $!
aware of some of the future requests before their release times.

In this paper, we focus on limited clairvoyance as in the line of
disclosure and lookahead models but propose another form that
is su�ciently di�erent from these models (Table 1). In particular,
we propose the temporal locality model in which the online algo-
rithm $! has the advanced information about the time interval
� � 0 between the arrival of consecutive requests, i.e., if a (set
of) request(s) is released at time C , the next (set of) request(s) will
be released at time C + �. The temporal locality � is de�ned with
respect to the diameter ⇡ of the metric, meaning that � = X⇡ with
X � 0. In many applications, such as sensor data collection, there is
a� xed time interval on when the (set of) sensors have data ready
to be collected. Providing this time interval information to, say the
data collecting robot, may help in improving the maximum data
completion time.

We propose new online algorithms and derive improved compet-
itive ratios, which are functions of the advance information (that is,
temporal locality �), beating the existing algorithms in the original
model (with no such advance information). We consider explicitly
the case of “�xed amount” of temporal locality, i.e., the temporal
locality between requests is the same amount � � 0.

Note that, following the literature, we do not focus on runtime
complexity of our algorithms as they may need non-polynomial
time to compute a solution. Instead, we focus on the quality of
the online algorithms (the total time to serve all the requests) on
achieving competitive ratios (without complete knowledge on the
requests) close to the competitive ratios achieved by o�ine algo-
rithms with complete knowledge on the requests.

Contributions. Table 2 lists our contributions and compares them
with the previous results. We have following four contributions.

i. We� rst prove a lower bound, i.e., no deterministic algorithm
can achieve better than 2-competitive ratio for both nomadic
and homing �T�� (which applies directly to both nomadic
and homing �D���) on arbitrary metric, independently of
the amount of temporal locality � = X⇡ . (Section 3)

ii. We prove min{1 +
p
2, 2 + X)-competitive ratio for nomadic

�T�� on arbitrary metric. The best previously known bound
is 1 +

p
2 in the original model and the temporal locality

� = X⇡ with X <
p
2 � 1 provides the improved competitive

ratio. With � << ⇡ , the competitive ratio almost matches

the lower bound of 2. For homing �T��, there exists a 2-
competitive algorithm in the original model which directly
provides 2-competitive ratio in the temporal locality model.
We then consider the line metric. Let V = min{1, C<0G

� },
where C<0G is themaximum arrival time among requests inf .
For nomadic �T��, we provemin{2.04, 1 + 3

2VX }-competitive
ratio. The signi�cance of this result is that the ratio never
exceeds 2.04 and gets arbitrarily closer to 1 (which is optimal)
whenever C<0G > � and � > 1.442⇡ . For homing �T��, we
prove min{2, 1 + 2

max{2,VX } }-competitive ratio. (Section 4)
iii. For nomadic �D��� on arbitrary metric, we prove the com-

petitive ratio of min{2.457, 2 + X}. For homing �D���, there
exists a 2-competitive algorithm in the original model which
directly provides 2-competitive ratio in the temporal local-
ity model. On line metric, for nomadic �D���, we prove
min{4, 1 + 3

VX }-competitive ratio, and for homing �D���,
the competitive ratio of min{3, 1 + 4

max{2,VX } }. (Section 5)
iv. Finally, we consider : > 1 servers (notice the lower bound

of 2 also applies to : > 1 servers) and establish competitive
ratios for both nomadic �T�� and �D��� on arbitrary met-
ric. We then consider line metric and establish competitive
bounds for both nomadic and homing versions of �T�� and
�D���. (Section 6)

The results exhibit surprising impact of temporal locality on
the competitive ratios for �T�� and �D���. On arbitrary metric,
shorter temporal locality is bene�cial (X <

p
2 � 1 = 0.414 for

�T�� and X < 0.457 for �D���), whereas on line metric, longer
temporal locality is bene�cial (e.g., VX > 2 for nomadic �T��). In
cases of incorrect �, X in our bounds will be replaced by X + n ,
where n is the maximum error on X . In other words, if subsequent
request(s) arrives in the interval of X 0 < X , then n0 = X 0 � X and n
can be the maximum n0. Finally, our upper bounds are in the form
of min{- ,. } with - (.) being the bound in the original (temporal
locality) model. Therefore, even with incorrect X , our bounds do
not go beyond the original model bound - .

Previous Work. We� rst discuss literature on �T��. �T�� was
�rst considered by [3] in which they established tight (competitive
ratio) of 2/2 (lower/upper) on arbitrary metric and 1.64/1.75 on line
metric for homing �T��. For nomadic �T��, they provided the lower
bound of 2 on line metric and upper bound of 5

2 on arbitrary metric.
Lipmann [13] improved the upper bound to 1+

p
2 for nomadic �T��

on arbitrary metric. On line metric, Bjelde et al. [7] provided tight
bound of 2.04/2.04 for nomadic �T�� and, for homing �T��, they
improved the upper bound to 1.64 matching the lower bound. In the
lookahead model, Allulli et al. [1] provided an upper bound of 1+ 2

U
for both nomadic and homing �T�� on line metric and lower/upper
bounds of 2/max{2, 1 + 1

2 (
p
U2 + 8 � U)} and 2/2 for nomadic and

homing �T��, respectively, on arbitrary metric. In the disclosure
model, Jaillet andWagner [11] provided an upper bound of (2� d

1+d)
for homing �T�� on arbitrary metric. Considering multiple servers
(: > 1), Bonifaci and Stougie [8] provided lower/upper bounds
of 1 + ⌦(1:)/1 + $ (log::) and 2/(1 +

p
2) for nomadic �T�� on

line and arbitrary metric, respectively. In this paper, we provide,
for both nomadic and homing ���� on both line and arbitrary

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

942

Algorithm N�T��H�T ��N�D ���H�D��� Metric
(lower/upper) (lower/upper) (lower/upper) (lower/upper)

Single server

Original 2.04/2.04 [7] 1.64/1.64 [3, 7] 2.0585/2.457 [4, 6] 2/2 [2, 9] line
Original 2.04/2.41 [7, 13] 2/2 [3] 2.0585/2.457 [4, 6] 2/2 [2, 9] arbitrary

Lookahead [1] -/(1 + 2
U) -/(1 + 2

U) -/- -/- line
Lookahead [1] 2/max{2, 1 + 1

2 (
p
U2 + 8 � U) } 2/2 -/- -/- arbitrary

Disclosure [11] -/- -/(2 � d
1+d) -/- -/- arbitrary

Temporal locality -/min{2.04, 1 + 3
2VX } -/min{2, 1 + 2

max{2,VX} } -/min{4, 1 + 3
VX } -/min{3, 1 + 4

max{2,VX} } line
Temporal locality 2/min{2.41, 2 + X } 2/2 2/min{2.457, 2 + X } 2/2 arbitrary

Multiple servers

Original [8] 1 + ⌦ (1:)/1 +$ (log::) -/- -/- -/- line
Original [8] 2/2.41 -/- -/- -/- arbitrary

Temporal locality -/min{2.04, 1 + 1
VX } -/min{2, 1 + 2

max{2,VX} } -/min{4, 1 + 3
2VX } -/min{3, 1 + 2

VX } line
Temporal locality 2/min{2.41, 2 + X min{W , 1}} 2/2 2/min{2.457, 2 + X min{W , 1}} 2/2 arbitrary

Table 2: A summary of previous and proposed results for both nomadic and homing versions of �T�� and �D��� (uncapacitated)
for : � 1 servers. The notion ‘-/. ’ denotes - as a lower bound and . as an upper bound in the competitive ratio. We have
d = 0

| T | , U = ⇥
⇡ , X = �

⇡ , V = min{1, C<0G
� }, and W =

max1 9: | T9 |
⇡ with 0 being the disclosure time, T being the TSP tour of the

requests in f , T9 being the TSP tour of the 9-th server for the requests in f , ⇥ being the lookahead time, ⇡ being the diameter of
the metric space, and C<0G being the maximum release time among the requests in f , and � being the temporal locality between
the consecutive requests in f . ‘-’ denotes non-existence of the respective lower/upper bound for the respective problem.

metric, lower/upper bound results in the temporal locality model.
In arbitrary metric, for the homing �T��, the 2-competitive bound
on the original model applies directly to the temporal locality model.

We now discuss literature of �D���. For homing �D���
lower/upper bounds of 2/2 exist on both line and arbitrary metric.
For nomadic �D���, the best previously known lower/upper bounds
are 2.0585/2.457 [4]. �D��� was not studied before in the :-server
setting. It was also not studied in the lookahead and disclosure mod-
els. In this paper, we provide, for both nomadic and homing �D���
on both line and arbitrary metric, lower/upper bound results in the
temporal locality model for single and multiple servers. In arbitrary
metric, for the homing �D���, the 2-competitive bound on the
original model applies directly to the temporal locality model.

A distantly related model is of prediction [10] which provides
the online algorithm with the predicted locations (which may be
erroneous) of requests beforehand. It is a di�erent model since
temporal locality (also lookahead and disclosure) focus on time not
request location.

2 MODEL
We consider the online model where time is divided into discrete
steps. Multiple requests may arrive at a time step and a new request
may arrive before the previously released request(s) has been served.
We consider a sequence f = A1, . . . , A< of < requests; < is not
known beforehand. Every request A8 = (C8 , 48 ,38) is a triple, where
C8 � 0 is the release time, 48 is the source location (point), and 38 is
the destination location. In �T��, 48 and 38 coincide and hence they
can be considered as a single point 48 . All the information about A8 :
C8 , 48 ,38 , and its existence is revealed only at time C8 . The lookahead
and disclosure models [1, 11] extend this model and assume that
the request releasing at time C8 is known to server at time C8 � 0,
with 0 � 0. Our temporal locality model assumes only the advanced

knowledge of how far in time subsequent requests arrive, which
we formally de�ne in the following.

De�nition 1 (temporal locality). An online algorithm $! has
temporal locality � 2 N, if for any two consecutive requests A8 , A 9
with release times C8 , C 9 , C8 < C 9 , |C8 � C 9 | = �.

In our temporal locality model, the additional prior knowledge
the server has compared to the original model is the value of �, our
temporal locality parameter.

We assume that the execution starts at time 0. We consider : � 1
servers B1, . . . , B: , initially positioned at origin > . The servers can
move with maximum speed one unit so that in one time step they
can travel one unit distance. To serve A8 , the server has to visit both
the locations 48 ,38 , but not earlier than C8 , and 48 has to be visited
before 38 . In other words, visiting�rst 38 and then coming to 48
does not serve A8 . After visiting 48 , it has to visit 38 to serve A8 . In
�T��, since 48 and 38 coincide, visiting 48 serves A8 .

Let 38BC (�,⌫) denotes the length of the shortest path between
two points � and ⌫. Following the literature [5, 9, 12], we consider
metric spaceM which satis�es the following properties: (i) de�nite-
ness: for any point G 2M,38BC (G,G) = 0, (ii) symmetry: for any two
points G,~ 2M,38BC (G,~) = 38BC (~,G), and (iii) triangle inequality:
for any three points G,~,I 2M, 38BC (G,I) + 38BC (I,~) � 38BC (G,~).
M becomes line metric L when for any three points G,~,I 2M,
38BC (G,I) + 38BC (I,~) = 38BC (G,~). The server(s), origin > , and re-
quests in f are all onM.

The completion time of request A8 = (C8 , 48 ,38) 2 f is the time
C 08 � C8 at which A8 has been served (notice that A8 cannot be served
before C8). After A8 is released at time C8 and before it has been served
at time C 08 , it remains outstanding for the duration C 08 � C8 . Given f , a
feasible schedule for f is a sequence of moves of the server(s) such
that all the requests in f are served. $!(f) denotes the maximum

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

943

completion time of an online algorithm$! for serving the requests
in f i.e., $!(f) = max18< C 08 . $%) (f) is the completion time of
an optimal algorithm for serving the requests in f . $%) (f) has
two components depending on the release times C8 of the requests.
If C8 > 0 for at least a request in f , $%) (f) � max18< C8 . If
C8 = 0 for each request in f ,$%) (f) � |T |, where T is the optimal
TSP tour length that connects origin > with the < source (and
destination for �D���) points of the requests in f . Combining these
two bounds, we have $%) (f) � max {max18< C8 , |T |} .

3 LOWER BOUND
The� rst natural direction is to study the impact of temporal locality
on solutions to �T�� and �D���. We study this impact through a
lower bound, which holds for both nomadic and homing versions of
�T�� (this �T�� lower bound applies directly to �D���). We prove
that no online algorithm for �T�� can be better than 2-competitive
in arbitrary metric.

Although we are able to establish the same lower bound for
both nomadic and homing versions of �T��, their implication is
substantially di�erent. For homing �T��, an optimal 2-competitive
algorithm exists in the original model [3], i.e., temporal locality
has no impact. Instead, for the nomadic �T��, there exists a lower
bound of 2.04 in the originalmodel for linemetric [7] (which directly
applies to arbitrary metric), whereas in the temporal locality model
we could establish the lower bound of 2. Additionally, the best
known online algorithm achieves the competitive ratio of 1 +

p
2

[13]. We will show later that temporal locality is indeed useful for
nomadic �T��; the lower bound of 2 is matched for a su�ciently
small value of �. Our lower bound is interesting since it holds for
any value of �, which implies that the larger temporal locality does
not help to improve the competitive ratio in arbitrary metric.

T������2. No deterministic algorithm for homing �T�� or no-
madic �T�� can be better than 2-competitive in arbitrary metric,
irrespective of temporal locality �.

P����. Consider a star graph ⌧ = (+ ,⇢) with # + 1 nodes; a
central node E0 and # peripheral nodes E1, . . . , E# . Each peripheral
node E8 is connected to the central node E0 by an edge 48 = (E0, E8)
of length 1

2 (see Fig. 1). Let $! be any algorithm for homing �T��
or nomadic �T�� on⌧ with temporal locality # > � > 1. Consider
� such that # mod � = 0.

At time C0 = ��1,# requests are released, one on each peripheral
node. At time C0 +�, � requests have been served by$! and # ��
requests are still waiting to be served. At time C0+�, � new requests
are released on same vertices on which the requests were served in
the last � time steps. Therefore, at time C0 + �, there are again #
requests, one on each vertex E8 of⌧ . Continue releasing � requests
with temporal locality � until time C0 +# , i.e., after � requests have
been served by $!.

Let C5 = � + # � 1. At C5 , there are exactly # requests on #
peripheral nodes of⌧ waiting to be served. Suppose after C5 , no new
request is presented, i.e., in total 2# requests have been presented in
⌧ . At time C5 , since $! still needs to serve # outstanding requests,
it cannot� nish serving them before time C5 + # � 1 = � + 2# � 2.

Consider an o�ine adversary$%) . We show that$%) can com-
plete serving all 2# requests in no later than time 2� + # � 1.

Figure 1: An illustration of the lower bound construction:
(le�) At time C0 = � � 1, # requests are released on # pe-
ripheral nodes of ⌧ , (middle) At C0 + � � 1, � requests have
been served by the online algorithm $!, (right) At C0 + �, �
new requests have been released on the � empty nodes at
C0 +��1. This process continues until C0 +# such that in total
2# requests have been released.

Consider the vertices of the � requests released at time C0 + �.
$%) waits until C0 + � � 1/2 at E0, then reaches the� rst request
at time C0 + � and serve the 2� requests on � nodes by time
C0 + � + � � 1 = C0 + 2� � 1. Continuing this way, $%) �nishes no
later than C0 +�+ #

� �� 1 = 2�+# � 2 all 2# requests. For homing
�T��,$%) needs additional 1

2 time to return to E0 after serving the
last request. Therefore, the lower bound on the competitive ratio
becomes $! (f)

$%) (f) �
�+2#�2
2�+#�2 . The ratio

$! (f)
$%) (f) becomes arbitrarily

close to 2 for # � �. ⇤

4 SINGLE-SERVER ONLINE TSP
We� rst present and analyze an algorithm for �T�� that achieves
competitive ratio min{2.04, 1 + 3

2VX } for the nomadic version and
min{2, 1 + 2

max{2,VX } } for the homing version on line metric L.
This is interesting since the competitive ratio tends to 1 as X =
�/⇡ increases. Notice that V = min{1, C<0G

� }, where C<0G is the
maximum arrival time among requests in f . We will then present
and analyze an algorithm that achieves competitive ratio ofmin{1+p
2, 2 + X} on arbitrary metric M for nomadic �T��. For homing

�T��, there is a 2-competitive algorithm in the original model [3],
which gives the same 2 ratio in the temporal locality model.

4.1 Algorithm on Line Metric
In the highlevel, the server initially needs to pick a direction (right
or left). It traverse in the direction until all the requests are served
enroute. Once there are no outstanding request in that direction,
switch direction. This switching of direction continues until there
is no outstanding request, in which case, server stays to its current
position or goes to origin depending on whether TSP is nomadic
or homing.

The pseudocode is in Algorithm 1. Server B is initially at origin > .
Let ?>B$! (C) denote the position of server B at any time C � 0. At
C = 0, ?>B$! (0) = > . If X  1.442, we use the algorithm of Bjelde et
al. [7] of the original model. The value 1.442 is picked as a threshold
through the calculation of X for the equation 2.04 = 1 + 3

2X keeping
V = 1 (its maximum value). For X > 1.442, we use the following
approach. Let (denote the set of outstanding requests. When (= ;,
the server B stays at its current position ?>B$! (C). Whenever (< ;,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

944

Algorithm 1: Single-server algorithm for �T�� on line metric with
temporal locality � = X⇡

1: > origin where server resides initially
2: ?>B$! (C) the current position of server B on line L at time C � 0;?>B$! (0) =

>
3: if X  1.442 then
4: run the algorithm by Bjelde et al. [7]
5: else
6: if new request(s) arrives then
7: (the set of outstanding requests including the new request(s)
8: ! the farthest position 4! among the requests in (on L
9: ' the farthest position 4' among the requests in (on L on the opposite

side of !
10: if both ! and ' are on the same side on ! from ?>B$! (C) then
11:) a tour connecting ?>B$! (C) with ! or ' whichever is farthest
12: else
13: if 38BC (?>B$! (C),!)  38BC (?>B$! (C),') then
14:) a tour connecting ?>B$! (C) with ! and then ! with '
15: else
16:) a tour connecting ?>B$! (C) with ' and then ' with !
17: end if
18: end if
19: server B traverses) until a new request arrives or) is traversed; for the

nomadic version, after) is traversed stay at ?>B$! (C) but for homing
version, return to origin >

20: end if
21: end if

Algorithm 1 does the following. Out of the requests in (, Algorithm
1� nds the two extreme positions ! and ' among the positions of
the requests in (. In some cases there is no ! or ' (i.e., ?>B$! (C)
coincides with ! or ') and it does not hamper Algorithm 1 in
any way. We have two cases: (i) both ! and ' are on the same
side on L from ?>B$! (C), (ii) ! is on one side and ' is on another
side on L from ?>B$! (C). For Case (i), TSP tour) is constructed
connecting ?>B$! (C) with ! or ' whichever is farthest. For Case
(ii), TSP tour) is constructed connecting ?>B$! (C) with�rst ! then
' if 38BC (?>B$! (C), !)  38BC (?>B$! (C),'), otherwise, with�rst '
then !. Server B traverses) until either a new request arrives or)
is completely traversed. After) completely is traversed and there
is no new request, server B stays at its current position ?>B$! (C)
for the nomadic version; for the homing version, it starts to return
to origin > in full speed. Fig. 2 illustrates these ideas.

Figure 2: An illustration of Algorithm 1 for �T�� on line met-
ric. At C0, server B is on > , origin. At C1, B picks the left direction
to serve requests. At C2, since B �nds new outstanding request
in right direction and there is no request on left of ?>B�!⌧ (C2),
it changes direction and starts to traverse right direction. At
C3, it continues in the right direction since there are outstand-
ing requests enroute.

Analysis of theAlgorithm. Let!0,'0 be the two extreme positions
among the positions of the requests in f [{>}, meaning that all

< requests and origin > have positions between !0 and '0 on L
(inclusive). Let ⇡ = |'0 �!0 |. Recall that we de�ne temporal locality
� with respect to ⇡ , i.e., � = X⇡ . Let C<0G be the arrival time of
the request A<0G = (C<0G , 4<0G) in f released last, i.e., there is no
other request A 0 = (C 0, 40) with C 0 > C<0G . Let C<8= be the arrival
time of the request A<8= = (C<8=, 4<8=) in f released� rst, i.e., there
is no other request A 00 = (C 00, 400) with C 00 < C<8= .

We� rst establish correctness.

L����1. Algorithm 1 serves all the requests in f .

P����. We prove this by contradiction. Support a request A8 =
(C8 , 48) is not served. It must be the case that server B has not reached
48 . By construction, we have that 48 is either on the left or right
of the current position ?>B$! (C) of server B . As soon as a request
arrives, B moves towards that request. For two or more requests
arriving at the same time, server B moves toward the one with
shorter distance from ?>B$! (C). The direction is changed as soon
as there is no outstanding request enroute, which happens at the
extreme end of L. After changing direction, the server B does not
stop until all outstanding requests enroute are served. Therefore,
48 must be visited in the server B’s traversal during left or right
direction before server stops, hence a contradiction. ⇤

We now establish the competitive ratio bound for nomadic �T��.

T������3. Algorithm 1 with temporal locality � = X⇡ is
min{2.04, 1 + 3

2VX }-competitive for nomadic �T�� de�ned on an in-

terval of length ⇡ , where V = min{1, C<0G
� }.

P����. Consider the input instancef . Suppose all< requests are
released at C = 0 (i.e., C<8= = C<0G = 0), then Algorithm 1�nishes
serving requests in f in |T | time, i.e. $!(f)  |T |. Any optimal
algorithm $%) also needs at least |T | time, i.e., $%) (f) � |T |.
Therefore, Algorithm 1 is 1-competitive. Suppose not all requests
are released at C = 0 (i.e., C<8= = 0 but C<0G > 0) , there must be at
least a request released at time C = � = X⇡ since temporal locality
is � and hence $%) (f) � X⇡ .

Consider A<0G = (C<0G , 4<0G), the request in f released
last. Since A<0G cannot be served before C<0G by any algo-
rithm, $%) (f) � C<0G . At C<0G , the tour) computed by Al-
gorithm 1 cannot be larger than 3

2⇡ . This is because either
38BC (?>B$! (C<0G), !)  1

2⇡ or 38BC (?>B$! (C<0G),')  1
2⇡ and

server B picks ! or ' depending on whichever is of smaller dis-
tance and 38BC (!,')  ⇡ . After C<0G , each outstanding request
waits for at most 3

2⇡ time units before being served. Therefore,
$!(f)  C<0G + 3

2⇡ . Combining these results,

$!(f)
$%) (f) 

C<0G + 3
2⇡

max{C<0G , X⇡} .

We have two cases: (a) C<0G � X⇡ or (b) C<0G < X⇡ . For Case
(a), ⇡  C<0G/X and hence

$!(f) 

C<0G

C<0G
+

3
2
C<0G
X

C<0G

!
$%) (f) = (1 + 3

2X
)$%) (f).

For Case (b), replacing C<0G with X⇡ , we obtain

$!(f) 

X⇡

X⇡
+

3
2⇡

X⇡

!
$%) (f) = (1 + 3

2X
)$%) (f).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

945

Now suppose C<8= > 0, i.e., no request is released at time C = 0.
We know that C<8= < X⇡ . Even in this case, if C<0G � C<8= + X⇡ �
X⇡ , we obtain the competitive ratio of (1 + 3

2X) as above. Therefore,
for the case of 0 < C<8=, C<0G < X⇡ , we have that $%) (f) � C<0G
and also $%) (f) � VX⇡ since V = min{1, C<0G

� }. Therefore,

$!(f)
$%) (f) 

C<0G + 3
2⇡

max{C<0G , VX⇡} = 1 + 3
2VX

.

Finally, we now analyze the competitive ratio that does not
depend on �. This is directly obtained from Bjelde et al. [7] where
they established 2.04 competitive ratio for their algorithm. ⇤

We now establish the following theorem for homing �T��.

T������4. Algorithm 1 with temporal locality � = X⇡ is
min{2, 1 + 2

max{2,VX } }-competitive for homing �T�� de�ned on an
interval of length ⇡ .

P����. Consider the input instance f . Suppose all< requests
are released at C = 0 (i.e., C<8= = C<0G = 0). Starting from > running
Algorithm 1, server B �nishes serving requests in f and return to >
in 2⇡ time. Therefore, $!(f)  2⇡ . Any optimal algorithm $%)
also needs at least 2⇡ time to serve the requests, starting from >
and returning to > after serving all the requests, i.e., $%) (f) � 2⇡ .
Therefore, Algorithm 1 is 1-competitive.

If not all requests are released at C = 0 (i.e., C<8= = 0 but C<0G < 0),
there must be at least a request released at time C = � = X⇡ and
hence $%) (f) � X⇡ .

Consider A<0G = (C<0G , 4<0G). Since A<0G cannot be served
before C<0G , $%) (f) � C<0G + 38BC (>,4<0G). At C<0G , the tour)
computed by Algorithm 1 cannot be longer than 2⇡ , to serve all the
outstanding requests and return to origin > . Therefore, $!(f) 
C<0G + 2⇡ . Combining the above results,

$!(f)
$%) (f) 

C<0G + 2⇡
max{C<0G ,max{2, X}⇡} .

We have two cases: (a) C<0G � max{2, X}⇡ or (b) C<0G <
max{2, X}⇡ . For Case (a), ⇡  C<0G/max{2, X} and hence
$!(f)  (1 + 2

max{2,X })$%) (f). For Case (b), replacing C<0G with
max{2, X}⇡ , we obtain $!(f)  (1 + 2

max{2,X })$%) (f).
We now consider the case where the� rst (set of) request(s)

is released at time 0 < C<8= < �. Even in this case, if C<0G �
C<8= + X⇡ > X⇡ , we obtain the competitive ratio of (1 + 2

max{2,X }).
If C<0G < X⇡ , then it must be the case that C<8= = C<0G . In this case
we have that

$!(f)
$%) (f) 

C<0G + 2⇡
max{C<0G ,max{2, VX}⇡} = 1 + 2

max{2, VX} .

Finally, we now analyze the competitive ratio without depen-
dence on �.$!(f)  C<0G + 2⇡ . It is obvious that$%) (f) � C<0G
and $%) (f) � 2⇡ . Therefore, $!(f)  2 $%) (f). ⇤

4.2 Algorithm on Arbitrary Metric
In the highlevel, the server either runs the Return Home algorithm
from Lipmann [13] or our approach which asks it to return to the
origin as soon as new request arrives. At origin, it computes a TSP
tour of all outstanding requests and starts traversing the tour. Doing
so, the only extra distance traversed is X⇡ every time a new request

Algorithm 2: Single-server algorithm for nomadic �T�� on arbitrary
metric with temporal locality � = X⇡

1: > origin where server resides initially
2: ?>B$! (C) the current position of server B on metric M at time C � 0;

?>B$! (0) = >
3: if X �

p
2 � 1 then

4: run the R�����H��� algorithm by Lipmann [13]
5: else
6: if new request(s) arrives then
7: (the set of outstanding including the new request(s)
8: T the minimum cost TSP tour that connects the positions of the requests

in ([{> } with > being the one endpoint of the tour
9:) 0 the tour that connects the current position ?>B$! (C) of server B

with >
10:)) 0 [T
11: server B traverses tour) until either it� nishes traversing) or new request(s)

arrives
12: end if
13: end if

arrives. When X <
p
2 � 1, the competitive ratio becomes (2 + X),

better than original model result of 2.41 (= 1 +
p
2).

The pseudocode of the algorithm is given in Algorithm 2. Server
B is initially on > , the origin. In Algorithm 2, server B serves the
requests as follows. Let ?>B$! (C) be the current position of B at
time C ; ?>B$! (0) = > . Let (the set of outstanding requests at time
C . Whenever a new request arrives at time C , B constructs a tour)
as follows. It� nds a minimum length TSP tour T that connects >
with each position 48 on the requests in (. It also �nds a tour) 0
that connects ?>B$! (C) with > . Therefore,) =) 0 [T . The server B
then start traversing the tour) starting from ?>B$! (C) until a new
request arrives or until) is completely traversed. If) is completely
traversed before any request arrives, server B stops at the endpoint
of) until a new request arrives. If a new request arrives at time
C 0 > C before� nish traversing) , B again computes) considering
the set of outstanding requests (at time C 0 as discussed above and
start traversing the tour) . Fig. 3 illustrates these ideas.

We� rst prove correctness of Algorithm 2.

L����2. Algorithm 2 serves all the requests in f .

P����. We prove this by contradiction. Suppose a request A8 =
(C8 , 48) is not served. When A8 arrives at C8 , it must be outstanding.
At C8 , the server B computes the TSP tour T that visits the locations
of all outstanding requests with origin as an one endpoint of the
tour. Server B does not stop until T is fully traversed serving all
the outstanding requests during its traversal. Since A8 was outstand-
ing at C8 and after, it must have been served by server B running
Algorithm 2, hence a contraction. ⇤

We now establish the competitive ratio bound for nomadic �T��.

T������5. Algorithm 2 with temporal locality � = X⇡ is
min{1+

p
2, 2+X}-competitive for nomadic �T�� on arbitrary metric

of diameter ⇡ .

P����. Consider the input instance f . If X �
p
2 � 1, Algo-

rithm 2 runs the '4CDA=�><4 algorithm by Lipmann [13]. Since
'4CDA=�><4 is (1 +

p
2)-competitive, Algorithm 2 is (1 +

p
2)-

competitive for nomadic �T��.
For the case of X <

p
2� 1, we prove (2+X)-competitive ratio for

Algorithm 2. Let A<0G = (C<0G , 4<0G) be the request in f released

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

946

last. We show that, at C<0G , the length of the tour) computed
by Algorithm 2 cannot be larger than |T | + X⇡ , i.e., |) |  |T | +
X⇡ . Since temporal locality is � = X⇡ , the server cannot be more
than X⇡ distance away from the origin > . Therefore, after C<0G ,
server can return to origin in � time and then� nish traversing the
tour T in |T | time. In other words, after C<0G , each outstanding
request waits for at most |T | + X⇡ time units before being served.
Therefore,$!(f)  C<0G + |T | +X⇡ . We have that$%) (f) � C<0G .
Irrespective of whether all the requests are released at time C � 0,
since $%) must visit all the requests , it pays at least |T |, i.e.,
$%) (f) � |T |. Combining the above results,

Figure 3: An illustration of Algorithm 2 for nomadic �T�� on
arbitrary metric: (le�) At C0, server at > computes a TSP tour
of 4 requests and starts to traverse the tour, (middle) When
three new requests arrive at C1, server computes a TSP tour)
of outstanding requests with one end point being > , (right)
server starts to traverse) �rst reaching to > from its current
location ?>B$! (C1).

$!(f)
$%) (f) 

C<0G + |T | + X⇡

max{C<0G , |T |} .

Since the diameter is ⇡ , we have that |T |� ⇡ . We have two
cases: (a) C<0G � |T | or (b) C<0G < |T |. For Case (a), $!(f) ⇣
C<0G
C<0G

+ C<0G
C<0G

+ XC<0G
C<0G

⌘
$%) (f) = (2 + X)$%) (f). For Case (b),

$!(f) 
⇣
| T |
| T | +

|T |
| T | +

X | T |
| T |

⌘
$%) (f) = (2 + X)$%) (f). ⇤

5 SINGLE SERVER ONLINE DIAL-A-RIDE
We� rst discuss an algorithm for both homing and nomadic �D���
on line metric. We then discuss an algorithm for nomadic �D���
on arbitrary metric. For homing �D���, there is a 2-competitive
algorithm in the original model [2, 9], which gives the same 2 ratio
in the temporal locality model.

5.1 Algorithm on Line Metric
We modify Algorithm 1 to solve �D��� on line metric L. We con-
sider both nomadic and homing �D���. The only modi�cation is
the server needs to visit 48 of each request A8 before 38 to consider
A8 served. The tour computed takes into account this requirement.

T������6. Algorithm 1 with temporal locality � = X⇡ is
min{4, 1 + 3

VX }-competitive for nomadic �D��� on an interval of

length ⇡ , where V = min{1, C<0G
� }.

P����. Consider the input sequence f . Suppose all< requests
are released at time C = 0. Algorithm 1 is clearly 1-competitive.

Suppose not all requests are released at time C = 0, then there must
be at least a request A8 = (C8 , 48 ,38) with C8 � X⇡ since the temporal
locality is X⇡ , i.e., $%) (f) � X⇡ .

Let A<0G = (C<0G , 4<0G ,3<0G) be the request released last.
$%) (f) � C<0G . We have two upper bounds based on whether
the requests in f are all increasing requests or there is at least one
request that is non-increasing. An increasing request means, the
destination location is farther from the origin than its source loca-
tion. If all requests are increasing, then $!(f)  C<0G + 2⇡ . This
is because, after C<0G , traversing from origin� rst to left (or right)
extreme point on line and then to right (or left) extreme point and
�nally to origin servers all the requests. However, if there is at least
one non-increasing request, $!(f)  C<0G + 3⇡ . This is because
the extreme point visited� rst need to be visited again and then
back to the origin to handle the non-increasing part. Therefore, for
any combination of increasing and non-increasing requests in f ,

$!(f)
$%) (f) 

C<0G + 3⇡
max{C<0G , X⇡}  1 + 3

X
.

Now suppose < 0 < C<0G < X⇡ . In this case,
$!(f)
$%) (f) 

C<0G + 3⇡
max{C<0G , VX⇡}  1 + 3

VX
.

Finally, we analyze the competitive ratio independent of �. We
have that $!(f)  C<0G + 3⇡ . It is obvious that $%) (f) � C<0G
and $%) (f) � ⇡ . Therefore, we obtain $!(f)  4 $%) (f). ⇤

T������7. Algorithm 1 with temporal locality � = X⇡ is
min{3, 1 + 4

max{2,VX } }-competitive for homing �D��� on an interval
of length ⇡ .

We omit the proof of this theorem due to space constraints.

5.2 Algorithm on Arbitrary Metric
We modify Algorithm 2 to solve �D��� on arbitrary metricM. We
consider only nomadic �D���; homing �D��� is solved with 2-
competitive ratio using the existing algorithm [2, 9] in the original
model. The only modi�cation is the server needs to visit 48 of each
request A8 before 38 to consider A8 served. The tour computed takes
into account this requirement. Fig. 4 illustrates these ideas.

T������8. Algorithm 2 with temporal locality � = X⇡ is
min{2.457, 2+X}-competitive for nomadic �D��� on arbitrary metric
with diameter ⇡ .

P����. Consider the input instance f . If X � 0.457, Algorithm 2
runs the !0I~ algorithm by [4] which provides a competitive ratio
of 2.457 for nomadic �D���.

For the case of X < 0.457, we prove (2 + X)-competitive ratio for
Algorithm 2. Let A<0G = (C<0G , 4<0G) be the request in f released
last. Let T⇡0A? be the minimum length tour for the requests in f
such that one endpoint of T⇡0A? is origin > and for each request A8 ,
its 48 and 38 come consecutively in T⇡0A? exactly once.

At C<0G , the length of the tour) computed by Algorithm 2
cannot be larger than |T⇡0A? | + X⇡ , i.e., |) |  |T⇡0A? | + X⇡ . Since
temporal locality is � = X⇡ , the server cannot be more than X⇡
distance away from the origin > at anytime C . After C<0G , each
outstanding request is served before time |T⇡0A? | + X⇡ . Therefore,
$!(f)  C<0G + |T⇡0A? | + X⇡ . We have that $%) (f) � C<0G .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

947

Figure 4: An illustration of Algorithm 2 for �D��� on arbi-
trary metric: (le�) At C0, server at > computes a TSP tour of 4
requests and starts to traverse the tour, (middle) When three
new requests arrive at C1, server computes a TSP tour) of
outstanding requests with one end point of) being > , (right)
server starts to traverse) �rst reaching to > from its current
location ?>B$! (C1).

Irrespective of whether all the requests are released at time C � 0,
since $%) must visit all the requests , it pays at least |T⇡0A? |, i.e.,
$%) (f) � |T⇡0A? |. Combining the above results,

$!(f)
$%) (f) 

C<0G + |T⇡0A? | + X⇡

max{C<0G , |T⇡0A? |}
.

Since |T⇡0A? | � ⇡ , we obtain $!(f)  (2 + X)$%) (f) . ⇤

6 : > 1 SERVER EXTENSIONS
We now discuss how the competitive ratios for : = 1 server extend
to : > 1 servers for both �T�� and �D���. We omit proofs of four
theorems in this section due to space constraints.

T������9. Parallelized Algorithm 1 with temporal locality � =
X⇡ ismin{2.04, 1+ 1

VX }-competitive for nomadic �T�� on an interval
of length ⇡ for : > 1 servers.

P����. Consider the input instance f . Suppose all< requests
are released at C = 0 (i.e., C<8= = C<0G = 0). Let T1, . . . T: be the
minimum cost TSP tours for : servers starting from > to serve
the requests in f such that the length of each tour T9 , 1  9  :,
is minimized. Parallelized Algorithm 1� nishes serving requests
in f in max1 9: |T9 | time, i.e. $!(f)  max1 9: |T9 |. Any op-
timal algorithm $%) also needs at least max1 9: |T9 | time, i.e.,
$%) (f) � max1 9: |T9 |. Therefore, Algorithm 1 is 1-competitive.
Suppose not all requests are released at C = 0 (i.e., C<8= = 0
but C<0G > 0), there must be at least a request released at time
C = � = X⇡ and hence $%) (f) � X⇡ .

Consider A<0G = (C<0G , 4<0G), the request in f released last.
Since A<0G cannot be served before C<0G by any online algorithm,
$%) (f) � C<0G . At C<0G , the tour) computed by Algorithm
1 for each server B 9 cannot be larger than ⇡ . After C<0G , each
outstanding request waits for at most ⇡ time units before being
served. Therefore,$!(f)  C<0G +⇡ . Combining the above results,
$! (f)
$%) (f) 

C<0G+⇡
max{C<0G ,X⇡ } =

⇣
1 + 1

X

⌘
.

Now suppose C<8= > 0, i.e., no request is released at time C = 0.
We know that C<8= < X⇡ . Even in this case, if C<0G � C<8= +
X⇡ � X⇡ , we obtain the competitive ratio of (1 + 1

X) as above.
Therefore, for the case of 0 < C<8=, C<0G < X⇡ , we have that

$%) (f) � C<0G and also $%) (f) � VX⇡ . Therefore, $!(f) ⇣
C<0G+⇡

max{C<0G ,VX⇡ }
⌘
$%) (f) =

⇣
1 + 1

VX

⌘
$%) (f) .

Finally, the 2.04 competitive ratio independent on � is immediate
from the result of Bjelde et al. [7] in the original model. ⇤

T������10. Parallelized Algorithm 1 with temporal locality
� = X⇡ ismin{2, 1 + 2

max{2,VX } }-competitive for homing �T�� on an
interval of length ⇡ for : > 1 servers.

T������11. Parallelized Algorithm 2 with temporal locality
� = X⇡ is min{1 +

p
2, 2 + X min{W, 1}}-competitive for nomadic

�T�� on arbitrary metric with diameter ⇡ for : > 1 servers.

P����. Consider the input instance f . If X �
p
2 � 1, Algo-

rithm 2 runs the⌧A>D?'4CDA=�><4 (GRH) algorithm by [8] which
achieves (1 +

p
2) competitive ratio for nomadic �T�� for : servers.

For the case of X <
p
2�1, let A<0G = (C<0G , 4<0G) be the request

in f released last. At C<0G , the length of the tour)9 computed
by Algorithm 2 for server B 9 cannot be larger than |T9 | + X⇡ , i.e.,
|)9 |  |T9 | + X⇡ . Since temporal locality � = X⇡ , the server cannot
be more than X⇡ distance away from the origin > . After C<0G ,
each outstanding request served by B 9 waits for at most |T9 | + X⇡
time units before being served by B 9 . Therefore, $!(f)  C<0G +
max1 9: |T9 | + X⇡ . We have that $%) (f) � C<0G . Irrespective
of whether all the requests are released at time C � 0, since $%)
must visit all the requests, it must pay at least max1 9: |T9 |, i.e.,
$%) (f) � max1 9: |T9 |. Combining the above results,

$!(f)
$%) (f) 

C<0G +max1 9: |T9 | + X⇡

max{C<0G ,max1 9: |T9 |}
.

Since diameter is⇡ ,max1 9: |T9 | � min{W, 1}⇡ for someW > 0.
Either (a) C<0G � max1 9: |T9 | or (b) C<0G < max1 9: |T9 |. For
both cases, $!(f)  (2 + X min{W, 1})$%) (f) . ⇤

T������12. Parallelized Algorithm 1 with temporal locality
� = X⇡ is min{4, 1 + 3

2VX }-competitive for nomadic �D��� on an
interval of length ⇡ for : > 1 servers.

T������13. Parallelized Algorithm 1 with temporal locality
� = X⇡ is min{3, 1 + 2

VX }-competitive for homing �D��� on an
interval of length ⇡ for : > 1 servers.

T������14. Parallelized Algorithm 2 with temporal locality � =
X⇡ is min{2.457, 2 + X min{W, 1}}-competitive for nomadic �D���
on arbitrary metric with diameter ⇡ .

7 CONCLUDING REMARKS
In this paper, we have proposed the new clairvoyance model, called
temporal locality, and studied its power on online routing. We
�rst established a lower bound of 2-competitive ratio for �T��
and (uncapacitated) �D��� in arbitrary metric. We then showed
that, in arbitrary metric, the competitive ratios better than the
currently known can be obtained with smaller temporal locality
(i.e., X = �/⇡ <

p
2�1 for nomadic �T�� and X < 0.457 for nomadic

�D���). For line metric, the competitive ratio gets closer to 1 with
larger temporal locality for both homing and nomadic �T�� and
�D���. For future work, it will be interesting to consider other
online routing problems and/or objective functions (e.g., sum of
completion times) with temporal locality.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

948

REFERENCES
[1] Luca Allulli, Giorgio Ausiello, Vincenzo Bonifaci, and Luigi Laura. 2008. On the

power of lookahead in on-line server routing problems. Theor. Comput. Sci. 408,
2-3 (2008), 116–128. https://doi.org/10.1016/J.TCS.2008.08.003

[2] Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. 2000. Online Dial-a-
Ride Problems: Minimizing the Completion Time. In STACS. Springer, 639–650.

[3] Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maur-
izio Talamo. 2001. Algorithms for the On-Line Travelling Salesman. Algorithmica
29, 4 (2001), 560–581.

[4] Júlia Baligács, Yann Disser, Farehe Soheil, and David Weckbecker. 2023. Tight
Analysis of the Lazy Algorithm for Open Online Dial-a-Ride. In WADS. Springer,
43–64.

[5] Marcin Bienkowski, Artur Kraska, and Hsiang-Hsuan Liu. 2021. Traveling Re-
pairperson, Unrelated Machines, and Other Stories About Average Completion
Times. In ICALP (LIPIcs, Vol. 198). 28:1–28:20.

[6] Alexander Birx, Yann Disser, and Kevin Schewior. 2023. Improved Bounds for
Open Online Dial-a-Ride on the Line. Algorithmica 85, 5 (2023), 1372–1414.

[7] A. Bjelde, Y. Disser, J. Hackfeld, C. Hansknecht, M. Lipmann, J. Meißner, K.
Schewior, M. Schlöter, and L. Stougie. 2021. Tight bounds for online TSP on the
line. ACM Transactions on Algorithms 17, 1 (2021), 3:1–3:58.

[8] Vincenzo Bonifaci and Leen Stougie. 2009. Online k-server routing problems.
Theory of Computing Systems 45, 3 (2009), 470–485.

[9] Esteban Feuerstein and Leen Stougie. 2001. On-line single-server dial-a-ride
problems. Theoretical Computer Science 268, 1 (2001), 91–105.

[10] Themistoklis Gouleakis, Konstantinos Lakis, and Golnoosh Shahkarami. 2023.
Learning-Augmented Algorithms for Online TSP on the Line. In AAAI, Brian
Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press, 11989–11996.

[11] Patrick Jaillet and Michael R. Wagner. 2006. Online Routing Problems: Value of
Advanced Information as Improved Competitive Ratios. Transportation Science
40, 2 (2006), 200–210.

[12] Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, and Leen Stougie. 2003.
News from the online traveling repairman. Theor. Comput. Sci. 295 (2003), 279–
294.

[13] Maarten Lipmann. 2003. On-line routing. Ph.D. Thesis, Technical University of
Eindhoven (2003).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

949

https://doi.org/10.1016/J.TCS.2008.08.003

	Abstract
	1 Introduction
	2 Model
	3 Lower Bound
	4 Single-server Online TSP
	4.1 Algorithm on Line Metric
	4.2 Algorithm on Arbitrary Metric

	5 Single Server Online Dial-a-Ride
	5.1 Algorithm on Line Metric
	5.2 Algorithm on Arbitrary Metric

	6 k>1 Server Extensions
	7 Concluding Remarks
	References

