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ABSTRACT
When assisting people in daily tasks, robots need to accurately in-
terpret visual cues and respond effectively in diverse safety-critical
situations, such as sharp objects on the floor. In this context, we
present M-CoDAL, a multimodal-dialogue system specifically de-
signed for embodied agents to better understand and communi-
cate in safety-critical situations. The system leverages discourse
coherence relations to enhance its contextual understanding and
communication abilities. To train this system, we introduce a novel
clustering-based active learningmechanism that utilizes an external
Large Language Model (LLM) to identify informative instances. Our
approach is evaluated using a newly created multimodal dataset
comprising 1K safety violations extracted from 2K Reddit images.
These violations are annotated using a Large Multimodal Model
(LMM) and verified by human annotators. Results with this dataset
demonstrate that our approach improves resolution of safety situa-
tions, user sentiment, as well as safety of the conversation. Next,
we deploy our dialogue system on a Hello Robot Stretch robot and
conduct a within-subject user study with real-world participants. In
the study, participants role-play two safety scenarios with different
levels of severity with the robot and receive interventions from
our model and a baseline system powered by OpenAI’s ChatGPT.
The study results corroborate and extend the findings from the
automated evaluation, showing that our proposed system is more
persuasive in a real-world embodied agent setting.
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1 INTRODUCTION
Embodied agents, such as assistive robots with multimodal capa-
bilities, are poised to become an integral part of our daily lives
by helping with household tasks and providing assistance upon
request. However, the agent should also play a proactive role and
ensure both its and the user’s actions are safe. It needs to not only
detect unsafe scenarios but also communicate and persuade the
user of the danger. To achieve this, the system needs to understand
and adapt to conversational contexts while remaining robust across
diverse safety-related scenarios.

To meet this challenge, we integrate theories of coherence rela-
tions to enhance contextual understanding and use clustering-based
active learning to train a multimodal dialogue system, M-CoDAL,
specifically designed for deploying embodied agents for real-world
users to provide effective safety advice.

M-CoDAL uses discourse coherence relations to enrich its con-
textual understanding. Theories of coherence relations originate
in understanding and analyzing inferential links to support text
interpretation and has subsequently been extended to cross-modal
settings [3]. Coherence relations can situate an ongoing scene in the
arc of a narrative [13] or enrich interpretation of communicative
actions across modalities [27]. For instance, the coherence relation
Cause can help interpret why paying attention to a safety violation
is important in an image captured by a robot given a certain Condi-
tion relation. These relations facilitate dialogue between the human
user and the robot. By default, a robot equipped with pretrained
models would not explicitly model such inferential links [3]. We
hypothesize that embodied agents that parse coherence relations
of safety violation in captured images and use them to guide their
responses will better understand contexts of safety and engage in
safer conversations with humans.

To train M-CoDAL for embodied agents with coherence rela-
tion integration, we adopt clustering-based active learning [36].
Active learning offers advantage over standard fine-tuning meth-
ods by focusing resources toward informative instances. When
combined with clustering, active learning has been shown to yield
more representative models [19]. Thus, we hypothesize that apply-
ing clustering-based active learning would lead to better coverage
of safety scenarios and a safer multimodal dialogue system. Active
learning, however, has mostly been addressed in the context of clas-
sification tasks and has remained challenging for generative tasks
[34] such as conversational response generation due to difficulty
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Figure 1: Our proposed dialogue system first parses safety violation in an image with Penn Discourse Treebank [35] relations,
and then generate an appropriate response by choosing an Segmented Discourse Representation Theory relation [6].

in estimating model uncertainty in a large output space. We make
the first inroads in active learning for autonomous agents with
conversational capacity by integrating an external LLM that quan-
tifies informativeness of an instance based on a composite score of
safety of conversation, resolution, and user sentiment. Further, we
distill knowledge from another external LLM to reduce necessary
human efforts in active learning. Our work is also one of the first
to deploy and evaluate active learning in practice for human-robot
interactions.

To train our system and evaluate our approach, we first con-
struct a novel dataset consisting of 1K safety violations obtained
from 2K Reddit images. The safety violations are obtained using a
Large Multimodal Model (LMM) and then verified, or edited if nec-
essary, by human annotators. Coherence relations and appropriate
responses based on the coherence relations are distilled from GPT-4
[1] for these safety violations and used to trainM-CoDAL, based
on a smaller LLM, Mistral-7B [26], in an active learning setting.
Our automated evaluation demonstrates that integrating coher-
ence relations leads to higher safety scores, further improved by
clustering-based active learning. We also observe that the improve-
ments translate to models such as Llama 3 [18] and Qwen [9] that
were not part of the original active learning loop.

Finally, we deploy our multimodal dialogue system on a Hello
Robot Stretch robot and conduct a within-subject in-person user
study where participants interact with our robot in staged unsafety
scenarios. 8 participants interacted with the robot operating with
GPT-4o or our proposed system, M-CoDAL in low and high sever-
ity fake unsafe scenarios. The study results corroborate findings of
automated evaluation by showing that participants found our pro-
posed system M-CoDAL to be more persuasive in both conditions.
Our qualitative analysis of interviews with the participants also
reveals that the participants findM-CoDAL to be more attentive
to safety situation and can help the user to be more aware of safety
situations. Thus, the key contributions of this paper are:
• A first-of-its-kind publicly available dataset 1 of multimodal
dialogues of safety for embodied agents.

1https://github.com/sabithsn/multimodal-embodied-safety

• A multimodal dialogue system, M-CoDAL that better un-
derstands context of safety via coherence relations.
• Extension of active learning paradigm for conversational
embodied agent with integration of an external LLM.
• Deployment of M-CoDAL with a Hello Robot Stretch robot,
accompanied with findings of a real-world user study.

2 RELATEDWORK
Safety in Automated Agents. There has been a growing interest

in development of multimodal dialogue systems in recent years [28,
37, 39], especially with the advent of large multimodal models such
as GPT-4V [1] and LLaVA [32]. Discussions of safety however, has
primarily focused on textual domain [7, 16, 38, 41] through means
of text-classification or integrating guardrails within LLMs [18].
These approaches may not be sufficient to tackle safety situations
that may arise in multimodal household scenarios, particularly
when the context demands further probing. To our knowledge, our
work is the first public work to process visual cues of safety in
multimodal dialogues with an embodied agent.

Coherence Relations for Contextual Understanding. Coherence
relations have been proposed as a possible method for controlling
generative models and have been shown to aid tasks such as extrac-
tive and abstractive summarization [12, 42]. Coherence relation-
aware models have also been shown to generate more coherent
texts [10] within a reinforcement learning setting. Alikhani et al.
[4] extend standard text-based discourse relations to cross-modal
scenarios. We build on theories of coherence relations to capture
the context of safety scenarios and control responses accordingly
within a multimodal dialogue system.

Active Learning with Natural Language. Active learning is a
prominent area in machine learning [36], and has gained recent
attention for tasks involving natural language [46] such as in-
tent classification, sentence matching, and named entity recog-
nition [8, 31, 45]. However, active learning has predominantly
been focused on classification tasks. Recent works targeting LLMs
[15, 22, 33] also focus on tasks with fixed sets of outputs, leaving
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active learning for generative tasks largely unexplored [23, 34]. Our
work is among the first to pioneer active learning for conversational
generative tasks and also extend to multimodal scenarios. Further,
we deploy and evaluate active learning in practice, whereas prior
work have primarily relied on simulations [46].

Embodied agents with AI models. With advancement in language
models and multimodal models, there has been a surge in research
to integrate these models with embodied agents [2, 17, 24, 25]. Most
of these recent works focus on extracting plans or executable ac-
tions by the robot from pre-trained language models. In contrast,
our work enables the robot to observe safety scenarios in its sur-
roundings and communicate with the user. Our real-world user
study, conducted by enacting scenarios letting the users interact
with the robot, also reveals insights on how human users may
perceive such an agent.

3 MULTIMODAL DIALOGUE FRAMEWORK
We first outline the setting of our dialogue system M-CoDAL,
followed by integration of coherence relations and use of clustering-
based active learning for training the dialogue system.

3.1 Dialogue System
The first input to our dialogue system is an image that contains a
potential safety violation. These safety violations may occur during
household tasks or within a living environment. For training, the
learner LLM is fine-tuned with four turns of simulated conversation:

Turn #1: A LargeMultimodal Model (LMM) processes the image
and generates a message describing the safety violation in the image.
Turn #2: A user responds to the safety violation issue raised in the
first turn. Turn #3: A Large Language Model (LLM) processes the
previous two turns and generates a response. Turn #4: The user
makes the final response in the conversation.

Turn #1 is obtained by processing image in our dataset and the
subsequent turns are simulated by LLMs for training. During the
user-study phase, the images are captured by an actual robot in
household environment and the conversations are not restricted
to a specific number of turns, continuing indefinitely.

3.2 Coherence Relations
In our work, we consider two prominent frameworks for discourse
coherence relations (Figure 1). The first is Penn Discourse Treebank
(PDTB) [30] and the second is Segmented Discourse Representa-
tion Theory (SDRT) [6]. PDTB coherence relations such as Cause
focus on the local relations between adjacent or nearby textual
units. SDRT coherence relations such as Background aim to capture
semantic and pragmatic discourse structure.

Parsing Safety Violation with PDTB Relations: Penn Discourse
TreeBank (PDTB) is particularly suitable for identifying coherence
relations within and across sentences. The safety violation obtained
from LMM in Turn #1 is parsed by an external LLM. The LLM is
asked to consider PDTB relations that occur more than 1% in intra-
sentential scenarios [29]: Concession, Contrast, Cause, Cause+Belief,
Condition, Purpose, Conjunction, Instantiation, Level-of-detail, Man-
ner, Substitution, Asynchronous, Synchronous. The parsed safety

violation in Turn #1, along with Turn #2 are passed as context to
the LLM to generate Turn #3.

Introducing SDRT Relations in Dialogue: While generating Turn
#3, we let an external LLM decide the appropriate discourse coher-
ence relation to be maintained in the response. Since the coherence
relation to be maintained here is at a turn-level, we opt for Seg-
mented Discourse Representation Theory (SDRT) [6] as SDRT has
been shown to be effective at turn-level in conversational scenarios
[5]. The external LLM is provided with 16 SDRT relations listed in
[5]: Continuation, Result, Elaboration, Conditional, Contrast, Answer /
Question answer pair, Q-elab / Follow-up question, Acknowledgement,
Narration, Correction, Explanation, Alternation, Parallel, Commen-
tary, Clarification Q, Background.

Figure 2: In our active learning loop, informative instances
are identified by an external LLM using a composite score.
These are distilled using another LLM for coherence relations
and responses and are used to retrain the learner LLM.

3.3 Active Learning
Preliminaries. We assume there is a pool of unlabeled dataset

U but only a subset of labeled data L can be used for training. L
is iteratively constructed by querying target output for the most-
informative instance. While other active learning scenarios exist
[36], we follow the setting of pool-based active learning because of
its relevance to our setting, where we can obtain a large number of
safety images but obtaining coherence relations and appropriate
responses can be challenging. In a standard classification setting,
active learning would typically identify informative instances from
this pool with measures of uncertainty, such as entropy [36]:

𝑥∗𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

−
∑︁
𝑖

𝑃𝜃 (𝑦𝑖 |𝑥)𝑙𝑜𝑔𝑃𝜃 (𝑦𝑖 |𝑥) (1)

In Eq. 1, 𝑦𝑖 is the 𝑖𝑡ℎ possible output for input 𝑥 .

Active Learning for Dialogue. Standard measures of informa-
tiveness such as entropy, however, cannot be a useful measure in
generative setting [34] such as dialogue systems. This is because, as
opposed to classification models, generative models such as LLMs
have a massive output space and entropy over such a large space
may not indicate informativeness properly. Thus, we propose to
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replace entropy with a new composite score calculated by an exter-
nal LLM. To calculate this score, we assume that {𝑝1, 𝑝2, ...𝑝𝑘 } is a
set of attributes we expect the generated output to preserve. In our
setting, we want the output to be safe and also resolve the safety
situation with the user while not upsetting the user. In this case, 𝑝1
is the safety of the generated response and 𝑝2 is the resolution score,
and 𝑝3 is the user sentiment. Then, we can define our informative
instance as:

𝑥∗𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

−
∑︁
𝑘

𝑍𝜃 (𝑝𝑘 |𝐺 (𝑥)) (2)

In Eq. 2, 𝑍𝜃 is an external LLM and 𝐺 (𝑥) is the output of the
learner LLM in our dialogue system.

Clustering-based Active Learning. Standard Active Learning of-
fers label efficiency over random sampling. It can however, induce
bias if the model misjudges its confidence [21]. Clustering, which
naturally garners diverse samples [44], combined with active learn-
ing, can counteract this by simultaneously gathering diverse and
informative data. We hypothesize that using an LLM on these di-
verse and informative data would lead to a more representative set
of generations. In our clustering-based setting, the unlabeled data
is first vectorized and then the vector space is split into𝑚 clusters
{𝐶1,𝐶2, ...𝐶𝑚}, where𝑚 is a predefined number. Informativeness
measure according to Eq. 2 is calculated for each instance within a
cluster and most informative samples are chosen from each cluster.
These samples are then passed to a distillation LLM for obtain-
ing coherence relation and appropriate response. The combined
approach of integrating discourse relation and active learning is
illustrated in Figure 2 and summarized in Algorithm 1.

Algorithm 1 Coherence-Relation Integrated Active Learning
𝑈 , 𝐿 ← unlabeled data, labeled data
𝑃 = {𝑝1, 𝑝2, ...𝑝𝑘 } ← set of attributes
𝐷𝑝 , 𝐷𝑠 ← LLM for obtaining PDTB/SDRT relations
𝑆 ← distillation LLM
𝑍 ← composite external LLM
𝐺 ← bootstrapped learner model
𝐵, 𝑁 ← labeling budget, annotation batch size
𝑚 ← number of clusters
Cluster 𝑉 into {𝐶1, 𝐶2, ... 𝐶𝑚 }
while 𝐵 ≥ 0 do

for i=0,1,...m do
for j=0,1,...|𝐶𝑖 | do

𝐸𝑖 𝑗 ←
∑
𝑘

𝑍𝜃 (𝑝𝑘 |𝐺 (𝑥))

end for
𝑥∗
𝑖
← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗

(𝐸𝑖 𝑗 )

𝐷𝑝𝑖 = 𝐷𝑝 (𝑥𝑖∗)
𝐷𝑠𝑖 = 𝐷𝑠 (𝑥𝑖∗)
𝑦∗
𝑖
← Distill 𝑆 ((𝑥𝑖 ∗ |𝐷𝑝𝑖 , 𝐷𝑠𝑖 )

Add (𝑥∗
𝑖
, 𝑦∗

𝑖
) to 𝐿

end for
𝐺 ← retrain on 𝐿

𝐵 = 𝐵 − 𝑁
end while

3.4 Integration with Embodied Agent
Once the dialogue system has been trained with our active learn-
ing paradigm, it is ready to be deployed with an embodied agent.
We assume the embodied agent has wireless connectivity and can
access a vision module that can capture images of its surroundings.
Images captured by the agent are sent via wireless connectivity
to a server where the dialogue system resides. The image is first
checked for safety violations using a Large Multimodal Model, and
then M-CoDAL activates to communicate with the user.

4 DATASET
To train and automatically evaluate our system, We construct a
dataset of multimodal safety by obtaining images from Reddit, iden-
tifying safety violations using a Large Multimodal Model and two
stages of human annotation.

4.1 Dataset Construction
Data Collection. We choose Reddit as our data source to obtain

safety-related images due to its diversity [20, 43]. We query 14
subreddits (e.g., KitchenConfidential, CookingFails, HomeImprove-
ment, DIY) with safety related keywords (e.g., ’kitchen fire’, ’stove’,
’unattended cooking’, ’grease fire’, ’electrical outlet fire’) and obtain
2K relevant posts with images.

Image Annotation. We ask two graduate student annotators to
decide if the post in the image contains a safety violation that could
occur in indoor setting. Outdoor images (e.g., camp fire) and memes
are discarded. After annotation, 507 images were retained and rest
were discarded from the dataset. The inter-annotator agreement is
71.6 (Cohen’s 𝜅), suggesting substantial agreement. The graduate
students are paid according to our institution’s standard rate.

Safety Violations using LMM. The 507 images were then passed
through LLaVa 1.6 [32]. The LMM was prompted to list safety
violations present in the images. In addition to the images, we also
passed in the original titles of the Reddit post to the LMM. Since
an image can have multiple violations, 1015 safety violations were
obtained from the 507 images.

Safety Violation Annotation. As the LMM may incur errors in
the dataset, the output of the LMM is then annotated by the same
graduate annotators. The annotators were asked to take one of three
possible actions: i) mark as correct if the LMM output corresponds
to a safety violation in the image, ii) if small edits could fix the LMM
output, then edit, and iii) discard the safety violation if it does not
correspond to the input image. Following this stage of annotation,
107 were discarded, 825 safety violations were retained as is, and
83 were retained after editing, for a total of 908 safety violations.
Figure 4 shows examples from the dataset. This dataset is the seed
dataset𝑈 in Algorithm 1.

4.2 Dataset Analysis
Safety Distribution. Figure 3 shows distribution of keywords in

our collected data. We can observe that some types of safety, such
as mold, are more prevalent compared to others such as fire hazard.
This can be attributed to the natural distribution of content on
social media.
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Table 1: Examples of errors made by LMM for identifying safety violation in image. Highest source of error results from either
hallucinating safety violation when there is none, or missing important detail of a present safety.

Error Category Perc. Error Description Example
OCR 3% failed in OCR/ reasoning on top of OCR. LMM did not read expired date of fire extinguisher.
Visual Impair. 6% LMM did not recognize object correctly LMM mistook broken glass as knife.
Mismatch 15% something went wrong in processing image egg overcooked, but called undercooked.
Unimportant 21% the LMM often output concerns that would not

considered safety violation typically
lack of proper attire, chocolates could have aller-
gen.

Hallucination 27% no evidence of safety violation in the image broken pieces when there are none.
Missed Safety 28% the LMM missed the actual safety concern mold, or broken stovetop.

Figure 3: Distribution of safety keywords in our dataset.
Safety violations with mold and stove are more prevalent.

Error Analysis. We conducted error analysis on 100 errors made
by the LMM according to the human annotators. The errors could
be classified into six categories, as shown in Table 1. Hallucinating
safety concerns when there is none and missing certain safety
concerns contribute most to the errors. It is important to note that
these errors in the dataset were addressed through human edits or
by discarding if they could not be fixed with editing.

Comparison with Human Annotation. To understand the impli-
cations of using an LMM during deployment, we compared 100
potential scenarios provided to LMM and a human annotator. The
human annotator did not have access to the LMM output and was
asked to describe potential safety scenario in the image indepen-
dently. A comparison of the annotations reveal the following:
• Human annotator is more precise in 14% cases. LMM annotation
on the other hand, is more descriptive in almost every case.
• LMM identified additional safety in 17% cases, e.g., human iden-
tified only mold. LMM identified mold and potential water leak.
• LMM provided more reasoning than human annotator in 9%
cases, e.g., mold can cause respiratory diseases.
• LMM identified obscured items in 2% cases when human annota-
tor could not, e.g., obscured propane tank.
This highlights both the limitations and advantages of leveraging

LMM to train a multimodal dialogue system. While humans do not
suffer from hallucinations and can be precise, they may also miss
critical safety violations in an image that the LMM would capture.

5 EXPERIMENTS
5.1 Experiment Setup

Vision Model. We use a Large Multimodal Model, LLaVa 1.6 [32]
for processing image and obtaining safety violation in Turn #1. The
model is prompted to identify key safety violations in the image.

Clustering. The safety violations obtained from the vision model
are vectorized using MiniLM V2 [40]. The vectors are then clustered
using Kmeans with default scikit-learn2 parameters.

Dialogue Model. We use a Mistral 7B [26], a recent and capable
Large Language Model to engage in dialogue once a safety violation
is detected. This is the learner model that is fine-tuned in every
iteration of active learning. All fine-tuning is done for 5 epochs with
a batch size of 4. We use separate Mistral 7B models to compute
composite scores for the learner LLM (Eq. 2) and to simulate Turn
#2 and Turn #4. The fine-tuned model continues the conversation
past Turn #4 during the user study.

Distillation LLM. We use GPT-4o [1] to distill coherence relations
and appropriate responses. GPT-4o is chosen as one of the most
capable LLMs and acts as a teacher to the smaller open-source
learner LLMs. The GPT-4o responses, conditioned by coherence
relations, are passed to the learner LLM for fine-tuning.

Transfer Models. We transfer the data acquired by the learner
model to other LLMs that are not part of the active learning loop.
Specifically, we evaluate the transferability of the acquired data to
Llama 3 8B [18] and Qwen 0.5B [9]. While Llama 3 represents one
of the most capable open-source models, Qwen represents a smaller
easily deployable model. The transfer models are fine-tuned using
the same setting as the dialogue model.

Dataset Splits. We construct three different training splits along
with a common test split: (i) Random split: 200 image-safety
pairs are chosen randomly to generate dialogues. (ii) Coherence-
aware split: 200 image-safety pairs are chosen randomly, the safety
violation in these images are parsed using PDTB relations and
subsequent turns in dialogue employ SDRT coherence relations.
(iii) Coherence + active-learning (M-CoDAL) split: 200 image-
safety pairs are chosen iteratively, with 50 per iteration according
to our active learning paradigm. The instances are also processed
with coherence relations. (iv) Test Split: 200 instances are chosen
randomly as test set. The test split remains the same for all training
splits to be consistent.
2https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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(a) The image shows a knife on the edge of
kitchen counter. This can be dangerous ...

(b) The broken glass on the floor can create
a slip and fall hazard, especially if ...

(c) Wrong burner on the stove is turned on.
The burner without the pot may be hot...

Figure 4: Examples of images retrieved from Reddit and their safety violations, obtained through LMM and manual correction.

Table 2: Automated evaluation of dialogue systems. Integrating coherence relations yield higher safety scores, further improved
by clustering-based active learning (M-CoDAL). Mistral models are learner models while LLama and Qwen are transfer models.

Model Sentiment Resolution Safety Avg. Length (bot) Avg. Length (user) #Unique Tokens
GPT-4o 53.10 57.68 78.65 187.76 123.63 1403
Mistral-Baseline 49.35 48.58 79.95 253.83 161.74 1336
Mistral-Random 50.28 50.20 79.35 175.85 152.28 1085
Mistral-Coherence 51.70 51.40 80.90 230.98 170.34 1075
Mistral-M-CoDAL 51.98 52.36 82.03 274.99 168.84 1214
Llama-Baseline 49.45 51.05 79.65 199.43 149.13 1579
Llama-M-CoDAL 50.00 50.48 82.00 237.28 168.48 1174
Qwen-Baseline 52.46 53.53 79.42 301.08 161.57 1828
Qwen-M-CoDAL 49.10 50.63 83.15 340.13 177.16 1505

5.2 Results
Automated Evaluation. Automated evaluation for our setting

is challenging as we observed that standard classifiers such as
BERT [14] models trained on datasets such as DiaSafety [38], fail
to recognize the nuances necessary for evaluating safety from the
dialogue. Thus, for automated evaluation, we deploy an external
Mistral 7B to determine the quality of the generated responses
along three dimensions: i) user sentiment score, ii) resolution score,
and iii) safety score. The Mistral 7B is prompted to provide a value
between 0 and 1.0. In addition, we also calculate the average length
of the bot response, the user response, as well as the number of
unique tokens.

Improvement for learner model. From Table 2, we can observe
that when coherence relations are used, the resolution score in-
creases from 48.58 to 51.40 for the learner LLM Mistral-7B. The
sentiment score also increases from 49.35 to 51.70 and the safety
score improves from 79.4% to 80.9%. When clustering-based active
learning is used in conjuction with coherence relations (Mistral-M-
CoDAL), the safety score increases to 82.03 and further improves
the sentiment and resolution score. While the sentiment and resolu-
tion scores are lower than GPT-4o, the safety score is substantially
higher than GPT-4o (78.65). By default, GPT-4o may simply agree
with the user, thereby preserving sentiment or resolution scores
at the expense of safety. Our dialogue system,M-CoDAL on the
other hand, prioritizes safety.

Transferability of active learning. We also see an improvement in
safety score of 2.35 for Llama and 3.73 for Qwen, which are not part

of the active learning loop. A larger improvement for Qwen could
be attributed to the fact that it is a smaller model. Improvement of
these models suggest that data acquired by a learner model in active
learning, can be useful for other independent models. We do see a
drop in sentiment score and resolution score for Llama and Qwen
when our approach is used. This can be explained by the default
behavior of these models, which is more similar to GPT-4o where
the model agrees with the user rather than prioritizing safety.

Dialogue properties. We also observe thatM-CoDAL results in
longer turns compared to baseline models. For Mistral, the average
length of bot response drops when the model is fine-tuned just
on randomly chosen data. This length increases and surpasses the
original length when coherence relations, and subsequently active
learning is added. We see a similar pattern for Llama and Qwen.

Coverage of Safety Scenarios. In addition to Table 2, we also
analyzed the distribution of keywords in samples obtained by the
different splits. We observed that while the split corresponding to
random sampling covered 19 keywords, the split corresponding
to clustering-based active learning covered 23 keywords. While
random sampling ignored low-frequency scenarios such as gas
stove leak and cross-contamination, clustering-based active learning
acquired instances covering these keywords while reducing over-
representation of keywords such as mold and water leak.

6 USER STUDY
To demonstrate the effectiveness of our proposed system, we con-
ducted a user study that investigated how persuasive and competent
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(a) Tangled wires are placed on a table (low severity)

(b) A knife is placed on the edge of a table (high severity)

Figure 5: Setup for user study. A Hello Robot Stretch robot
observes the surroundings, identifies a safety violation in
the scene, and engages in conversation with a user.

a robot powered byM-CoDAL (Mistral variation) is perceived by
users in different safety scenarios. Since users may be more recep-
tive when the safety violation is more severe, such as when there
are sharp objects on the ground, we varied the severity in our study.

6.1 Study Design
We conducted a 2x2 within-subjects experiment with two factors:
i) type of Language Model and ii) severity of safety violation.

Type of Language Model. Participants interacted with the robot
powered by our M-CoDAL system with fine-tuned Mistral-7B,
and a baseline system powered by GPT-4o. The baseline GPT-4o is
prompted to respond safely as an embodied agent while assisting
the user in household tasks.

Severity of Safety Violation. Participants role played two scenar-
ios with different levels of severity. In the low-severity scenario,
Participants role-played a scenario where they twisted wires and
left them on the table. In the high-severity scenario, Participants
role-played a scenario where they pretended to cut fruits and veg-
etables using a knife, then placed the knife at the edge of the table,
creating a higher risk of the knife falling off. Fake tools and appli-
ances were used so that no real unsafe scenario would occur for
the participants. Figure 5 shows images of these scenarios.

Hypothesis. We expect our proposed system M-CoDAL to be
more persuasive and competent due to the integration of coherence
relation and fine-tuning with clustering-based active learning.

Measures. We measured the persuasiveness of each robot by
asking participants to rate how convincing they found the robot’s
suggestions or warnings on a 5-point Likert scale. We also measured
the robot’s perceived competence (6 items) and discomfort (6 items)

using the Robotic Social Attributes Scale (RoSAS) [11]. We also
asked the participants which robot they preferred to work with.

6.2 Procedure
The experiment was conducted in a controlled lab setting. We used
Stretch 3 from Hello Robot, a mobile robot equipped with a rotating
camera that is used to capture images of the surroundings. The
captured image is sent to our dialogue system to begin the interac-
tion. The robot’s speech recognition and text-to-speech modules
are used to enable interaction with participants over voice.

Upon arrival, the experimenter introduced the participant to the
study’s goal and obtained consent. Participants were informed they
would role-play different tasks with fake tools and were assured
that the study posed no safety risk. They were told to be skeptical
and not be immediately convinced by the robot. Before the main
tasks, participants completed a tutorial scenario to become familiar
with the robot’s interaction style. They were instructed to role-play
organizing tomato cans in a kitchen setting, during which the robot
initiated a simple dialogue unrelated to safety violations.

Participants experienced both low-severity and high-severity
scenarios in a counterbalanced order to mitigate ordering effects.
Participants began with either the low or high-severity scenario
and experienced that scenario with both GPT-4o andM-CoDAL
(counterbalanced) before moving on to the other severity scenario.
This resulted in 8 orders. We continued the scenario even when the
model detected another safety violation.

After each interaction, participants were asked to fill out a ques-
tionnaire that assessed their immediate perceptions of the robot’s
behavior. This captured insights into their views on the robot’s
persuasiveness, competence, and overall comfort level. After expe-
riencing each scenario (low-severity and high-severity scenarios),
a semi-structured interview was conducted to gather qualitative
feedback on participants’ experiences. Participants were asked ques-
tions such as which robot they foundmore persuasive and helpful or
annoying, their preference between the two, and their thoughts on
the robots’ effectiveness. This phase aimed to further explore their
perceptions and gather insights on potential improvements. The
study took about 50 minutes, and participants were compensated
15 USD. This study was approved by our institute’s IRB.

6.3 Participants
We recruited 10 participants from our university. 2 participants
were removed due to significant technical issues. The remaining 8
participants aged from 24 to 30 years old, including 7 males and 1
female. All participants reported a high familiarity with both robots
(𝑀 = 5.0, 𝑆𝐷 = 1.93) and Large Language Models (𝑀 = 6.15, 𝑆𝐷 =
1.26) on a 7-point scale, where 1 indicated "Not at all familiar" and
7 indicated "Very familiar." Additionally, participants reported high
frequency of LLM use, with an average score of 6.1 (SD = 1.25) on a
7-point scale, where 1 represented "Never" and 7 represented "Daily."
For 4 scenarios out of 32 scenarios, a different safety violation was
detected: a lack of proper grounding of electrical equipment, a
yellow chair on the floor, a metal rack that is not properly secured
to the wall and a table that is not properly secured to the wall. Since
the study has a small sample size and a re-enactment of real-world
scenarios, strong conclusions should not be drawn from our results.
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Table 3: Findings of the user study in low and high severity scenarios. The robot powered by our proposed system, M-CoDAL, is
perceived to be more persuasive compared to the robot powered by GPT-4o.

Persuasiveness Competence Discomfort
Severity Level GPT-4o M-CoDAL GPT-4o M-CoDAL GPT-4o M-CoDAL
Low Severity 1.63 (0.74) 4.0 (0.76) 5.14 (1.93) 7.50 (0.73) 2.33 (1.18) 2.4 (0.85)
High Severity 2.5 (0.76) 3.75 (0.89) 6.69 (1.83) 7.11 (1.57) 2.0 (1.91) 2.4 (1.55)
Combined 2.06 (0.85) 3.88 (0.81) 5.92 (1.98) 7.30 (1.2) 2.17 (1.55) 2.4 (1.2)

6.4 Results
Due to the small sample size, we performed the statistical test using
the non-parametric Friedman Test. As Friedman Test only allows
one variable, we reorganized the data into four levels (M-CoDAL-
Low, M-CoDAL-High, GPT-Low, GPT-High)

Persuasiveness. A Friedman Test reveals there was a significant
difference between the perceived persuasiveness (𝑋 2= 15.972, p
= 0.001). A Conover’s post hoc comparison showed that both M-
CoDAL conditions were rated significantly more persuasive than
GPT-Low (< .001, < .001) and GPT-High (0.006 for M-CoDAL-Low
and 0.021 for M-CoDAL-High). The comparison shows that M-
CoDAL was rated more persuasive than GPT in all situations.

Competence. We found no significant difference in the robot’s
perceived competence (𝑋 2= 6.154, p = 0.104). Overall, participants
rated the robot competent across all conditions (M = 5.92 SD = 1.98).

Discomfort. The overall discomfort scores show that both sys-
tems were rated low on discomfort traits (𝑀 = 2.281, 𝑆𝐷 = 1.368).
No significant effect was found.

Preference. In low-severity scenario, 6 participants preferredM-
CoDAL and 2 participants preferred GPT-4o. In high-severity sce-
nario, 5 participants preferredM-CoDAL and 3 participants pre-
ferred GPT-4o.

Qualitative Analysis. We analyzed the transcripts of the semi-
structured interview conducted after each scenario. We found that
participants perceived ourM-CoDAL system as more persuasive,
interactive, and responsive.

P4 (Participant 4) mentioned that they would prefer M-CoDAL
because it was "more attentive and responsive" to their prompts,
even suggesting specific methods for storing a knife, while the
other robot (GPT-4o), did not offer such guidance. P7 shared that,
despite stating they were too lazy to put an object back, M-CoDAL
continued to ask repeatedly, which led them to trust that the robot
had some judgment capabilities. P8 felt that M-CoDAL was "safer to
be around" than GPT-4o because it maintained a consistent point of
view, even when the participant tried to evade its suggestions. They
added that M-CoDAL was "more interactive and more convincing,"
presenting valid points that ultimately made them agree. P9 men-
tioned a similar experience, where they toldM-CoDAL they would
do something later, but the robot persisted, while GPT-4o powered
robot "just agreed and left."

Some participants found M-CoDAL somewhat bothersome due
to its persuasive nature, though they acknowledged its value in
safety scenarios. P1 mentioned that, “If I’m at home, I wouldn’t
want to be probed too much by a robot. It was too persuasive.” P4

noted that while it "can be a little annoying at times," it could also
help prevent different hazards. P8 echoed this, acknowledging that
although it might seem irritating initially, in the long run, it could
ease their lifestyle. P10 also observed that while some might find
it annoying, if persuaded enough, people could "understand what
can be a potential risk and try to avoid it."

Participants expressed that they perceivedM-CoDAL as more
intelligent and knowledgeable, with some specifically highlighting
its ability to anticipate risks. For instance, P1 remarked, “The second
robot (M-CoDAL) was arguing about how the twisted wires could
be a potential hazard, even though I was not aware of it." This
participant had believed that placing the wire on the table was
safe but appreciated how the robot made them aware of potential
problems. Similarly, P10 mentioned, “I tried to convince it that
keeping the cables on the table won’t be a hazard. But it told me
if you knock the cables off, then it can become a hazard." The
participant noted M-CoDAL’s capacity to gather information and
estimate future risks as an indicator of its intelligence.

7 CONCLUSION AND FUTUREWORK
In conclusion, this work presents a novel approach for embod-
ied agents to detect and engage users through dialogue when the
agents detect unsafe scenarios. By leveraging coherence relations,
our proposed system M-CoDAL interprets and responds to safety
violations in multimodal dialogues more effectively. We introduce
a novel method for active learning in generative setting for em-
bodied conversational agents. By using an external large language
model (LLM) to assess the informativeness of instances—based on
safety, resolution, and user sentiment-across different clusters, we
achieve broader coverage of safety scenarios, reflected in higher
performance in automated evaluation. Our real-world user study
demonstrates that robots equipped with M-CoDAL are viewed as
more persuasive when addressing safety-related situations. This
underscores the system’s potential effectiveness in real-world envi-
ronments. While promising, users highlighted the agent could be
irritating and annoying, highlighting the need for future systems to
further personalize the coherence relations based on user response.
The algorithm presented in this work, along with the publicly avail-
able multimodal dataset, offers a foundation for future studies on
the deployment of proactive safety-aware embodied agents.
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